JPS6354403B2 - - Google Patents

Info

Publication number
JPS6354403B2
JPS6354403B2 JP57061400A JP6140082A JPS6354403B2 JP S6354403 B2 JPS6354403 B2 JP S6354403B2 JP 57061400 A JP57061400 A JP 57061400A JP 6140082 A JP6140082 A JP 6140082A JP S6354403 B2 JPS6354403 B2 JP S6354403B2
Authority
JP
Japan
Prior art keywords
liquid
gas
tower
standpipe
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57061400A
Other languages
Japanese (ja)
Other versions
JPS58177106A (en
Inventor
Toshihiro Ueno
Masahisa Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP57061400A priority Critical patent/JPS58177106A/en
Publication of JPS58177106A publication Critical patent/JPS58177106A/en
Publication of JPS6354403B2 publication Critical patent/JPS6354403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は気液接触部及び気液分離部からなる気
液接触段を多段に設けることにより一塔で高吸収
率が得られる多段式高流速気液接触装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-stage high flow rate gas-liquid contacting apparatus that can obtain a high absorption rate in one tower by providing multiple gas-liquid contact stages each consisting of a gas-liquid contact section and a gas-liquid separation section.

従来の気液接触装置としては棚段塔あるいは充
填塔等が一般に用いられているが、これらはいず
れも液体の飛沫同伴や圧力損失の減少対策を要
し、特にガスもしくは液中に重合物、スラリー等
がある場合には目詰りを起し、トラブルの原因と
なるものであつた。また、この他に気泡塔も用い
られるが、液中にガスを分散させるための分散板
の工夫が必要であり、さらにこの場合はガス空筒
速度が著しく小さく、大容量のガスや流体の処理
には適さない。
As conventional gas-liquid contact devices, tray columns or packed columns are generally used, but all of these require measures to reduce entrainment of liquid and pressure loss. If slurry or the like is present, clogging occurs and causes trouble. In addition, a bubble column is also used, but it requires a special dispersion plate to disperse the gas in the liquid, and in this case, the gas cylinder velocity is extremely low, making it difficult to process large volumes of gas or fluid. Not suitable for

大容量のガスや流体を処理すべく、ガス空筒速
度を大きくしたものとして高流速型気液接触装置
(以後、高流速装置という)があり、特公昭55−
33650号、特公昭55−32411号、特開昭55−13117
号として公知である。これら高流速装置では塔内
にインターナルがなく、供給ガスを高流速で液と
向流または並流接触させることにより吸収等の操
作を行うものである。しかしながら、従来の高流
速装置、例えば特公昭55−32411号公報に記載さ
れるような装置にあつては後述するように塔内の
圧力損失は液供給部付近で大きく接触率も高いも
のの、それ以上の塔高部分では気液接触は、必ず
しも有効に行われているとは言えなかつた。従つ
て必要な接触効率を得るには直列に複数塔設ける
ことが不可欠となり、コスト及び設置面積が大に
なる等の欠点を有するものであつた。
In order to process a large volume of gas or fluid, there is a high-flow rate gas-liquid contact device (hereinafter referred to as a high-flow rate device) that increases the gas cylinder velocity.
33650, JP 55-32411, JP 55-13117
It is known as No. These high flow rate devices have no internals in the column and perform operations such as absorption by bringing the feed gas into countercurrent or cocurrent contact with the liquid at a high flow rate. However, in the case of conventional high-flow rate equipment, such as the equipment described in Japanese Patent Publication No. 55-32411, the pressure loss inside the tower is large near the liquid supply section and the contact ratio is high, as will be described later. It could not be said that gas-liquid contact was necessarily carried out effectively in the above tower height portion. Therefore, in order to obtain the necessary contact efficiency, it is essential to install a plurality of columns in series, which has drawbacks such as increased cost and large installation area.

本発明者等は高流速装置における前述の欠点を
改善すべく、研究を重ねた結果、塔頂付近の液の
流動状態が濡れ壁状となつていることを突きと
め、本発明をなすに至つた。即ち、本発明は塔内
に複数個の立管を上下方向に離隔して配設し気液
流路を狭くし、気液接触部及び気液分離部からな
る気液接触段を多段に設けることにより接触効率
を向上させたものである。
In order to improve the above-mentioned drawbacks of high-flow rate equipment, the inventors of the present invention have conducted repeated research and found that the liquid flow state near the top of the tower is like a wet wall, leading to the present invention. Ivy. That is, in the present invention, a plurality of standpipes are vertically spaced apart in a column to narrow the gas-liquid flow path, and multiple gas-liquid contact stages each consisting of a gas-liquid contact section and a gas-liquid separation section are provided. This improves the contact efficiency.

