JPS6359224B2 - - Google Patents

Info

Publication number
JPS6359224B2
JPS6359224B2 JP13168582A JP13168582A JPS6359224B2 JP S6359224 B2 JPS6359224 B2 JP S6359224B2 JP 13168582 A JP13168582 A JP 13168582A JP 13168582 A JP13168582 A JP 13168582A JP S6359224 B2 JPS6359224 B2 JP S6359224B2
Authority
JP
Japan
Prior art keywords
yoke
inner cylinder
axis
magnetic
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13168582A
Other languages
Japanese (ja)
Other versions
JPS5923439A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13168582A priority Critical patent/JPS5923439A/en
Publication of JPS5923439A publication Critical patent/JPS5923439A/en
Publication of JPS6359224B2 publication Critical patent/JPS6359224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Description

【発明の詳細な説明】 本発明は電圧軸と電流軸の隔差を補正し得る新
規な磁界レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel magnetic field lens capable of correcting the difference between the voltage axis and the current axis.

電子顕微鏡のレンズ系における軸とは幾何学的
な軸の他に電圧軸と電流軸とがあり、後者の2つ
の軸の方が重要であることは論を持たない。上記
電圧軸とはレンズ系の強度を一定に保つた状態に
おいて、加速電圧を周期的に変化させた場合、蛍
光板上の像が第1図に示す如く、ある点Oaを中
心として放射状に伸縮するときの該中心点(不動
の点)を云い、又電流軸とは加速電圧を一定に保
つた状態で対物レンズ(レンズ系)のレンズ強度
(磁界強度)を変化させた場合、第2図に示す如
く、ある点Obを中心に像が回転を伴つて伸縮す
るときの該中心点(不動の点)を云う。これら電
圧軸Oa及び電流軸Obが蛍光板の中心Oと一致し
ていない場合には、該蛍光板中心部での像は加速
電圧の変化又はレンズ強度の変化に伴つて変動
し、従つて色収差によるぼけを生じ、高い分解能
は得られないわけである。そこで、これら軸Oa、
Obを機械的な又は電磁気的な軸合せ手段により
蛍光板中心Oに一致せしめれば色収差によるぼけ
のない、又はぼけの少ない部分が蛍光板上に表示
できることになる。
In addition to the geometrical axis, the axes in the lens system of an electron microscope include a voltage axis and a current axis, and there is no argument that the latter two axes are more important. What is the voltage axis mentioned above? When the acceleration voltage is changed periodically while the strength of the lens system is kept constant, the image on the fluorescent screen expands and contracts radially around a certain point Oa, as shown in Figure 1. The current axis refers to the center point (an immovable point) when the acceleration voltage is kept constant and the lens strength (magnetic field strength) of the objective lens (lens system) is changed, as shown in Figure 2. As shown in the figure, this is the center point (unmoving point) when an image expands and contracts with rotation around a certain point Ob. If these voltage axis Oa and current axis Ob do not coincide with the center O of the fluorescent screen, the image at the center of the fluorescent screen will fluctuate as the accelerating voltage changes or the lens strength changes, resulting in blurring due to chromatic aberration. Therefore, high resolution cannot be obtained. Therefore, these axes Oa,
By aligning Ob with the center O of the phosphor screen using mechanical or electromagnetic alignment means, a portion free or less blurred due to chromatic aberration can be displayed on the phosphor screen.

所が、一般に電圧軸と電流軸とはずれており、
その格差lを補正することは不可能とされてい
た。このため、従来は第3図に示す如く、一方の
軸例えば電流軸Obのみを合せているが、他方の
軸(電圧軸)は合つていないので、それによる像
のぼけは防ぎ得ない。
However, the voltage axis and current axis are generally out of sync,
It was considered impossible to correct this disparity. For this reason, conventionally, as shown in FIG. 3, only one axis, for example, the current axis Ob, is aligned, but the other axis (voltage axis) is not aligned, so blurring of the image due to this cannot be prevented.

