JPS6356920B2 - - Google Patents

Info

Publication number
JPS6356920B2
JPS6356920B2 JP56184496A JP18449681A JPS6356920B2 JP S6356920 B2 JPS6356920 B2 JP S6356920B2 JP 56184496 A JP56184496 A JP 56184496A JP 18449681 A JP18449681 A JP 18449681A JP S6356920 B2 JPS6356920 B2 JP S6356920B2
Authority
JP
Japan
Prior art keywords
sio
wavelength
shows
spectral characteristics
reflection spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56184496A
Other languages
Japanese (ja)
Other versions
JPS5887183A (en
Inventor
Takushi Hirono
Tomoaki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56184496A priority Critical patent/JPS5887183A/en
Publication of JPS5887183A publication Critical patent/JPS5887183A/en
Publication of JPS6356920B2 publication Critical patent/JPS6356920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、書換え可能な光学記録材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rewritable optical recording materials.

銀Agと二酸化ケイ素SiO2を含む感光材料とし
ては、フオトクロミツクガラスが知られている。
これは、SiO2及びB2O3を主成分としたガラスマ
トリツクス中に、銀とハロゲンを導入し、600℃
〜700℃の温度で数十分〜数時間熱処理し、感光
体となるハロゲン化銀微粒子を析出させたもので
ある。フオトクロミツクガラスは、紫外光及び可
視光の照射により黒化し、また加熱することによ
り速やかに退色するため、書換え可能な記録材料
として使用しうるものである。しかし、銅Cu等
の添加物の導入及びガラス製造中に飛散しやすい
Agやハロゲンの量の最適化を図るために、製造
工程が複雑であつたり、また感光波長の長波長化
が難しく、更に室温においても退色して記録が失
われる等の欠点があつた。
Photochromic glass is known as a photosensitive material containing silver Ag and silicon dioxide SiO 2 .
This involves introducing silver and halogen into a glass matrix mainly composed of SiO 2 and B 2 O 3 , and heating it at 600°C.
It is heat-treated at a temperature of ~700°C for several tens of minutes to several hours to precipitate fine silver halide particles that will become the photoreceptor. Photochromic glass can be used as a rewritable recording material because it turns black when irradiated with ultraviolet light and visible light, and rapidly fades when heated. However, it is easy to scatter during the introduction of additives such as copper and glass manufacturing.
In order to optimize the amount of Ag and halogen, the manufacturing process was complicated, it was difficult to increase the sensitivity wavelength to a longer wavelength, and there were also drawbacks such as discoloration and loss of recording even at room temperature.

本発明の目的は、製造方法が簡便で、現像処理
が不要であり、且つ書換え可能な光学記録材料を
提供するにある。
An object of the present invention is to provide an optical recording material that is easy to manufacture, does not require development processing, and is rewritable.

すなわち本発明を概説すれば、本発明は、
Ag2O―SO2系の化合物で構成することを特徴と
する光学記録材料に関する。
That is, if the present invention is summarized, the present invention has the following features:
The present invention relates to an optical recording material comprising an Ag 2 O—SO 2 based compound.

Ag2O―SiO2系の化合物としては、従来、
Ag4SiO4,Ag6Si2O7,Ag2SiO3及びAg2Si2O5
知られており、それらの合成法も公知である〔E.
シロ(E.Thilo)、F.ウオトク(F.Wodtcke)“ツ
アイトシユリフト フユール アンオルガニツシ
ユ ウント アルゲマイネ ヘミー”(Z.anorg.
allg.Chem.)247,p295(1978)及びV.M.ヤンセ
ン(V.M.Jansen)“アクタ クリスタログラフイ
カ”(Acta Cryst.)B33,p3584(1977)参照〕。
Conventionally, Ag 2 O―SiO 2 compounds include
Ag 4 SiO 4 , Ag 6 Si 2 O 7 , Ag 2 SiO 3 and Ag 2 Si 2 O 5 are known, and their synthesis methods are also known [E.
E. Thilo, F. Wodtcke “Zaitoschrift für unorganizsch und Allgemeine Hemie” (Z.anorg.
247 , p. 295 (1978) and VM Jansen, Acta Cryst., B33 , p. 3584 (1977)

これらの化合物の光学的性質は未知であつた
が、感光性を調べた結果、光照射により黒化し、
加熱により退色することを見出した。
The optical properties of these compounds were unknown, but as a result of examining their photosensitivity, they turned black when exposed to light.
It was discovered that the color fades when heated.

