JPS6353703B2 - - Google Patents

Info

Publication number
JPS6353703B2
JPS6353703B2 JP56062472A JP6247281A JPS6353703B2 JP S6353703 B2 JPS6353703 B2 JP S6353703B2 JP 56062472 A JP56062472 A JP 56062472A JP 6247281 A JP6247281 A JP 6247281A JP S6353703 B2 JPS6353703 B2 JP S6353703B2
Authority
JP
Japan
Prior art keywords
film
ratio
nitride film
eprom
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56062472A
Other languages
Japanese (ja)
Other versions
JPS57177555A (en
Inventor
Yoshiaki Ishii
Toshihiko Takayanagi
Kosuke Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56062472A priority Critical patent/JPS57177555A/en
Publication of JPS57177555A publication Critical patent/JPS57177555A/en
Publication of JPS6353703B2 publication Critical patent/JPS6353703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Description

【発明の詳細な説明】 本発明は、特にEPROM(erasable and
electrically reprogrammable ROM:再書込み
可能ROM)の如き紫外線消去式の半導体素子を
具備した半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to EPROM (erasable and
The present invention relates to a semiconductor device equipped with an ultraviolet-erasable semiconductor element such as an electrically reprogrammable ROM.

EPROMは紫外線照射によつて情報を消去する
関係で、そのフアイナルパツシベーシヨン膜とし
てはパツシベーシヨン効果が良好であるだけでな
く、紫外線を充分に透過する特性が要求され、通
常はリンシリケートガラス膜(PSG膜)やSiO2
膜が用いられる。ところが本発明者の検討によれ
ば、プラズマデポジシヨンによつて反応ガスをプ
ラズマ化して成長させた窒化シリコン膜(以下、
これをプラズマナイトライド膜と称する)をフア
イナルパツシベーシヨン膜や更には多層配線の層
間絶縁膜として用いた場合、紫外線の透過率が悪
くて消去時間が長くなつたり、或いは全く消去可
能となることが判明した。このことは、そのプラ
ズマナイトライド膜の膜質(特に機械的強度等)
を充分なものとするためにその成分組成を最も
Si3N4に近くしてあり、このためにその紫外可視
吸収端波長が300nm以上となつていることが原因
であると考えられる。つまり、紫外可視吸収端波
長が300nmを越えると、膜中で紫外線が吸収され
易くなつて消去すべきメモリ部のゲートに到達し
難くなるからである。
Since EPROM erases information by irradiating it with ultraviolet rays, the final passivation film must not only have a good passivation effect, but also have the property of sufficiently transmitting ultraviolet rays, so phosphorous silicate glass film is usually used. (PSG film) and SiO 2
A membrane is used. However, according to the inventor's study, a silicon nitride film (hereinafter referred to as
When this film (called a plasma nitride film) is used as a final passivation film or even as an interlayer insulating film for multilayer wiring, it has poor ultraviolet transmittance and takes a long time to erase, or it may not be possible to erase it at all. It has been found. This means that the film quality (especially mechanical strength, etc.) of the plasma nitride film
In order to ensure that the composition is the most
This is thought to be due to the fact that it is close to Si 3 N 4 , which causes its ultraviolet-visible absorption edge wavelength to be 300 nm or more. In other words, when the ultraviolet-visible absorption edge wavelength exceeds 300 nm, ultraviolet rays are easily absorbed in the film, making it difficult for them to reach the gate of the memory section to be erased.

しかしながら、プラズマナイトライドを
EPROMのパツシベーシヨンに使用するに際し、
これまで、その膜強度は充分であつても紫外線透
過性については考慮が払われず、従つて紫外線透
過率を制御する方策は何ら講じられていないが実
情である。
However, plasma nitride
When using for EPROM passivation,
Until now, even if the film strength is sufficient, no consideration has been given to the ultraviolet transmittance, and therefore no measures have been taken to control the ultraviolet transmittance.