本発明の目的は上記のような像のぼけの原因と
なる電圧軸、電流軸の偏差lを補正することので
きる全く新規な磁界レンズを提供することにあ
る。そして、本発明の構成の特徴はヨーク内筒
と、このヨーク内筒に磁気的に接続したヨーク外
筒と、両ヨークで囲まれる空間に置かれた励磁コ
イルと、磁極部とを備えたレンズにおいて、ヨー
ク内筒の外側に回転対称的又は軸対称的配置で且
つヨーク内筒の軸方向に長さをもつ強磁性補助ヨ
ーク部材を設置し、該補助ヨーク部材をヨーク内
筒の軸に対して直角な平面内で微動させる機構を
設けた磁界レンズに存する。
An object of the present invention is to provide a completely new magnetic lens capable of correcting the deviation l of the voltage axis and current axis that causes image blurring as described above. The structure of the present invention is characterized by a lens including an inner yoke cylinder, an outer yoke cylinder magnetically connected to the inner yoke cylinder, an excitation coil placed in a space surrounded by both yokes, and a magnetic pole part. A ferromagnetic auxiliary yoke member is installed outside the yoke inner cylinder in a rotationally symmetrical or axially symmetrical arrangement and has a length in the axial direction of the yoke inner cylinder, and the auxiliary yoke member is aligned with respect to the axis of the yoke inner cylinder. It consists of a magnetic field lens equipped with a mechanism for finely moving it within a plane at right angles to the magnetic field.

先ず、両軸の隔差が生ずる原因について考察す
るに、一義的に鉄のヒステリシスによるものと云
うことができる。即ち、磁界レンズでは励磁コイ
ルにより発生した磁束を鉄製のヨークを通して同
じく製鉄の磁極片によりギヤツプ内に集めている
が、前記励磁コイルに流す電流(磁束密度)の変
化と磁界強度とはヒステリシスのため直線的には
変らない。このヒステリシスが完全に軸対称であ
れば問題にならないが、一般には材料の組成や粒
子のバラツキ或いは構造的(加工上)非対称など
が原因して、完全な軸対称にはならず、これが両
軸のずれ、つまり隔差lをひき起すことになる。
First, considering the cause of the difference in distance between the two axes, it can be said that it is primarily due to the hysteresis of iron. In other words, in a magnetic field lens, the magnetic flux generated by an excitation coil is passed through an iron yoke and collected in a gap by a magnetic pole piece made of iron, but changes in the current (magnetic flux density) flowing through the excitation coil and the magnetic field strength are due to hysteresis. It doesn't change linearly. If this hysteresis were completely axially symmetrical, it would not be a problem, but in general, it is not completely axially symmetrical due to variations in material composition, particles, or structural (processing) asymmetry, and this is the case when both axes are completely symmetrical. In other words, this causes a difference in distance l.

ヒステリシスの影響を少くする一方法として、
磁束密度を小さくすることが考えられるが、今日
の電子顕微鏡の対物レンズ等においては磁気飽和
を起す程に強励磁が必要であるので、この様な方
法は全く実用的でない。
One way to reduce the effect of hysteresis is to
Although it is possible to reduce the magnetic flux density, such a method is completely impractical because the objective lenses of today's electron microscopes require excitation strong enough to cause magnetic saturation.

そこで、本発明は強励磁状態において、ヒステ
リシスの不完全さによる軸隔差を補正するもの
で、ヨーク内における磁束の流れを制御すること
により電流軸を自由に調整し、もつて電圧軸と一
致させ得るようになしたものである。
Therefore, the present invention corrects the shaft spacing difference due to imperfection of hysteresis in a strongly excited state. By controlling the flow of magnetic flux in the yoke, the current axis can be freely adjusted, thereby making it coincide with the voltage axis. I did it so that I could get it.