本発明のAg2O―SiO2系2成分酸化物光学記録
材料は、これら化合物自体が感光性を有し、加熱
することにより容易に記録を消去することができ
るので、記録・消去を繰返すことができる点に特
徴がある。そのため、 (1) 現像が不要である。
In the Ag 2 O--SiO 2 -based binary oxide optical recording material of the present invention, these compounds themselves have photosensitivity, and records can be easily erased by heating, so that recording and erasing cannot be repeated. It is characterized by the ability to Therefore, (1) Development is unnecessary.

(2) 感光感度が高い。(2) High photosensitivity.

(3) Ag2O―SiO2系の成分比を変えることによ
り、感光波長域を選択することが可能である。
(3) By changing the component ratio of the Ag 2 O—SiO 2 system, it is possible to select the sensitive wavelength range.

(4) 結晶性材料であるため、熱的に安定である。(4) Being a crystalline material, it is thermally stable.

(5) 製造工程に特殊な工夫を要しない。(5) No special efforts are required in the manufacturing process.

という利点がある。There is an advantage.

以下、実施例により本発明を詳細に説明する
が、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

なお添付図面について概説すると、第1図は、
Ag4SiO4の反射分光特性を、波長(nm)(横軸)
と反射率(%)(縦軸)との関係で表すグラフで
ある。第2図は、Ag4SiO4の分光感度を、照射波
長(nm)(横軸)と光照射による波長700nmにお
ける反射率の低下(%)(縦軸)との関係で表す
グラフである。第3図は、Ag2SiO3の反射分光特
性を、前記関係で表すグラフである。第4図は、
Ag2SiO3の分光感度を、前記関係で表すグラフで
ある。第5図は、380℃で熱処理したAg2SiO3
反射分光特性を、前記関係で表すグラフである。
第6図は、Ag2Si2O5の反射分光特性を、前記関
係で表すグラフである。第7図は、Ag2Si2O5
分光感度を、前記関係で表すグラフである。第8
図は、380℃で熱処理したAg2Si2O5の反射分光特
性を、前記関係で表すグラフである。
To give an overview of the attached drawings, Figure 1 is as follows:
The reflection spectral characteristics of Ag 4 SiO 4 are expressed as wavelength (nm) (horizontal axis).
It is a graph expressed by the relationship between and reflectance (%) (vertical axis). FIG. 2 is a graph showing the spectral sensitivity of Ag 4 SiO 4 in terms of the relationship between the irradiation wavelength (nm) (horizontal axis) and the decrease (%) in reflectance at a wavelength of 700 nm due to light irradiation (vertical axis). FIG. 3 is a graph showing the reflection spectral characteristics of Ag 2 SiO 3 using the above relationship. Figure 4 shows
It is a graph showing the spectral sensitivity of Ag 2 SiO 3 using the above relationship. FIG. 5 is a graph showing the reflection spectral characteristics of Ag 2 SiO 3 heat-treated at 380° C. using the above relationship.
FIG. 6 is a graph showing the reflection spectral characteristics of Ag 2 Si 2 O 5 using the above relationship. FIG. 7 is a graph showing the spectral sensitivity of Ag 2 Si 2 O 5 using the above relationship. 8th
The figure is a graph showing the reflection spectral characteristics of Ag 2 Si 2 O 5 heat-treated at 380° C. using the above relationship.