以下に本発明を添付図面を参照して説明する。 The invention will now be described with reference to the accompanying drawings.

第1図は本発明の一実施例を示すもので、塔1
にはその下側方にガス供給口2が、上部にはデミ
スター3が、そして上端部にはガス排出口4が設
けられている。塔1内には立管5が上下方向に所
定の間隔をもつて複数個配設されている。これら
立管5はその外壁下端と塔1の内壁との間隙を閉
塞する底板6により塔内に固着され、塔内壁、立
管外壁及び底板により液受け部7が構成される。
各立管5の略中央下端部付近には液供給ノズル8
がその噴霧ノズル口が上向に開口するように設け
られている。各段の液供給ノズル8は立管5の内
径に応じて複数個設けられてもよい。また各液受
け部7及び塔底端部には液を塔外に排出する排出
管9が設けられている。
FIG. 1 shows an embodiment of the present invention.
is provided with a gas supply port 2 at its lower side, a demister 3 at its top, and a gas discharge port 4 at its upper end. A plurality of standpipes 5 are arranged in the tower 1 at predetermined intervals in the vertical direction. These standpipes 5 are fixed in the tower by a bottom plate 6 that closes the gap between the lower end of the outer wall and the inner wall of the tower 1, and a liquid receiving section 7 is constituted by the inner wall of the tower, the outer wall of the standpipe, and the bottom plate.
A liquid supply nozzle 8 is located near the lower end of the center of each standpipe 5.
is provided so that its spray nozzle opening opens upward. A plurality of liquid supply nozzles 8 at each stage may be provided depending on the inner diameter of the standpipe 5. Furthermore, a discharge pipe 9 for discharging the liquid to the outside of the tower is provided at each liquid receiving portion 7 and at the bottom end of the tower.

第2図は本発明の他の実施例を示すもので、底
板6を上方、すなわち立管5の途中部分に設けた
場合を示し、このようにすれば後述する気液分離
部領域が拡大することになる。
FIG. 2 shows another embodiment of the present invention, in which the bottom plate 6 is provided above, that is, in the middle of the standpipe 5. In this way, the gas-liquid separation area, which will be described later, is expanded. It turns out.

また、第3図は本発明のさらに他の実施例を示
すもので、第1図及び第2図に示した装置では立
管5を塔内の略中央部に各立管の中心軸線がほぼ
一致するように配設されるのに対し、この第3図
に示す装置では各立管の中心軸線が不一致になる
ように配設されてなる。
FIG. 3 shows still another embodiment of the present invention. In the apparatus shown in FIGS. 1 and 2, the standpipes 5 are placed approximately at the center of the tower, and the center axis of each standpipe is approximately at the center of the column. In contrast, in the apparatus shown in FIG. 3, the standpipes are arranged so that their central axes do not match.

