JPS6357509B2 - - Google Patents

Info

Publication number
JPS6357509B2
JPS6357509B2 JP56196293A JP19629381A JPS6357509B2 JP S6357509 B2 JPS6357509 B2 JP S6357509B2 JP 56196293 A JP56196293 A JP 56196293A JP 19629381 A JP19629381 A JP 19629381A JP S6357509 B2 JPS6357509 B2 JP S6357509B2
Authority
JP
Japan
Prior art keywords
joint
electrical resistance
joint material
aggregate
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56196293A
Other languages
Japanese (ja)
Other versions
JPS5898378A (en
Inventor
Fumio Mochizuki
Tatsuo Hayashi
Yasushi Tanaka
Akihiro Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP56196293A priority Critical patent/JPS5898378A/en
Publication of JPS5898378A publication Critical patent/JPS5898378A/en
Publication of JPS6357509B2 publication Critical patent/JPS6357509B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルミニウム電解炉などに用いられ
るプリベーク炭素陽極において、金属導電棒をプ
リベーク炭素に接合する際に使用される充填目地
材に関するものである。 例えば、プリベーク式アルミニウム電解炉にお
いては、電解炉1炉当り通常20〜30ケのプリベー
ク炭素陽極(以下単に陽極ともいう)が設置され
ており、電解の進行につれて消耗した陽極は順次
交換されるようになつている。 陽極は予め焼成された炭素に金属導電棒を接合
することによりつくられるが、その接合法の一つ
として、両者の接合間隙(以下これを目地部とい
う)にコールタールピツチと炭素質骨材(以下単
に骨材という)とからなる目地材を、適当なプレ
ス刃先を用いて充填する所謂目地詰め法が知られ
ている。しかしながら従来の目地詰め法において
は、低温における目地部の電気抵抗が大きいこ
と、中程度の温度領域において懸垂強度が低下す
るという、2つの大きな欠点があつた。 すなわち、バインダーとして用いられるコール
タールピツチは、それ自身電気絶縁体であるから
交換直後の陽極では、目地部の電気抵抗が高いた
めに電流が流れ難く、陽極の温度が上昇してピツ
チが焼成され、同部分の電気抵抗が低下して標準
電流が流れるまでの1〜2日間は、他の陽極の分
担電流が増加することになり、これが電力原単位
悪化の一つの原因となつている。 また交換後陽極の温度が上昇する過程において
ピツチが軟化して徐々に懸垂強度(金属導電棒が
炭素自重を懸垂する強度)が低下し、特に100〜
300℃の範囲で、常温における強度の半分以下に
なることがある。アルミニウム電解炉の操業にお
いて、陽極効果の消去あるいは極間調節のために
陽極を上下動させる場合があるが、懸垂強度が弱
い時期にかかる作業を行なうと、陽極が脱落する
危険があつた。 本願発明者らは、上述の欠点は粘度の高いコー
ルタールピツチが用いられることに起因すると考
え、バインダーの種類、骨材の粘度、両者の配合
などについて種々検討した結果、本願発明を完成
した。 すなわち、本願発明は、プリベーク陽極用とし
て優れた性質をもつ充填目地材を提供するもので
あつて、常温における粘度が5〜300ポイズの熱
硬化性樹脂液をバインダー液とし、これに目地幅
の1/3以上の大きさの粒子を10〜45重量%(以下
単に%と記す)含む骨材を配合することを特徴と
するものである。 従来のコールタールピツチ(通常アントラセン
油などと配合されて用いられる。ピツチ:アント
ラセン油=7:4の配合をしたときの常温におけ
る粘度は104〜106ポイズ程度である)をバインダ
ーとした目地材では、骨材粒子間の架橋形成を防
ぎ充填性を高めるために、骨材の最大粒径は目地
幅の概ね1/4程度またはそれ以下とするのが普通
であり、このように骨材粒度が小さいことも、目
地部の電気抵抗が高くなる原因となつていた。 本願発明においては、常温における粘度が5〜
300ポイズという低い粘度の熱硬化性樹脂液を用
いるために、骨材の充填性が向上して従来よりも
かなり大きな粒度の骨材を使用することが可能と
なり、同時に個々の粒子表面を覆つているバイン
ダー膜も破壊され易くなる結果、目地部の低温に
ける電気抵抗を低減せしめることができたもので
ある。またバインダーの主体は熱硬化性樹脂であ
るから、懸垂強度は陽極の温度が上昇するにつれ
て(概ね100〜300℃の範囲で)高くなるので、従
来の目地材において、しばしば見られたような陽
極の脱落という現象は殆どなくなる。なお、常温
における懸垂強度が不充分なような場合には、公
知の硬化促進剤を利用するとか、あるいは予備的
に加熱処理することによつて、同強度を高めれば
良い。 バインダーとして用いられた熱硬化性樹脂は高
温で炭化するが、このものはピツチにおけると同
様に作用し、本願発明による陽極は、高温になる
につれて電気抵抗が低下する。 バインダー液の粘度は、前記のように5〜300
ポイズの範囲にあることが必要であり、5ポイズ
以下であると、目地材充填後に目地内の残留応力
が解放され易くなつて目地が緩む恐れがあり、そ
のため電気抵抗の増大あるいは懸垂強度の低下が
起る。またこの300ポイズ以上であると、骨材粒
子の架橋形成の危険が高くなり、一方でバインダ
ー膜の破壊の確率も低くなるので、所期の効果が
得られなくなる。 本願発明に用いる骨材の粒度としては、目地幅
の1/3以上のものが10〜45%の範囲にあることが
必要であつて、10%以下になると目地の電気抵抗
が充分低下せず、45%以上になると、充填性が悪
くなつて電気抵抗の増大と懸垂強度の低下があつ
て好ましくない。なお、骨材としては人造黒鉛、
天然黒鉛、石油コークス、ピツチコークスなどが
利用できる。 使用される熱硬化性樹脂は、低・中温時には懸
垂強度に、また高温時には炭化してピツチにおけ
ると同様に電気抵抗および懸垂強度に、それぞれ
効果を持つものであるから、バインダー液の骸炭
化値としては25%以上であることが好ましい。ま
た、熱硬化性樹脂としては、それ自身骸炭化値の
高いフエノール樹脂、フラン樹脂が有利に使用で
きる。なおフエノール樹脂はレゾール型とノボラ
ツク型に大別されるが、本願発明では、その何れ
でも利用可能であり、溶媒としてはアルコール、
エチレングリコールなどがある。ノボラツク型の
場合はヘキサメチレンテトラミンのような硬化剤
を用いることが望ましい。また上記2つのタイプ
を混合して使用することもできるが、保存安定
性、熱硬化速度などを勘案して配合を決めれば良
い。一方フラン樹脂の場合は、フルフリルアルコ
ールを無水マイレン酸またはリン酸の存在下で縮
合させ、この縮合反応を適宜調節することで好適
なバインダー液を得ることができる。 バインダー液と骨材との配合割合は、バインダ
ー液を6〜15%、そして骨材を94〜85%の割合と
することが好ましい。バインダー液が6%より少
ないと目地材の流動性が悪くなり、一方、15%よ
り多くすると流動性が高過ぎて共に充填性が悪化
し、懸垂強度が低下するとともに電気抵抗も増大
する。 以上、詳細に説明したように本願発明に係る充
填目地材を使用すれば、従来問題であつた低温時
の導電性および中温時の懸垂強度が著るしく改善
されたプリベーク炭素陽極を得ることができる。 以下に本発明の実施例を示す。 実施例 1 プリベーク炭素に径50mm、深さ50mmの丸溝を設
けて底面に雲母板を敷き、該溝の中央に長さ70
mm、径30mmの軟鋼製導電棒を置いて、幅10mmの目
地部に対し、種々の目地材を充填した。充填は厚
さ6mmのプレス刃先を用い、5層に分けて、100
Kg/cm2の圧力で行ない充填後、室温における目地
部の電気抵抗を測定した。 目地材の組成および電気抵抗値を、比較例のそ
れらとともに表1に示す。 なお、用いたフエノール樹脂は、ノボラツク型
3:レゾール型1のもので、硬化剤は使用しなか
つた。またフラン樹脂は、フルフリルアルコール
を原料として、常法により好ましい粘度になるよ
うに合成したもので、骸炭化値のみ測定した。 表1中の比較例No.6は、本発明の範囲外である
にも拘わらず、その電気比抵抗値が実施例と同等
のものとなつているが、この組成の目地材を用い
た場合、充填後に衝撃を与えると電気比抵抗値が
1.5〜2倍に増加するケースが認められた。