第4図はレンズ内の磁束の流れを模擬的に示す
ものである。図中、1はヨーク内筒、2はコの字
状のヨーク外筒であり、両者は一端部(内筒1の
下端)で磁気的に結合されており、又ヨーク内筒
1の上端と外筒2の上部との間に磁極間隙3が形
成される。尚、通常はこの部分に磁極片が挿入さ
れる。4はヨーク内筒と外筒とで形成された空間
に巻回された励磁コイルであり、外部の直流電源
に接続されている。
FIG. 4 schematically shows the flow of magnetic flux within the lens. In the figure, 1 is an inner yoke cylinder, and 2 is a U-shaped yoke outer cylinder, both of which are magnetically coupled at one end (the lower end of the inner cylinder 1), and the upper end of the yoke inner cylinder 1. A magnetic pole gap 3 is formed between the outer cylinder 2 and the upper part thereof. Note that a magnetic pole piece is usually inserted into this portion. Reference numeral 4 denotes an excitation coil wound in a space formed by the inner and outer yoke cylinders, and is connected to an external DC power source.

この様なレンズにおいて、励磁コイル4に励磁
電流を流すと、図に示す如く磁束が発生し、ヨー
ク内、外を通過するがヨーク部分においては円A
で囲んだ部分、つまりヨーク内筒1と外筒2の接
続部におけるコイル4に対接する部分に磁束の集
中がみられる。そこで、この部分における磁束の
流れを調整すれば効率的に磁極間隙3内の磁界分
布を変えることが可能である。
In such a lens, when an excitation current is passed through the excitation coil 4, a magnetic flux is generated as shown in the figure, passing inside and outside the yoke, but in the yoke part it forms a circle A.
Concentration of magnetic flux can be seen in the area surrounded by , that is, the area where the yoke inner tube 1 and the outer tube 2 are connected and which is in contact with the coil 4. Therefore, by adjusting the flow of magnetic flux in this portion, it is possible to efficiently change the magnetic field distribution within the magnetic pole gap 3.

本発明の一具体例を第5図に示してある。同図
において、第4図と同符号は同一の構成物を示し
てあり、又5は磁極間隙部3に設けられた磁極片
である。6はヨーク内筒1と励磁コイル4との間
に置かれた筒状の強磁性補助ヨークであり、レン
ズ軸(ヨーク内筒の軸)と直角な平面内で移動可
能である。この補助ヨークには数本の調整ネジ7
a,7b……の先端が接しており、該調整ネジを
適宜調整することにより前記レンズの軸Oに対す
る補助ヨークの軸心のずれの大きさ及び方向を自
由に変えられる。前記補助ヨークとしては図示の
如きレンズ軸Oの方向に長さをもつ筒状体が好ま
しいが、多数本の棒体を軸対称に一体化したもの
であつても差し支えない。
One embodiment of the invention is shown in FIG. In this figure, the same reference numerals as in FIG. 4 indicate the same components, and 5 is a magnetic pole piece provided in the magnetic pole gap 3. A cylindrical ferromagnetic auxiliary yoke 6 is placed between the yoke inner tube 1 and the excitation coil 4, and is movable in a plane perpendicular to the lens axis (the axis of the yoke inner tube). This auxiliary yoke has several adjustment screws 7
The tips of the lenses a, 7b, . The auxiliary yoke is preferably a cylindrical body having a length in the direction of the lens axis O as shown in the figure, but it may also be a body formed by integrating a large number of rods axially symmetrically.