実施例1 (Ag4SiO4) Ag4SiO4は、Ca2SiO4とAgNO3を1:32のモル
比で混合し、白金るつぼに投入し、260℃で30時
間保持し、冷却後、水洗、乾燥して得た。第1図
は、Ag4SiO4の反射分光特性を示すグラフであ
る。曲線1は、前記のようにして合成後の
Ag4SiO4の反射分光特性及び波長550nmの光を約
750mJ/cm2照射後、更に200℃で30分間加熱した
後の反射分光特性を示すもので、両者は全く同一
である。そして曲線2は、Ag4SiO4に前記のよう
に波長550nmの光を約750mJ/cm2照射後の反射分
光特性を示す。曲線1と2を比較すると、波長
800nmにおける反射率の低下は8%に達し、記録
が行われていることを示している。また、この記
録後、200℃、30分間の加熱により反射分光特性
が照射前の状態に復帰することも明らかである。
そして、再度、記録、消去を繰返すことも可能で
ある。第2図は、Ag4SiO4の分光感度曲線を示
し、縦軸は、300mJ/cm2照射後の波長700nmにお
ける反射率の低下%を示す。波長750nm以下の光
で記録が可能なことがわかる。記録の読出しに
は、波長約750nm以上の微弱な光源を用い、反射
率の差を検出する等の方法を用いる。
Example 1 (Ag 4 SiO 4 ) Ag 4 SiO 4 was prepared by mixing Ca 2 SiO 4 and AgNO 3 at a molar ratio of 1:32, placing the mixture in a platinum crucible, holding it at 260°C for 30 hours, and cooling it. Obtained by washing with water and drying. FIG. 1 is a graph showing the reflection spectral characteristics of Ag 4 SiO 4 . Curve 1 is the result after synthesis as described above.
Reflection spectral characteristics of Ag 4 SiO 4 and light with a wavelength of 550 nm
This shows the reflection spectral characteristics after 750 mJ/cm 2 irradiation and further heating at 200°C for 30 minutes, and both are exactly the same. Curve 2 shows the reflection spectral characteristics after irradiating Ag 4 SiO 4 with light having a wavelength of 550 nm at approximately 750 mJ/cm 2 as described above. Comparing curves 1 and 2, the wavelength
The decrease in reflectance at 800 nm reached 8%, indicating that recording was occurring. It is also clear that after this recording, the reflection spectral characteristics return to the state before irradiation by heating at 200° C. for 30 minutes.
It is also possible to repeat recording and erasing again. FIG. 2 shows the spectral sensitivity curve of Ag 4 SiO 4 , and the vertical axis shows the percentage decrease in reflectance at a wavelength of 700 nm after 300 mJ/cm 2 irradiation. It can be seen that recording is possible using light with a wavelength of 750 nm or less. To read the records, a method such as using a weak light source with a wavelength of about 750 nm or more and detecting the difference in reflectance is used.