The present invention relates to a filling joint material used when joining a metal conductive rod to prebaked carbon in a prebaked carbon anode used in an aluminum electrolytic furnace or the like. For example, in a pre-baked aluminum electrolytic furnace, 20 to 30 pre-baked carbon anodes (hereinafter simply referred to as anodes) are usually installed per electrolytic furnace, and as the electrolysis progresses, the anodes that are consumed are replaced one after another. It's getting old. The anode is made by bonding a metal conductive rod to pre-fired carbon. One of the bonding methods is to inject coal tar pitch and carbonaceous aggregate (hereinafter referred to as the joint) into the bonding gap between the two. A so-called joint filling method is known in which a joint material consisting of aggregate (hereinafter simply referred to as aggregate) is filled using an appropriate press cutting edge. However, the conventional joint filling method has two major drawbacks: the electrical resistance of the joint is large at low temperatures, and the suspension strength is reduced in a medium temperature range. In other words, since the coal tar pitch used as a binder is itself an electrical insulator, it is difficult for current to flow through the anode immediately after replacement due to the high electrical resistance at the joints, causing the temperature of the anode to rise and the pitch to be fired. , for 1 to 2 days until the electrical resistance of the same part decreases and the standard current flows, the current shared by the other anodes increases, and this is one of the causes of deterioration in the power consumption rate. In addition, as the temperature of the anode rises after replacement, the pitch softens and the suspension strength (the strength with which the metal conductive rod suspends its own weight of carbon) gradually decreases, especially when the
In the range of 300℃, the strength may be less than half of the strength at room temperature. In the operation of an aluminum electrolytic furnace, the anode is sometimes moved up and down to eliminate the anode effect or adjust the distance between the electrodes, but if such work was performed when the suspension strength was weak, there was a risk that the anode would fall off. The inventors of the present application believe that the above-mentioned drawbacks are due to the use of highly viscous coal tar pitch, and as a result of various studies on the type of binder, the viscosity of the aggregate, the combination of the two, etc., the present invention was completed. That is, the present invention provides a filled joint material with excellent properties for use in pre-baked anodes, in which a thermosetting resin liquid with a viscosity of 5 to 300 poise at room temperature is used as a binder liquid, and a joint width It is characterized by blending an aggregate containing 10 to 45% by weight (hereinafter simply referred to as %) of particles having a size of 1/3 or more. Joint using conventional coal tar pitch (usually used in combination with anthracene oil, etc.; the viscosity at room temperature is about 10 4 to 10 6 poise when the ratio of pitch: anthracene oil is 7:4) is used as a binder. In order to prevent the formation of crosslinks between aggregate particles and improve filling properties, it is common for the maximum particle size of aggregate to be approximately 1/4 of the joint width or less. The small particle size was also a cause of high electrical resistance at the joints. In the present invention, the viscosity at room temperature is 5 to 5.
By using a thermosetting resin liquid with a low viscosity of 300 poise, the filling properties of the aggregate are improved, making it possible to use aggregate with a much larger particle size than before, and at the same time covering the surfaces of individual particles. As a result, the binder film in the joint becomes more easily destroyed, thereby reducing the electrical resistance of the joint at low temperatures. In addition, since the binder is mainly a thermosetting resin, the suspension strength increases as the temperature of the anode increases (approximately in the range of 100 to 300 degrees Celsius). The phenomenon of falling off almost completely disappears. In addition, if the suspension strength at room temperature is insufficient, the strength may be increased by using a known curing accelerator or by performing a preliminary heat treatment. The thermosetting resin used as a binder carbonizes at high temperatures, but it acts in the same way as in pitch, and the anode according to the present invention has a lower electrical resistance as the temperature increases. The viscosity of the binder liquid is 5 to 300 as mentioned above.