本発明はこうした状況に鑑みてなされたもので
あつて、その目的は、紫外線照射を必要とする
EPROM等のデバイスにプラズマナイトライド膜
を信頼性良く適用できるようにすることにある。
このために、本発明によれば、プラズマナイトラ
イド膜を単に被着したのではなく、その膜組成を
Si/N比(原子比)=0.65〜0.825という特定の範
囲に設定して、紫外線を充分に透過させ得る膜と
なしている。この特定の組成比によつて、プラズ
マナイトライド膜の紫外可視吸収端波長を確実に
300nm以下に制御できると共に、パツシベーシヨ
ン膜として充分な強度及び耐薬品性等を有したも
のとなることがはじめて見出されたのである。
The present invention was made in view of these circumstances, and its purpose is to
The objective is to enable plasma nitride films to be applied reliably to devices such as EPROMs.
For this purpose, according to the present invention, the plasma nitride film is not simply deposited, but the film composition is changed.
By setting the Si/N ratio (atomic ratio) to a specific range of 0.65 to 0.825, the film can sufficiently transmit ultraviolet rays. This specific composition ratio ensures the ultraviolet-visible absorption edge wavelength of the plasma nitride film.
It was discovered for the first time that it can be controlled to 300 nm or less and has sufficient strength and chemical resistance as a passivation film.

以下、本発明を図面参照下で更に詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

まず第1図について、本発明が適用される
EPROMの構造を説明するが、図面ではEPROM
の特にメモリ部のみを示している。このEPROM
によれば、P型シリコン基板1の一主面に周知の
選択酸化法で形成されたフイールドSiO2膜2に
より各領域に分離され、所定の領域内にソース又
はドレイン領域としてのN+型拡散領域3及び4
が形成され、これらの中間のゲート酸化膜7上に
ポリシリコン膜からなるフローテイングゲート5
とコントロールゲート6とが積層されている。そ
して、気相成長により形成されたリンシリケート
ガラス膜8と薄いSiO2膜9を通じて設けたコン
タクトホールに各アルミニウム電極10,11が
被着され、更に最上面にフアイナルパツシベーシ
ヨン膜としてのプラズマナイトライド膜12が例
えば厚さ1μmに被着されている。
First, regarding FIG. 1, the present invention is applied.
Although the structure of EPROM is explained, the drawing shows EPROM
In particular, only the memory part is shown. This EPROM
According to , each region is separated by a field SiO 2 film 2 formed on one principal surface of a P-type silicon substrate 1 by a well-known selective oxidation method, and an N + type diffusion is performed as a source or drain region within a predetermined region. Areas 3 and 4
A floating gate 5 made of a polysilicon film is formed on the intermediate gate oxide film 7.
and control gate 6 are stacked. Then, aluminum electrodes 10 and 11 are deposited on the contact holes formed through the phosphosilicate glass film 8 and the thin SiO 2 film 9 formed by vapor phase growth, and a final passivation film is deposited on the top surface using plasma. A nitride film 12 is deposited to a thickness of, for example, 1 μm.

こうしたEPROMにおいては、情報を蓄積して
いるメモリ部のゲートに紫外線を照射して消去操
作を行なうが、このために上記のプラズマナイト
ライド膜12の紫外線透過率を充分なものとする
ために、その紫外可視吸収端波長を300nm以下と
すべき特定の膜組成範囲が設定されている。これ
を実際のデータに基いて説明する。
In such an EPROM, the erase operation is performed by irradiating ultraviolet rays to the gate of the memory section where information is stored, but in order to make the ultraviolet transmittance of the plasma nitride film 12 sufficient for this purpose, A specific film composition range has been set in which the ultraviolet-visible absorption edge wavelength should be 300 nm or less. This will be explained based on actual data.

第2図は、プラズマデポジシヨン時に供給する
反応ガスのガス流量比(SiH4/NH3)によつて、
紫外可視光吸収端波長λa及びSi/N比共に増大す
ることが分る。通常の標準条件ではSiH4/NH3
のガス比を0.48程度としているので、得られたプ
ラズマナイトライド膜のλaは340nm、Si/N比は
0.9弱となつている。従つて、膜強度は良いもの
のλaが300nmをかなり越えているために紫外線透
過率が悪いものとなつている。
Figure 2 shows the difference in gas flow rate ratio (SiH 4 /NH 3 ) of the reaction gas supplied during plasma deposition.
It can be seen that both the ultraviolet-visible light absorption edge wavelength λ a and the Si/N ratio increase. SiH 4 /NH 3 under normal standard conditions
Since the gas ratio of
It is just under 0.9. Therefore, although the film strength is good, the ultraviolet transmittance is poor because λ a considerably exceeds 300 nm.