このように本発明では塔内に立管5を多段に配
設し、この立管5と塔内壁との間隙を底板6によ
り閉塞することにより、気液流路を狭くしたこと
に特徴を有するものである。このような本発明装
置において、ガス供給口2からガスを送気し、液
供給ノズル8から液を供給すると主として立管5
内で気液が激しくしかも充分に接触した後ガス中
の被吸収成分が液に吸収され、又は液中の揮発性
成分等がガス中に放散されて除去されることにな
る。かくして接触後、気液混合体は立管上方の空
間に至り、該空間が急激に拡大していることから
液滴はガス速度の急激な減少と同時にガス流速の
方向変換により塔内壁方向に飛ばされ気液分離が
行われる。次いで、若干のミストを同伴するガス
は次段の立管下端に至り、そこで再び液供給ノズ
ル8から液が供給噴霧されて気液接触が行われ、
次いで立管5の上方空間で気液分離が行われるこ
とになる。分離された液は液受け部7に導かれ、
排出管9により塔底に溜つた液とともに塔外に排
出される。図示してないが、ガスと接触後、分離
された液は再生等の処理を施された後、再度、接
触液として使用しても良いし、上段の液受け部に
溜まつた液をそれより下段の液供給ノズル8に液
のヘツド差を利用して送給しても良い。
As described above, the present invention is characterized in that the vertical pipes 5 are arranged in multiple stages in the tower, and the gap between the vertical pipes 5 and the inner wall of the tower is closed by the bottom plate 6, thereby narrowing the gas-liquid flow path. It is something. In such an apparatus of the present invention, when gas is supplied from the gas supply port 2 and liquid is supplied from the liquid supply nozzle 8, the main part of the standpipe 5 is
After the gas and liquid come into intense and sufficient contact within the gas, the components to be absorbed in the gas are absorbed by the liquid, or the volatile components in the liquid are dissipated into the gas and removed. After contact, the gas-liquid mixture reaches the space above the standpipe, and as this space expands rapidly, the droplets fly toward the inner wall of the tower due to a sudden decrease in gas velocity and a change in direction of gas flow velocity. gas-liquid separation is performed. Next, the gas accompanied by some mist reaches the lower end of the next-stage standpipe, where the liquid is again supplied and sprayed from the liquid supply nozzle 8 and gas-liquid contact is performed.
Next, gas-liquid separation will be performed in the space above the standpipe 5. The separated liquid is led to the liquid receiving part 7,
The liquid is discharged to the outside of the tower through a discharge pipe 9 together with the liquid accumulated at the bottom of the tower. Although not shown in the figure, the separated liquid after contacting the gas may be reused as a contact liquid after being subjected to treatment such as regeneration, or the liquid accumulated in the upper liquid receiving part may be used as a contact liquid. The liquid may be fed to the lower liquid supply nozzle 8 by utilizing the liquid head difference.

このように、本発明装置にあつては主として立
管内部及びその立管上端の延長線以内が気液接触
部Aとなり、また立管上方空間の主として立管上
部の延長線と塔内壁とで囲繞される領域が気液分
離部Bとなつている。これら気液接触部A及び気
液分離部Bからなる気液接触段が複数段設けら
れ、従つて本発明装置にあつては塔内の中央主要
部を構成する多段の気液接触段、塔底部領域及び
塔頂部領域に大別される。
In this way, in the device of the present invention, the gas-liquid contact area A is mainly the inside of the standpipe and within the extension line of the top end of the standpipe, and the space above the standpipe is mainly the extension line of the top of the standpipe and the inner wall of the tower. The surrounded area serves as a gas-liquid separation section B. A plurality of gas-liquid contact stages consisting of the gas-liquid contact section A and the gas-liquid separation section B are provided, and therefore, in the apparatus of the present invention, the multi-stage gas-liquid contact stage and the tower constituting the central main part in the column are It is roughly divided into the bottom region and the top region.

ここで、立管5を2段に設けた第1図に示すよ
うな高流速装置を用いた場合及び特公昭55−
32411号公報に示されるような従来の高流速装置
を用いた場合について、原ガスとして濃度340〜
380ppmの炭酸ガス(ガス空筒速度7m/sec)、
一方吸収液として濃度2.5wt%の苛性ソーダ溶液
(液温度28℃、液流量400000Kg/m2・HR)を用
い、気液接触を行つて苛性ソーダによる炭酸ガス
の吸収を実施し、その時の吸収塔の高さ方向にお
ける圧力損失分布並びにCO2−NaOH系吸収率を
示せばそれぞれ第4図及び第5図の如くになる。
なお、第4図及び第5図において、P、Qはそれ
ぞれ液供給口の位置を示し、本発明装置ではP及
びQの両液供給口から液供給を行い、従来装置で
はPからのみ液供給を行つた。さらに本発明装置
における立管位置をS−T、U−Vとして示す。
図中の丸印は本発明装置を用いた場合の結果及び
三角印は従来装置を用いた場合の結果を示す。
Here, when using a high flow rate device as shown in FIG. 1 in which the standpipe 5 is provided in two stages, and
When using a conventional high-flow rate device as shown in Publication No. 32411, the raw gas has a concentration of 340~
380ppm carbon dioxide gas (gas cylinder velocity 7m/sec),
On the other hand, using a caustic soda solution with a concentration of 2.5 wt% (liquid temperature 28°C, liquid flow rate 400000 Kg/m 2 HR) as the absorption liquid, gas-liquid contact was carried out to absorb carbon dioxide gas by the caustic soda. The pressure loss distribution in the height direction and the CO 2 --NaOH absorption rate are shown in FIGS. 4 and 5, respectively.
In FIGS. 4 and 5, P and Q indicate the positions of the liquid supply ports, respectively. In the device of the present invention, liquid is supplied from both the liquid supply ports P and Q, while in the conventional device, liquid is supplied only from P. I went there. Further, the standpipe positions in the apparatus of the present invention are shown as ST and UV.
The circles in the figure indicate the results when the device of the present invention was used, and the triangles indicate the results when the conventional device was used.