If it is less than 5 poise, the residual stress within the joint will be easily released after filling the joint material and the joint may become loose, resulting in an increase in electrical resistance or a decrease in suspension strength. happens. Moreover, if it is more than 300 poise, there is a high risk of crosslinking of aggregate particles, and on the other hand, the probability of breakage of the binder film is also low, making it impossible to obtain the desired effect. The particle size of the aggregate used in the present invention needs to be in the range of 10 to 45% of the joint width; if it is less than 10%, the electrical resistance of the joint will not be sufficiently reduced. If it exceeds 45%, the filling property becomes poor, resulting in an increase in electrical resistance and a decrease in suspension strength, which is not preferable. In addition, as aggregates, artificial graphite,
Natural graphite, petroleum coke, pitch coke, etc. can be used. The thermosetting resin used has an effect on the suspension strength at low to medium temperatures, and carbonizes at high temperatures and has an effect on the electrical resistance and suspension strength, similar to that in pitch, so the carbonization value of the binder liquid It is preferable that it is 25% or more. Furthermore, as the thermosetting resin, phenolic resins and furan resins, which themselves have a high carbonization value, can be advantageously used. Phenol resins are broadly classified into resol type and novolak type, but in the present invention, either type can be used, and alcohol, alcohol,
Examples include ethylene glycol. In the case of novolac type, it is desirable to use a curing agent such as hexamethylenetetramine. It is also possible to use a mixture of the above two types, but the combination may be determined by taking storage stability, heat curing speed, etc. into consideration. On the other hand, in the case of furan resin, a suitable binder liquid can be obtained by condensing furfuryl alcohol in the presence of maleic anhydride or phosphoric acid and adjusting the condensation reaction appropriately. The blending ratio of the binder liquid and the aggregate is preferably 6 to 15% for the binder liquid and 94 to 85% for the aggregate. If the binder liquid is less than 6%, the fluidity of the joint material will be poor, while if it is more than 15%, the fluidity will be too high, resulting in poor filling properties, lowering the suspension strength, and increasing electrical resistance. As explained above in detail, by using the filled joint material according to the present invention, it is possible to obtain a pre-baked carbon anode that has significantly improved conductivity at low temperatures and suspension strength at medium temperatures, which were problems in the past. can. Examples of the present invention are shown below. Example 1 A round groove with a diameter of 50 mm and a depth of 50 mm was provided in prebaked carbon, a mica plate was laid on the bottom, and a 70 mm long groove was placed in the center of the groove.
A conductive rod made of mild steel with a diameter of 30 mm was placed, and various joint fillers were filled into a 10 mm wide joint. For filling, use a press cutting edge with a thickness of 6 mm, divide it into 5 layers, and fill with 100
After filling at a pressure of Kg/cm 2 , the electrical resistance of the joint at room temperature was measured. The composition and electrical resistance value of the joint material are shown in Table 1 along with those of the comparative example. The phenolic resins used were of novolac type 3 and resol type 1, and no curing agent was used. Further, the furan resin was synthesized using furfuryl alcohol as a raw material to obtain a desired viscosity by a conventional method, and only the carbonization value was measured. Although Comparative Example No. 6 in Table 1 is outside the scope of the present invention, its electrical resistivity value is equivalent to that of the Example, but when a joint material with this composition is used. If a shock is applied after filling, the electrical resistivity value will change.
There were cases where the number increased by 1.5 to 2 times.