実施例2 (Ag2SiO3) Ag2SiO3は、BaSiO3とAgNO3を1:16のモル
比で混合し、白金つぼに投入し、290℃で30時間
保持し、冷却後、水洗、乾燥して得た。第3図に
おける曲線3は、合成後のAg2SiO3の反射分光特
性を示す。そして曲線4は、それに波長450nmの
光を50mJ/cm2照射した後の反射分光特性を示す。
波長700nmにおける反射率の低下は13%に達し、
可視光により感度良く記録が行われていることを
示す。第4図は、Ag2SiO3の分光感度曲線を示
し、縦軸は、40mJ/cm2照射後の波長700nmにお
ける反射率の低下%を示す。この図は、Ag2SiO3
が可視光のほぼ全域にわたつて高い感度を有して
いることを示している。このAg2SiO3は、加熱す
ると250℃付近で一旦黒化し、更に350〜380℃ま
で加熱すると、ほぼ加熱前の色に戻る。このよう
に一度熱処理すると、もはや室温から380℃以下
の温度範囲では、加熱による黒化は生じない。熱
処理したAg2SiO3も感光性を示す。第5図におけ
る曲線5は、380℃で熱処理したAg2SiO3の反射
分光特性を示す。そして曲線6は、380℃で熱処
理したAg2SO3に波長450nmの光を100mJ/cm2
射した後の反射分光特性を示す。第5図は、可視
光照射により記録が可能であることを示してい
る。記録後350℃で60分間の加熱により、反射分
光特性は、元の曲線5の状態に復し、記録、消去
を繰返すことも可能である。記録の読出しには、
波長約650nm以上の微弱な光源を用い、反射率の
差を検出する等の方法を用いる。
Example 2 (Ag 2 SiO 3 ) Ag 2 SiO 3 was prepared by mixing BaSiO 3 and AgNO 3 at a molar ratio of 1:16, putting it into a platinum pot, holding it at 290°C for 30 hours, cooling it, washing it with water, Obtained by drying. Curve 3 in FIG. 3 shows the reflection spectral characteristics of Ag 2 SiO 3 after synthesis. Curve 4 shows the reflection spectral characteristics after 50 mJ/cm 2 of light with a wavelength of 450 nm was irradiated thereon.
The decrease in reflectance at a wavelength of 700 nm reaches 13%,
This shows that recording is performed with high sensitivity using visible light. FIG. 4 shows the spectral sensitivity curve of Ag 2 SiO 3 , and the vertical axis shows the percentage decrease in reflectance at a wavelength of 700 nm after 40 mJ/cm 2 irradiation. This figure shows Ag 2 SiO 3
This shows that it has high sensitivity over almost the entire visible light range. When this Ag 2 SiO 3 is heated, it once turns black at around 250°C, and when it is further heated to 350 to 380°C, it returns to almost its color before heating. Once heat treated in this way, blackening due to heating no longer occurs in the temperature range from room temperature to 380°C or less. Heat-treated Ag 2 SiO 3 also exhibits photosensitivity. Curve 5 in FIG. 5 shows the reflection spectral characteristics of Ag 2 SiO 3 heat-treated at 380°C. Curve 6 shows the reflection spectral characteristics after irradiating Ag 2 SO 3 heat-treated at 380° C. with 100 mJ/cm 2 of light with a wavelength of 450 nm. FIG. 5 shows that recording is possible by visible light irradiation. By heating at 350° C. for 60 minutes after recording, the reflection spectral characteristics return to the original state of curve 5, making it possible to repeat recording and erasing. To read records,
A method such as using a weak light source with a wavelength of about 650 nm or more and detecting the difference in reflectance is used.