これら第4図及び第5図より従来の高流速装置
にあつては液供給部から2m〜3m程度まで有効
な気液接触が行われるが、それを越えると圧力損
失が急激に小さくなり、吸収効率もほぼ一定に近
い値をとり、それ以後の部位では気液接触による
吸収が実質的に生じていないことがわかる。液供
給部から2m〜3m以降の部分の液の状態を観察
したところ液は濡れ壁状に流れ2相流体となつて
いた。これに対し、本発明装置にあつては濡れ壁
状の2相流体が生じないように構成され、さらに
液供給を行つて気液接触を行わしめるため吸収効
率が向上するものである。
As can be seen from these figures 4 and 5, in conventional high-flow devices, effective gas-liquid contact occurs up to about 2m to 3m from the liquid supply section, but beyond that, the pressure loss decreases rapidly and the absorption The efficiency also takes a nearly constant value, and it can be seen that absorption due to gas-liquid contact does not substantially occur in the subsequent parts. When the state of the liquid was observed at a distance of 2 m to 3 m from the liquid supply section, it was found that the liquid flowed like a wet wall and became a two-phase fluid. On the other hand, the apparatus of the present invention is constructed so that a two-phase fluid in the form of a wet wall is not generated, and furthermore, the liquid is supplied to effect gas-liquid contact, so that the absorption efficiency is improved.

従つて、本発明装置の気液接触部Aを構成する
立管5の管高はガス空塔速度および液供給量にも
よるが、一般には約2〜3m程度とすることが好
ましい。ここで本発明装置の実施例について各寸
法の関係を概略的に例示すれば次のようになる。
今、立管5の内径をDとすると塔1の内径は約
2Dとすることが好ましく、従つてこの場合立管
5を筒1内の略中央部付近に配設したものにあつ
ては液受け部7の幅は1/2Dとなる。また立管5
の上端からその上方に設置される立管5の下端ま
での距離はほぼ1/2Dとすることが好ましい。本
発明実施例における好ましい態様では上述の各寸
法関係において立管5の管高を2Dとする。これ
により、立管5の管高が2〜3mとすることから
各寸法の一例が明らかとなろう。しかしながらこ
れら各寸法はもちろん本発明を何ら限定するもの
ではなく塔内に配設する立管の個数、換言すれば
気液接触段を何段設けるか、あるいは第3図の如
く各立管の中心軸線を不一致にするかは、処理す
るガス及び/又は液によつて決定されるものであ
る。なお、望ましくは液受け部の幅は最少でも
500mmとする。
Therefore, the height of the standpipe 5 constituting the gas-liquid contact section A of the apparatus of the present invention is generally preferably about 2 to 3 m, although it depends on the gas superficial velocity and the amount of liquid supplied. Here, the relationships among the dimensions of the embodiments of the apparatus of the present invention will be schematically illustrated as follows.
Now, if the inner diameter of the standpipe 5 is D, the inner diameter of the tower 1 is approximately
It is preferable to set it to 2D, and therefore, in this case, if the standpipe 5 is disposed near the approximate center of the cylinder 1, the width of the liquid receiving part 7 will be 1/2D. Also stand pipe 5
It is preferable that the distance from the upper end to the lower end of the standpipe 5 installed above it be approximately 1/2D. In a preferred embodiment of the present invention, the height of the standpipe 5 is 2D in the above-mentioned dimensional relationships. As a result, an example of each dimension will become clear since the height of the standpipe 5 is 2 to 3 m. However, these dimensions, of course, do not limit the present invention in any way, and the number of standpipes to be installed in the tower, in other words, how many gas-liquid contact stages are provided, or the center of each standpipe as shown in Figure 3. Whether the axes are mismatched is determined by the gas and/or liquid being processed. In addition, it is desirable that the width of the liquid receiving part be at least as small as possible.
The length shall be 500mm.