【表】 実施例 2 プリベーク炭素に径58mm、深さ50mmの丸溝を設
けて底面に雲母板を敷き、該溝の中央に長さ70
mm、径30mmの軟鋼製導電棒を置いて、幅14mmの目
地部に対し、表2に示した組成の目地材を充填し
た。厚さ7mmのプレス刃先を用いた他は、実施例
1と同じ条件で充填し、種々の温度における懸垂
強度および電気抵抗を測定した。 それらの結果を比較例のものとともに表2にま
とめた。 なお、用いたフエノール樹脂のタイプは、実施
例1と同じで、硬化剤は使用しなかつた。
[Table] Example 2 A round groove with a diameter of 58 mm and a depth of 50 mm is provided in prebaked carbon, a mica plate is laid on the bottom, and a 70 mm long groove is placed in the center of the groove.
A conductive rod made of mild steel with a diameter of 30 mm was placed, and a joint material having a composition shown in Table 2 was filled into a joint part with a width of 14 mm. Filling was carried out under the same conditions as in Example 1, except that a press cutting edge with a thickness of 7 mm was used, and the suspension strength and electrical resistance were measured at various temperatures. The results are summarized in Table 2 together with those of comparative examples. The type of phenolic resin used was the same as in Example 1, and no curing agent was used.