これに対し、本発明は、第2図の結果に基いて
検討したところ、λaとSi/N比との間に第3図の
如き相関関係があり、Si/N比を特定範囲に選択
しなければならないことを見出した。即ち、プラ
ズマナイトライド膜中のSi/N比を0.65〜0.825に
設定すれば、その光吸収端波長λaを300nm以下
(200〜300nm)に制御でき、紫外線透過率を充分
なものにしてEPROMのパツシベーシヨン膜とし
て好適なナイトライド膜にすることができる。詳
細に言えば、Si/N比が0.825を越えるとλa
300nm以上となつて不適当であり、また0.65未満
であるとλaは小さくなるが化学的性質が劣化して
特に化学エツチング時のエツチング速度が大きく
なりすぎ、ウエハの処理面からみて不適当であ
る。Si/N比は更に0.75〜0.8とすれば、λa及び耐
エツチング性の両面から結果がより良好となる。
On the other hand, in the present invention, based on the results shown in Fig. 2, it was found that there is a correlation between λ a and the Si/N ratio as shown in Fig. 3, and the Si/N ratio is selected within a specific range. I found out what I had to do. In other words, by setting the Si/N ratio in the plasma nitride film to 0.65 to 0.825, the optical absorption edge wavelength λ a can be controlled to 300 nm or less (200 to 300 nm), and the ultraviolet transmittance can be made sufficient for EPROM. It can be made into a nitride film suitable as a passivation film. Specifically, when the Si/N ratio exceeds 0.825, λ a becomes
If it is 300 nm or more, it is unsuitable, and if it is less than 0.65, λ a will be small, but the chemical properties will deteriorate, and the etching rate, especially during chemical etching, will become too high, which is unsuitable from the viewpoint of wafer processing. be. If the Si/N ratio is further set to 0.75 to 0.8, better results will be obtained in terms of both λ a and etching resistance.

なお、上記の如く、Si/N比を特定範囲に設定
するには、実際のプラズマ反応に供給する反応ガ
スの成分比(SiH4/NH3)を選択すればよいが、
これは第2図のデータから容易に決めることがで
きる。本発明では、標準のガス比より小さいガス
比(約0.36以下)で反応させればよいことが理解
されよう。また、このガス組成においては、窒素
供給源としてNH3の代りにN2を使用しても上記
と同様の結果が得られる。或いは、NH3とN2
の混合ガスを用いてもよい。
As mentioned above, in order to set the Si/N ratio within a specific range, it is sufficient to select the component ratio (SiH 4 /NH 3 ) of the reaction gas supplied to the actual plasma reaction.
This can be easily determined from the data in FIG. It will be appreciated that in the present invention, reactions may be performed at gas ratios that are lower than standard gas ratios (approximately 0.36 or less). Furthermore, in this gas composition, the same results as above can be obtained even if N 2 is used instead of NH 3 as the nitrogen supply source. Alternatively, a mixed gas of NH 3 and N 2 may be used.

また、上記のプラズマナイトライド膜は
EPROMのフアイナルパツシベーシヨンだけでな
く、多層配線時の層間絶縁膜としても使用できる
し、更にEPROM以外のデバイスにも適用可能で
ある。
In addition, the above plasma nitride film is
It can be used not only for the final packaging of EPROM, but also as an interlayer insulating film for multilayer wiring, and can also be applied to devices other than EPROM.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を説明するためのものであつて、
第1図はEPROMのメモリー部の断面図、第2図
はプラズマデポジシヨン時の反応ガス比とプラズ
マナイトライド膜の光吸収端波長及びSi/N比と
の関係を示すグラフ、第3図はプラズマナイトラ
イド膜の光吸収端波長とSi/N比との関係を示す
グラフである。 なお、図面に用いられている符号において、5
はフローテイングゲート、6はコントロールゲー
ト、12はプラズマナイトライド膜(フアイナル
パツシベーシヨン膜)である。
The drawings are for explaining the present invention, and
Figure 1 is a cross-sectional view of the memory section of the EPROM, Figure 2 is a graph showing the relationship between the reactant gas ratio during plasma deposition, the optical absorption edge wavelength of the plasma nitride film, and the Si/N ratio. It is a graph showing the relationship between the optical absorption edge wavelength and the Si/N ratio of a plasma nitride film. In addition, in the symbols used in the drawings, 5
6 is a floating gate, 6 is a control gate, and 12 is a plasma nitride film (final passivation film).