各気液接触段における液供給ノズル8の設置個
数は立管5の内径に応じて決定されるが、例えば
立管内径が500φでは1個所、750φでは3個所、
1000φでは4個所とすることが好ましい。
The number of liquid supply nozzles 8 to be installed in each gas-liquid contact stage is determined according to the inner diameter of the standpipe 5; for example, if the inner diameter of the standpipe is 500φ, there will be one, and if the inner diameter of the standpipe is 750φ, there will be three.
For 1000φ, it is preferable to use 4 locations.

このような本発明装置において、塔内にガス及
び液を供給すると充分な気液接触及び気液分離が
行われ、液が濡れ壁状に流れて2相流体となるこ
とが防止される。そして気液接触効率がほとんど
無くなる部位に次の気液接触段が設置されている
ため気液接触効率が著しく増大する。
In such an apparatus of the present invention, when gas and liquid are supplied into the column, sufficient gas-liquid contact and gas-liquid separation are performed, and the liquid is prevented from flowing in a wet wall shape and becoming a two-phase fluid. Since the next gas-liquid contact stage is installed at a location where the gas-liquid contact efficiency almost disappears, the gas-liquid contact efficiency increases significantly.

以上のような本発明によれば、塔内に上下方向
に離隔して配設した複数個の立管により気液流路
を狭くし、気液接触部A及び気液分離部Bからな
る気液接触段を多段に設けているため、気液接触
効率が飛躍的に増大し、従つて従来は複数塔の高
速装置を設けるところが1塔で足りることにな
り、コスト面及び設置面積等において顕著な効果
を具備する装置が得られる。このような本発明は
供給ガスにもと圧がある場合、液中に重合物やス
ラリー等が含まれる場合等に特に好適である。
According to the present invention as described above, the gas-liquid flow path is narrowed by a plurality of vertically spaced vertical pipes arranged inside the column, and the gas-liquid flow path consisting of the gas-liquid contact section A and the gas-liquid separation section B is Because the liquid contact stage is provided in multiple stages, the gas-liquid contact efficiency increases dramatically, and instead of the conventional multiple tower high-speed equipment, only one tower is required, which is a significant improvement in terms of cost and installation space. A device with excellent effects can be obtained. The present invention as described above is particularly suitable when the supplied gas has an original pressure or when the liquid contains a polymer, slurry, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ本発明の実施例を示
す概略説明図、第4図は塔の高さ方向におけるガ
ス上昇部の圧力損失分布図、第5図は塔の高さ方
向におけるCO2−NaOH系吸収率の分布図を示
す。 1……塔、2……ガス供給口、3……デミスタ
ー、4……ガス排出口、5……立管、6……底
板、7……液受け部、8……液供給ノズル、9…
…排出管。
Figures 1 to 3 are schematic explanatory diagrams showing examples of the present invention, Figure 4 is a pressure loss distribution diagram of the gas rising part in the height direction of the tower, and Figure 5 is a CO2 distribution diagram in the height direction of the tower. The distribution map of 2 -NaOH absorption rate is shown. DESCRIPTION OF SYMBOLS 1... Tower, 2... Gas supply port, 3... Demister, 4... Gas discharge port, 5... Standpipe, 6... Bottom plate, 7... Liquid receiver, 8... Liquid supply nozzle, 9 …
...Exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 下側にガス供給口を、上端にガス排出口を有
する塔内に、複数個の立管を上下方向に離隔して
塔内壁と立管外壁との間隙を封ぜしめる底板によ
り多段に固着し、底板、塔内壁及び立管外壁によ
り液受け部を構成し、各立管下端付近に液供給ノ
ズルを設けるとともに液受け部及び塔下端に集ま
る液を塔外に排出する排出管を設けてなる多段式
高流速気液接触装置。
1 In a tower that has a gas supply port on the bottom and a gas discharge port on the top end, multiple standpipes are fixed in multiple stages using a bottom plate that separates them in the vertical direction and seals the gap between the inner wall of the tower and the outer wall of the standpipe. The bottom plate, the inner wall of the tower, and the outer wall of the standpipe constitute a liquid receiving part, and a liquid supply nozzle is provided near the bottom end of each standpipe, and a discharge pipe is provided to discharge the liquid that collects at the liquid receiving part and the bottom end of the tower to the outside of the tower. A multistage high flow rate gas-liquid contact device.
JP57061400A 1982-04-13 1982-04-13 Multi-stage type high flow speed gas-liquid contact apparatus Granted JPS58177106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061400A JPS58177106A (en) 1982-04-13 1982-04-13 Multi-stage type high flow speed gas-liquid contact apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061400A JPS58177106A (en) 1982-04-13 1982-04-13 Multi-stage type high flow speed gas-liquid contact apparatus