この様な構造において、例えばネジ7aを押し
込み、7bを逆に引き出すように補助ヨークの位
置を調整すると、該ヨークは第6図に示す如く左
側はヨーク内筒1に接近し、右側はヨーク内筒1
から離れるようになる。このため、ヨーク内筒1
と外筒2との接合部における磁束の流れに変化が
生じ、第6図に示す如く、左側の方が右側よりヨ
ーク内筒1を通る磁束の数が多くなる。つまり、
磁束密度Bの分布を調整できることになる。これ
により、磁極片5における磁気間隙内の磁界分布
は影響を受け、その軸、つまり電流軸は移動する
ことになる。従つて、前記複数個のネジ7a,7
b……を適当に調整すれば、電圧軸に対し電流軸
を一致させることが可能である。
In such a structure, if the position of the auxiliary yoke is adjusted by, for example, pushing in the screw 7a and pulling out the screw 7b, the left side approaches the yoke inner cylinder 1, and the right side approaches the yoke inner cylinder 1, as shown in FIG. Cylinder 1
Becomes to move away from. For this reason, the yoke inner cylinder 1
A change occurs in the flow of magnetic flux at the junction between the yoke inner cylinder 1 and the outer cylinder 2, and as shown in FIG. 6, the number of magnetic fluxes passing through the yoke inner cylinder 1 is greater on the left side than on the right side. In other words,
This means that the distribution of magnetic flux density B can be adjusted. As a result, the magnetic field distribution within the magnetic gap in the pole piece 5 is affected, and its axis, that is, the current axis, moves. Therefore, the plurality of screws 7a, 7
By appropriately adjusting b..., it is possible to make the current axis coincide with the voltage axis.

以上詳説した如く、本発明はヨーク内筒の外側
に回転対称的又は軸対称的でヨーク内筒の軸方向
に長さをもつ強磁性体製の補助ヨークを配置し、
これをヨーク内筒の軸に対し直角な面内で微動さ
せ、もつてヨーク内筒内を流れる磁束の密度分布
を調整し、それによつて電流軸を移動させるよう
になしたもので、容易に電圧軸と電流軸との隔差
lの補正が可能となり、両端のずれによる分解能
の低下を防止できる。又、本発明では磁束密度の
大きいA部(第4図)の磁束の流れを調整するも
ので、電子線通路に何等の磁性体をも挿入しない
ので偏向場の発生や非点収差の発生を殆んどもた
らすことなしに初期の目的を達成することができ
る。
As explained in detail above, the present invention arranges an auxiliary yoke made of a ferromagnetic material that is rotationally symmetrical or axially symmetrical and has a length in the axial direction of the yoke inner cylinder on the outside of the yoke inner cylinder,
This is made to move slightly in a plane perpendicular to the axis of the yoke inner cylinder, thereby adjusting the density distribution of the magnetic flux flowing inside the yoke inner cylinder, thereby moving the current axis. It becomes possible to correct the difference l between the voltage axis and the current axis, and it is possible to prevent a decrease in resolution due to a shift between both ends. In addition, the present invention adjusts the flow of magnetic flux in section A (Fig. 4) where the magnetic flux density is high, and since no magnetic material is inserted into the electron beam path, the generation of deflection fields and astigmatism can be avoided. Initial objectives can be achieved with little contribution.

尚、上記は主に電子顕微鏡の対物レンズについ
て説明したが、他のレンズにも利用し得ることは
云うまでもない。
Incidentally, although the above description has mainly been given to the objective lens of an electron microscope, it goes without saying that the present invention can also be used for other lenses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電圧軸を説明するための図、第2図は
電流軸を説明するための図、第3図は従来の電子
顕微鏡における軸の状態を説明する図、第4図は
本発明の原理を説明する図、第5図は本発明の一
実施例を示す断面図、第6図は本発明の作用説明
図である。 1:ヨーク内筒、2:ヨーク外筒、3:磁極間
隙、4:励磁コイル、5:磁極片、6:強磁性補
助ヨーク、7a,7b……:調整ネジ。
Figure 1 is a diagram for explaining the voltage axis, Figure 2 is a diagram for explaining the current axis, Figure 3 is a diagram for explaining the state of the axis in a conventional electron microscope, and Figure 4 is a diagram for explaining the axis of the present invention. FIG. 5 is a cross-sectional view showing an embodiment of the present invention, and FIG. 6 is a diagram explaining the operation of the present invention. 1: Yoke inner cylinder, 2: Yoke outer cylinder, 3: Magnetic pole gap, 4: Excitation coil, 5: Magnetic pole piece, 6: Ferromagnetic auxiliary yoke, 7a, 7b...: Adjustment screw.