実施例3 (Ag2Si2O5) Ag2Si2O5は、α―Na2Si2O5とAgNO3を1:16
のモル比で混合し、白金るつぼに投入し、290℃
の温度で48時間保持し、冷却後水洗、乾燥して得
た。ここで、α―Na2Si2O5をβ―Na2Si2O5又は
Li2Si2O5,K2Si2O5,BaSi2O5で代用することは
できない〔V.F.ウオトク(V.F.Wodtcke)“Z.
anorg.allg・Chem.”314,p341(1962)参照〕。
α―Na2Si2O5は、Na2CO3とSiO2を1:2のモル
比で混合し、810℃の温度で30時間焼成して調製
した。第6図における曲線7は、合成後の
Ag2Si2O5の反射分光特性を示す。そして曲線8
は、それに波長450nmの光を100mJ/cm2照射した
後の反射分光特性を示す。波長700nmにおける反
射率は9%減少しており、記録が行われているこ
とを示している。第7図は、Ag2Si2O5の分光感
度曲線を示し、縦軸は、照射エネルギー100mJ/
cm2で照射後の波長700nmにおける反射率の低下%
を示す。第7図は、Ag2Si2O5が可視光のほぼ全
域にわたつて感度を有していることを示してい
る。このAg2Si2O5は、加熱するとAg2SiO3と同
様に250℃付近で一旦黒化し、更に350〜380℃ま
で昇温すると、ほぼ加熱前の色に戻る。このよう
に一度熱処理すると、もはや室温から380℃まで
の温度範囲では、加熱しても黒化は生じない。熱
処理したAg2Si2O5も感光性を示す。第8図にお
ける曲線9は、380℃で熱処理したAg2Si2O5の反
射分光特性を示す。そして曲線10は、380℃で
熱処理したAg2Si2O5に波長450nmの光を
100mJ/cm2照射した後の反射分光特性を示す。第
8図は、可視光照射により記録が行えることを示
している。記録後360℃で30分間の加熱により、
反射分光特性は、元の曲線9の状態に復し、記
録、消去を繰返すことができる。記録の読出しに
は、波長約700nm以上の微弱な光源を用い、反射
率の差を検出する等の方法を用いる。
Example 3 (Ag 2 Si 2 O 5 ) Ag 2 Si 2 O 5 is a mixture of α-Na 2 Si 2 O 5 and AgNO 3 in a ratio of 1:16.
Mix at a molar ratio of , put into a platinum crucible, and heat at 290℃
The sample was kept at a temperature of 48 hours, cooled, washed with water, and dried. Here, α-Na 2 Si 2 O 5 is replaced with β-Na 2 Si 2 O 5 or
Li 2 Si 2 O 5 , K 2 Si 2 O 5 , BaSi 2 O 5 cannot be substituted [VFWodtcke “Z.
anorg.allg・Chem.” 314 , p. 341 (1962)].
α-Na 2 Si 2 O 5 was prepared by mixing Na 2 CO 3 and SiO 2 at a molar ratio of 1:2 and firing the mixture at a temperature of 810° C. for 30 hours. Curve 7 in Figure 6 shows the result after synthesis.
The reflection spectral characteristics of Ag 2 Si 2 O 5 are shown. and curve 8
shows the reflection spectral characteristics after irradiating it with 100 mJ/cm 2 of light with a wavelength of 450 nm. The reflectance at a wavelength of 700 nm decreased by 9%, indicating that recording was occurring. Figure 7 shows the spectral sensitivity curve of Ag 2 Si 2 O 5 , and the vertical axis is the irradiation energy of 100 mJ/
% reduction in reflectance at wavelength 700 nm after irradiation in cm2
shows. FIG. 7 shows that Ag 2 Si 2 O 5 has sensitivity over almost the entire visible light range. When this Ag 2 Si 2 O 5 is heated, like Ag 2 SiO 3 , it once turns black around 250°C, and when the temperature is further increased to 350 to 380°C, it returns to almost its color before heating. Once heat treated in this manner, blackening no longer occurs even when heated in the temperature range from room temperature to 380°C. Heat-treated Ag 2 Si 2 O 5 also exhibits photosensitivity. Curve 9 in FIG. 8 shows the reflection spectral characteristics of Ag 2 Si 2 O 5 heat-treated at 380°C. Curve 10 shows that Ag 2 Si 2 O 5 heat-treated at 380°C is exposed to light with a wavelength of 450 nm.
Shows the reflection spectral characteristics after irradiation with 100mJ/ cm2 . FIG. 8 shows that recording can be performed by visible light irradiation. By heating at 360℃ for 30 minutes after recording,
The reflection spectral characteristics return to the original state of the curve 9, and recording and erasing can be repeated. To read the records, a method such as using a weak light source with a wavelength of about 700 nm or more and detecting the difference in reflectance is used.

以上の各実施例から明らかなように、本発明の
光学記録材料は、既述の各種の利点を有し、顕著
な効果を奏するものである。
As is clear from the above examples, the optical recording material of the present invention has the various advantages described above and exhibits remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ag4SiO4の反射分光特性を、波長と
反射率との関係を表すグラフである。第2図は、
Ag4SiO4の分光感度を、照射波長と光照射による
波長700nmにおける反射率の低下との関係を表す
グラフである。第3図は、Ag2SiO3の反射分光特
性を、前記関係で表すグラフ、第4図は、
Ag2SiO3の分光感度を、前記関係で表すグラフ、
第5図は、380℃で熱処理したAg2SiO3の反射分
光特性を、前記関係で表すグラフ、第6図は、
Ag2Si2O5の反射分光特性を、前記関係で表すグ
ラフ、第7図は、Ag2Si2O5の分光感度を、前記
関係で表すグラフ、第8図は、380℃で熱処理し
たAg2Si2O5の反射分光特性を、前記関係で表す
グラフである。
FIG. 1 is a graph showing the reflection spectral characteristics of Ag 4 SiO 4 as a relationship between wavelength and reflectance. Figure 2 shows
It is a graph showing the spectral sensitivity of Ag 4 SiO 4 in relation to the irradiation wavelength and the decrease in reflectance at a wavelength of 700 nm due to light irradiation. Figure 3 is a graph showing the reflection spectral characteristics of Ag 2 SiO 3 using the above relationship, and Figure 4 is a graph showing the reflection spectral characteristics of Ag 2 SiO 3.
A graph expressing the spectral sensitivity of Ag 2 SiO 3 using the above relationship,
Figure 5 is a graph showing the reflection spectral characteristics of Ag 2 SiO 3 heat-treated at 380°C using the above relationship, and Figure 6 is
Figure 7 is a graph showing the reflection spectral characteristics of Ag 2 Si 2 O 5 using the above relationship. Figure 8 is a graph showing the spectral sensitivity of Ag 2 Si 2 O 5 using the above relationship. Figure 8 is a graph showing the reflection spectral characteristics of Ag 2 Si 2 O 5 using the above relationship. It is a graph showing the reflection spectral characteristics of Ag 2 Si 2 O 5 using the above relationship.