Publications (2)

Publication Number Publication Date
JPS58177106A JPS58177106A (en) 1983-10-17
JPS6354403B2 true JPS6354403B2 (en) 1988-10-27

Family

ID=13170054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061400A Granted JPS58177106A (en) 1982-04-13 1982-04-13 Multi-stage type high flow speed gas-liquid contact apparatus

Country Status (1)

Country Link
JP (1) JPS58177106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511638A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511646A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation in bubble column reactors.
JP2008511639A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511641A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
CN102671502A (en) * 2012-05-18 2012-09-19 华东理工大学 Gas-liquid inertia separation and distribution coupling unit and separator adopting same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8501354D0 (en) * 1985-01-18 1985-02-20 Ici Plc Effecting gas-liquid contact
US6214097B1 (en) 1994-11-08 2001-04-10 Marsulex Environmental Technologies, Llc Flue gas scrubbing apparatus
US6090357A (en) * 1999-05-03 2000-07-18 Marsulex Environmental Technologies, Llc Flue gas scrubbing method
US9478785B2 (en) 2007-04-27 2016-10-25 Microsoft Technology Licensing, Llc Polarity protection for multiple batteries
JP5929780B2 (en) * 2013-02-18 2016-06-08 株式会社デンソー Gas-liquid separator for engine wet aftertreatment equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108677A (en) * 1975-03-20 1976-09-27 Babuhitachi Enjiniaringu Saabi ISHUEKIOSHOSURUTANIKIEKISETSUSHOKUBAKOSHUGOSOCHI
JPS53113771A (en) * 1977-03-17 1978-10-04 Hisashi Imai Wet gas treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108677A (en) * 1975-03-20 1976-09-27 Babuhitachi Enjiniaringu Saabi ISHUEKIOSHOSURUTANIKIEKISETSUSHOKUBAKOSHUGOSOCHI
JPS53113771A (en) * 1977-03-17 1978-10-04 Hisashi Imai Wet gas treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511638A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511646A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation in bubble column reactors.
JP2008511639A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
JP2008511641A (en) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー Optimized liquid phase oxidation
CN102671502A (en) * 2012-05-18 2012-09-19 华东理工大学 Gas-liquid inertia separation and distribution coupling unit and separator adopting same
CN102671502B (en) * 2012-05-18 2014-08-13 华东理工大学 Gas-liquid inertia separation and distribution coupling unit and separator adopting same

Also Published As

Publication number Publication date
JPS58177106A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
US4374813A (en) Reverse-jet scrubber apparatus and method
US3780499A (en) System for the liquid-phase removal of a component from the gas stream especially the absorption of sulfur trioxide in sulfuric acid
US5364604A (en) Solute gas-absorbing procedure
US4421725A (en) Process for purifying a gas containing hydrogen sulfide and carbon dioxide and apparatus therefor
JP6487909B2 (en) Distribution tray for gas-liquid contact tower with secondary distribution system
JPS6354403B2 (en)
AU2015268696A1 (en) Distributor tray for heat and/or material exchange column comprising bubbling means
JPH07102300B2 (en) Gas absorption tower
US6832754B2 (en) Gas-liquid contactor
US3322411A (en) Gas and liquid contact apparatus
AU2015413164A1 (en) Column for heat and/or mass exchange between two fluids comprising a collection tray and fluid separation means
US2364892A (en) Extraction column
US2568875A (en) Spray-type absorption tower
US5435977A (en) Acid gas removal system employing regenerator with internal flash section
US4229192A (en) Cyclonic scrubber with perforated plate distributor
US2868524A (en) Contacting apparatus
CN110540173A (en) method and device suitable for purifying reformed hydrogen
IE43264B1 (en) Gas scrubbing apparatus
CN113842732A (en) Flash evaporation gas defoaming equipment
RU2166980C2 (en) Mass-transfer plant
US7101425B2 (en) Washer and method for purifying gases
CN111989145B9 (en) Vapor-liquid contacting apparatus and method employing downcomers at a housing
JPH08332336A (en) Air cleaner
CN219072437U (en) Double-layer separator with low-temperature liquid separation and normal-temperature gas mixing functions
US1608006A (en) Process of absorbing sulphur trioxide from gases containing same