Claims (1)

【特許請求の範囲】[Claims] 1 紫外線照射を必要とする半導体素子を具備し
た半導体装置において、少なくとも前記半導体素
子を被覆するように窒化シリコン膜が被着され、
この窒化シリコン膜は反応ガスのプラズマ化によ
つて形成されたものであると共に、その膜が紫外
線を透過しえる膜に設定されていることを特徴と
する半導体装置。
1. In a semiconductor device equipped with a semiconductor element that requires ultraviolet irradiation, a silicon nitride film is deposited to cover at least the semiconductor element,
A semiconductor device characterized in that the silicon nitride film is formed by plasma generation of a reactive gas, and the film is set to be a film that can transmit ultraviolet rays.
JP56062472A 1981-04-27 1981-04-27 Semiconductor device Granted JPS57177555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56062472A JPS57177555A (en) 1981-04-27 1981-04-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56062472A JPS57177555A (en) 1981-04-27 1981-04-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS57177555A JPS57177555A (en) 1982-11-01
JPS6353703B2 true JPS6353703B2 (en) 1988-10-25

Family

ID=13201160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56062472A Granted JPS57177555A (en) 1981-04-27 1981-04-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS57177555A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665426A (en) * 1985-02-01 1987-05-12 Advanced Micro Devices, Inc. EPROM with ultraviolet radiation transparent silicon nitride passivation layer
JP3632256B2 (en) * 1994-09-30 2005-03-23 株式会社デンソー Manufacturing method of semiconductor device having silicon nitride film

Also Published As

Publication number Publication date
JPS57177555A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
EP0025717B1 (en) A semiconductor device comprising two insulating films and process for producing the same
US6287951B1 (en) Process for forming a combination hardmask and antireflective layer
US5286681A (en) Method for manufacturing semiconductor device having a self-planarizing film
KR101198107B1 (en) Amorphous carbon film, semiconductor device, film forming method, film forming apparatus and storage medium
EP0186443A2 (en) Silicon nitride films for integrated circuits
KR910007378B1 (en) Ultraviolet erasable nonvolatile semiconductor device
US20070123035A1 (en) Method of manufacturing semiconductor device
US5756392A (en) Method of formation of polycide in a semiconductor IC device
JPH11233512A (en) Method for base surface reformation and manufacture of semiconductor device
KR100278694B1 (en) Insulating film for semiconductor device and method of forming the same
JP4191692B2 (en) Method for forming SiC-based film and method for manufacturing semiconductor device
US7091088B1 (en) UV-blocking etch stop layer for reducing UV-induced charging of charge storage layer in memory devices in BEOL processing
US6051870A (en) Process for fabricating semiconductor device including improved phosphorous-doped silicon dioxide dielectric film
JPH10189579A (en) Manufacture of semiconductor device
US6812140B2 (en) Method for contact profile improvement
JPS6353703B2 (en)
US6888183B1 (en) Manufacture method for semiconductor device with small variation in MOS threshold voltage
US6235654B1 (en) Process for forming PECVD nitride with a very low deposition rate
US6989563B1 (en) Flash memory cell with UV protective layer
JPH11284189A (en) Thin film semiconductor device, its manufacture, active matrix substrate, its manufacture and liquid crystal device
Wang et al. Investigation of a high quality and ultraviolet-light transparent plasma-enhanced chemical vapor deposition silicon nitride film for non-volatile memory application
JPH04357879A (en) Nonvolatile semiconductor memory
JPH04323829A (en) Semiconductor device and manufacture thereof
KR100331279B1 (en) Method For Forming The Gate Electrode Of Semiconductor Device
JP2813571B2 (en) Semiconductor integrated circuit device