【表】 実施例 3 120KAアルミニウム電解炉のプリベーク炭素
の角溝に鉄製角型導電棒の片面を押し付け、他面
と角溝との目地部に、実施例2のNo.1の目地材を
使用してプレス刃先圧力250Kg/cm2で、9層に分
けて加圧充填した。 本発明に係る目地材の場合、従来のピツチ系目
地材に比べて、陽極交換直後の接合部の電気抵抗
は約半分に減少し、標準電流に到達するまでの時
間は1/2〜1/3に短縮され、この結果、電力原単位
を250kWh/t・Al減少することができた。ま
た、陽極の脱落は、全く起らなかつた。
[Table] Example 3 Press one side of a square iron conductive rod into the square groove of pre-baked carbon in a 120KA aluminum electrolytic furnace, and use No. 1 joint filler from Example 2 at the joint between the other side and the square groove. Then, the mixture was divided into nine layers and filled under pressure at a pressure of 250 kg/cm 2 at the press cutting edge. In the case of the joint material according to the present invention, the electrical resistance of the joint immediately after anode replacement is reduced by about half, and the time required to reach the standard current is 1/2 to 1/2 compared to the conventional pitch joint material. 3, and as a result, we were able to reduce the electricity consumption rate by 250kWh/t・Al. Moreover, no falling off of the anode occurred.

Claims (1)

【特許請求の範囲】 1 常温における粘度が5〜300ポイズである熱
硬化性樹脂含有バインダー液に、目地幅の1/3以
上の粒径のものを10〜45重量%含む炭素質骨材を
配合してなることを特徴とするプリベーク炭素陽
極用充填目地材。 2 バインダー液の骸炭化値が25%以上であるこ
とを特徴とする特許請求の範囲第1項記載のプリ
ベーク炭素陽極用充填目地材。 3 バインダー液を6〜15重量%、炭素質骨材を
94〜85重量%の配合とすることを特徴とする特許
請求の範囲第1項または第2項記載のプリベーク
炭素陽極用充填目地材。
[Claims] 1. Carbonaceous aggregate containing 10 to 45% by weight of particles with a particle size of 1/3 or more of the joint width is added to a thermosetting resin-containing binder liquid having a viscosity of 5 to 300 poise at room temperature. A filling joint material for pre-baked carbon anodes, which is characterized by being made of a pre-baked carbon anode. 2. The filling joint material for a prebaked carbon anode according to claim 1, wherein the binder liquid has a carbonization value of 25% or more. 3 6 to 15% by weight of binder liquid and carbonaceous aggregate
The filling joint material for a prebaked carbon anode according to claim 1 or 2, characterized in that the content is 94 to 85% by weight.
JP56196293A 1981-12-08 1981-12-08 Joint filler for prebaked carbon anode Granted JPS5898378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196293A JPS5898378A (en) 1981-12-08 1981-12-08 Joint filler for prebaked carbon anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196293A JPS5898378A (en) 1981-12-08 1981-12-08 Joint filler for prebaked carbon anode