Claims (1)

【特許請求の範囲】 1 Ag2O―SiO2系の化合物で構成することを特
徴とする光学記録材料。 2 該化合物が、Ag4SiO4,Ag2SiO3及び
Ag2Si2O5よりなる群から選択した化合物である
特許請求の範囲第1項に記載の光学記録材料。
[Claims] 1. An optical recording material comprising an Ag 2 O—SiO 2 based compound. 2 The compound is Ag 4 SiO 4 , Ag 2 SiO 3 and
Optical recording material according to claim 1, which is a compound selected from the group consisting of Ag 2 Si 2 O 5 .
JP56184496A 1981-11-19 1981-11-19 Optical recording material Granted JPS5887183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184496A JPS5887183A (en) 1981-11-19 1981-11-19 Optical recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184496A JPS5887183A (en) 1981-11-19 1981-11-19 Optical recording material

Publications (2)

Publication Number Publication Date
JPS5887183A JPS5887183A (en) 1983-05-24
JPS6356920B2 true JPS6356920B2 (en) 1988-11-09

Family

ID=16154194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184496A Granted JPS5887183A (en) 1981-11-19 1981-11-19 Optical recording material

Country Status (1)

Country Link
JP (1) JPS5887183A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3088168B2 (en) * 1991-12-13 2000-09-18 ティーディーケイ株式会社 Optical recording medium and manufacturing method thereof
KR20130120314A (en) * 2012-04-25 2013-11-04 삼성전자주식회사 Visible light sensitive photocatalyst, method of producing the same, electrochemical water decomposition cell, and organic material decomposition system comprising the same

Also Published As

Publication number Publication date
JPS5887183A (en) 1983-05-24

Similar Documents

Publication Publication Date Title
US4017318A (en) Photosensitive colored glasses
Stookey et al. Full‐color photosensitive glass
US4092139A (en) Process for making colored photosensitive glass
JPS6248301B2 (en)
JPS60180934A (en) High expansion glass ceramic body and manufacture
Nikonorov et al. Influence of glass composition on the refractive index change upon photothermoinduced crystallization
JPH06191878A (en) Colored glass and its preparation
US4942119A (en) Photosensitive, radiation sensitive, thermally sensitive and pressure sensitive silver sodalite materials
US4328299A (en) Polychromatic glasses and method
JPS6356920B2 (en)
US3269847A (en) Phototropic glass and methods
Doremus et al. Electron microscopy and optical properties of small gold and silver particles in glass
JPH0236296A (en) Thin-film photoluminescent article and its manufacture
US3278319A (en) Phototropic glass and method
US4246337A (en) Photosensitive medium for optical information storage
US4490286A (en) Photochromic and/or cathodochromic sodalite material, method of its preparation, and sensing element of a variable light transmission device manufactured from such material
JPS6047217B2 (en) Copper-cadmium-silver photochromic glass
JPH0940440A (en) Scintillator glass
JPH0522591B2 (en)
SU579244A1 (en) Opal photochromic glass
Oliveira et al. Nonlinear absorption of transparent glass ceramics containing sodium niobate nanocrystals
JPS60107744A (en) Optical information recording member
JPH11199271A (en) Ultraviolet-ray sensitive material
Araujo Photochromic glass
Badger et al. Effect of Light on Color of Glass