Claims (1)

【特許請求の範囲】 1 ヨーク内筒と、このヨーク内筒に磁気的に接
続したヨーク外筒と、両ヨークで囲まれる空間に
置かれた励磁コイルと、磁極部とを備えたレンズ
において、ヨーク内筒の外側に回転対称的又は軸
対称的配置で且つヨーク内筒の軸方向に長さをも
つ強磁性補助ヨーク部材を配置し、該補助ヨーク
部材をヨーク内筒の軸に対して直角な平面内で微
動させる機構を設けたことを特徴とする磁界レン
ズ。 2 前記補助ヨーク部材は円筒状である特許請求
の範囲第1項記載の磁界レンズ。
[Claims] 1. A lens comprising a yoke inner cylinder, a yoke outer cylinder magnetically connected to the yoke inner cylinder, an excitation coil placed in a space surrounded by both yokes, and a magnetic pole part, A ferromagnetic auxiliary yoke member is arranged outside the yoke inner cylinder in a rotationally symmetrical or axially symmetrical arrangement and has a length in the axial direction of the yoke inner cylinder, and the auxiliary yoke member is arranged at right angles to the axis of the yoke inner cylinder. A magnetic field lens characterized by having a mechanism for finely moving it within a flat plane. 2. The magnetic field lens according to claim 1, wherein the auxiliary yoke member has a cylindrical shape.
JP13168582A 1982-07-28 1982-07-28 Magnetic field lens Granted JPS5923439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13168582A JPS5923439A (en) 1982-07-28 1982-07-28 Magnetic field lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13168582A JPS5923439A (en) 1982-07-28 1982-07-28 Magnetic field lens

Publications (2)

Publication Number Publication Date
JPS5923439A JPS5923439A (en) 1984-02-06
JPS6359224B2 true JPS6359224B2 (en) 1988-11-18

Family

ID=15063820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13168582A Granted JPS5923439A (en) 1982-07-28 1982-07-28 Magnetic field lens

Country Status (1)

Country Link
JP (1) JPS5923439A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827937B2 (en) * 1994-11-22 1998-11-25 富士ゼロックス株式会社 Electrophotographic photosensitive member having undercoat layer and electrophotographic apparatus

Also Published As

Publication number Publication date
JPS5923439A (en) 1984-02-06

Similar Documents

Publication Publication Date Title
US5084622A (en) Correction system for a charged-particle beam apparatus
JP2002516026A (en) Correction device for correcting lens defects in particle-optical apparatus
US10332718B1 (en) Compact deflecting magnet
US9349565B2 (en) Multipole lens, aberration corrector, and electron microscope
JPS636736A (en) Electromagnetic lens system
EP0084653A2 (en) Composite concentric-gap magnetic lens
US2586559A (en) Multiple element electron lens arrangement
EP3309814B1 (en) Objective lens and transmission electron microscope
JPS6359224B2 (en)
EP0551027B1 (en) Magnetic focusing device
JPH021434B2 (en)
US4468563A (en) Electron lens
US5347366A (en) Fixation structure of deflection yoke and focus magnet for projection cathode ray tube
JPS5953658B2 (en) electronic lens
GB1210210A (en) Electron beam apparatus
US3188465A (en) Two stage electron beam magnification device comprising plural adjustable magnetic lens system
JPH0560212B2 (en)
TW548664B (en) Split magnetic lens for controlling a charged particle beam
JPS5914242A (en) Electromagnetic lens
KR0140009Y1 (en) Collection coil of elecro collection type cathode ray tube
JPH05128986A (en) Magnetic field type lens
KR950003276Y1 (en) Focus magnet for projection television
JPS59181447A (en) Shaft slip compensator for electromagnetic lens
US4412132A (en) Electron lens equipped with three magnetic pole pieces
JPH07118281B2 (en) Focus magnet