Publications (2)

Publication Number Publication Date
JPS5898378A JPS5898378A (en) 1983-06-11
JPS6357509B2 true JPS6357509B2 (en) 1988-11-11

Family

ID=16355388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196293A Granted JPS5898378A (en) 1981-12-08 1981-12-08 Joint filler for prebaked carbon anode

Country Status (1)

Country Link
JP (1) JPS5898378A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1278675C (en) * 1986-08-20 1991-01-08 Alcan International Limited Cement for collector bar-carbon block joints of electrolytic cells
CA1271324A (en) * 1987-03-23 1990-07-10 Sadashiv Nadkarni Cement for cathode blocks
US5120478A (en) * 1988-09-06 1992-06-09 Alcan International Limited Cement for collector bar-carbon block joints of electrolytic cells
JPH02190872A (en) * 1988-12-16 1990-07-26 Nippon Kentek Kaisha Ltd Image former
US5550176A (en) * 1992-04-17 1996-08-27 Ucar Carbon Technology Corporation Room temperature setting carbonaceous cement with increased electrical conductivity and flexural strength
US5280063A (en) * 1992-04-17 1994-01-18 Ucar Carbon Technology Corporation Room temperature setting carbonaceous cement
AU757196B2 (en) * 1997-10-14 2003-02-06 Cytec Technology Corp. Conductive thermoset molding composition and method for producing same
CN103484896B (en) * 2013-10-11 2015-10-28 河南科技大学 A kind of electrolgtic aluminium low cost carbon annode and preparation method thereof
CN109400163B (en) * 2018-12-30 2020-02-04 山东圣泉新材料股份有限公司 Carbon anode and preparation method and application thereof

Also Published As

Publication number Publication date
JPS5898378A (en) 1983-06-11

Similar Documents

Publication Publication Date Title
CA1309205C (en) Manufacture of a soderberg electrode incorporating a high carbon-contributing phenolic sacrificial binder
US4466996A (en) Aluminum cell cathode coating method
US4288353A (en) Carbon bearing contact paste
JPS6357509B2 (en)
US4544469A (en) Aluminum cell having aluminum wettable cathode surface
US4466995A (en) Control of ledge formation in aluminum cell operation
US4526911A (en) Aluminum cell cathode coating composition
CN112853403B (en) Prebaked anode, and preparation method and application thereof
JPS58501182A (en) Refractory hard material for aluminum reduction tank - carbon fiber cathode coating
US3871986A (en) Joint ramming cement for electrolytic reduction cell cathodes
US4816511A (en) Cement for cathode blocks
EP0102186B1 (en) Improved cell for electrolytic production of aluminum
US4479913A (en) Method and composition for a ramming mix in aluminum reduction cells
NO873508L (en) ELECTRIC CONDUCTIVE CEMENT FOR USE IN ELECTROLYCLE CELLS.
AU571186B2 (en) Improved cell for the electrolytic production of aluminum
US3925092A (en) Joint ramming cement
CA1189214A (en) Bonding agent for refractory materials and the application of such agent
US1534269A (en) Electrode-joint compound
JPH07315931A (en) Carbon material for ion implantation member and production thereof
EP4163419A2 (en) Environment friendly cold ramming mixture
JPH034630B2 (en)
US2109302A (en) Carbon electrode
WO1984000565A1 (en) Aluminum cathode coating cure cycle
JPS6124879Y2 (en)
NO169727B (en) ILLUSTRATED HARD CATADE COVER OF CARBON FIBER FOR ALUMINUM REDUCTION CELLS