JPS6352644A - Battery charger - Google Patents

Battery charger

Info

Publication number
JPS6352644A
JPS6352644A JP19329086A JP19329086A JPS6352644A JP S6352644 A JPS6352644 A JP S6352644A JP 19329086 A JP19329086 A JP 19329086A JP 19329086 A JP19329086 A JP 19329086A JP S6352644 A JPS6352644 A JP S6352644A
Authority
JP
Japan
Prior art keywords
voltage
battery
operational amplifier
charging
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19329086A
Other languages
Japanese (ja)
Other versions
JPH0630552B2 (en
Inventor
長谷川 広和
恵 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61193290A priority Critical patent/JPH0630552B2/en
Publication of JPS6352644A publication Critical patent/JPS6352644A/en
Publication of JPH0630552B2 publication Critical patent/JPH0630552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電池の充電電圧特性に現われるピーク点を検出
し、このピーク点検出以降電池の充電電圧がピーク点電
圧より低い状態を任意に設定した時間持続したとき、大
電流による急速充電を停止して、小電流によるトリクル
充電に切換えるか又は充電電流を完全に流さないように
した電池の充電制御装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention detects a peak point that appears in the charging voltage characteristics of a battery, and after detecting this peak point, the charging voltage of the battery remains lower than the peak point voltage for an arbitrarily set period of time. This invention relates to a battery charging control device that stops rapid charging using a large current and switches to trickle charging using a small current, or completely prevents the charging current from flowing, when the charging current continues.

従来の技術 近年、電池の充電電圧特性に現われるピーク点より所定
電圧だけ電圧が低下(以下−ΔV雷電圧称す)したとき
に大電流による急速充電を停止し細流電流によるトリク
ル充電に切換えるか、又は充電電流を完全に流さないよ
うにする方式(以下−ΔV制御方式と称す)を備えた充
電装置は、ポータプル電子機器の充電システムとして広
く利用されている。
Conventional technology In recent years, when the voltage drops by a predetermined voltage (hereinafter referred to as -ΔV lightning voltage) from the peak point that appears in the charging voltage characteristics of a battery, rapid charging using a large current is stopped and switching to trickle charging using a trickle current, or A charging device equipped with a method (hereinafter referred to as a -ΔV control method) that prevents the charging current from flowing completely is widely used as a charging system for portable electronic devices.

以下、図面を参照しながら、上述したような従来の−Δ
V制御方式の充電装置について説明を行う0 第3図は従来の−ΔV制御方式の充電装置の回路構成を
示すものである。第3図において、1はツェナーダイオ
ードZD1.ZD2、抵抗R1よりなる分圧回路、2は
抵抗R2、コンデンサC1よすなるフィルター回路、3
は抵抗R5、コンデンサC2、ダイオードD+、演算増
幅器OP1、スイッチS+、S2 よりなるーΔV検出
制御回路、4は直流電源、5は被充電電池である。
Hereinafter, with reference to the drawings, the conventional −Δ
Description of the charging device using the V control method Figure 3 shows the circuit configuration of a conventional charging device using the -ΔV control method. In FIG. 3, 1 is a Zener diode ZD1. ZD2, a voltage dividing circuit consisting of a resistor R1, 2 a filter circuit consisting of a resistor R2 and a capacitor C1, 3
is a ΔV detection control circuit consisting of a resistor R5, a capacitor C2, a diode D+, an operational amplifier OP1, and switches S+ and S2; 4 is a DC power supply; and 5 is a battery to be charged.

以上のように構成された従来の−ΔV制御方式の充電装
置の動作について第3図、第4図を用いて説明する。
The operation of the conventional -ΔV control system charging device configured as described above will be explained with reference to FIGS. 3 and 4.

まず充電開始前はスイッチS1は開放状態、スイッチS
2は導通状態でコンデンサC2は放電されている。次に
充電が開始されるとスイッチS1は導通状態、スイッチ
S2は開放状態となり、被充電電池6の端子電圧vBム
茸はツェナーダイオードZD<、抵抗R+、ツェナーダ
イオードZD2の直列接続による分圧回路1によって分
圧される。
First, before charging starts, switch S1 is open, switch S
2 is in a conductive state and capacitor C2 is discharged. Next, when charging starts, the switch S1 becomes conductive, the switch S2 becomes open, and the terminal voltage vB of the battery 6 to be charged is determined by a voltage divider circuit consisting of a Zener diode ZD<, a resistor R+, and a Zener diode ZD2 connected in series. The pressure is divided by 1.

ツェナーダイオードZD+ と抵抗R1の接続点P1の
分圧電圧VPjは前記電池の端子電圧VBATTからツ
ェナーダイオードZD(のツェナー電圧”ZDjを減じ
た電圧であり、ツェナーダイオードZD2  と抵抗R
1の接続点P4の電圧vP4 はツェナーダイオードZ
D2のツェナー電圧’l’ZD2となり一定である。充
電開始から前記電池の端子電圧がピーク点色に達するま
では、前記分圧電圧”Plは前記電池の端子電圧に対応
して上昇するが、抵抗R3とコンデンサC2の接続点P
2の電圧Vp2H抵抗R2、コンデンサC1よりなるフ
ィルタ回路2の時定数及び抵抗Rs、コンデンサC2の
時定数によって決まる遅れを持ちながら上昇する0この
ように前記分圧点P1の分圧電圧”lが前記接続点P2
の電圧VP2より大きい時、コンデンサC2は充電され
、ダイオードD1には1頂方向電圧降下が生ずる。
The divided voltage VPj at the connection point P1 between the Zener diode ZD+ and the resistor R1 is the voltage obtained by subtracting the Zener voltage "ZDj of the Zener diode ZD" from the terminal voltage VBATT of the battery, and the voltage between the Zener diode ZD2 and the resistor R
The voltage vP4 at the connection point P4 of 1 is the Zener diode Z
The Zener voltage of D2 becomes 'l'ZD2 and is constant. From the start of charging until the terminal voltage of the battery reaches the peak point color, the divided voltage "Pl" increases corresponding to the terminal voltage of the battery, but the voltage at the connection point P between the resistor R3 and the capacitor C2 increases.
2 voltage Vp2H rises with a delay determined by the time constant of the filter circuit 2 consisting of the resistor R2, the capacitor C1, the resistor Rs, and the time constant of the capacitor C2. In this way, the divided voltage "l" at the voltage dividing point P1 increases as shown in FIG. The connection point P2
When the voltage VP2 is greater than the voltage VP2, the capacitor C2 is charged and a one-vertical voltage drop occurs across the diode D1.

ダイオードD1の順方向電圧’/D1が正の時、ダイこ
れらの電圧を入力とする演算増幅器○P1は前記入力条
件CVps>Vpa)を満足する電圧を出力する。この
電圧によりスイッチS1は導通状態を持続し、急速充電
が続けられる。
When the forward voltage '/D1 of the diode D1 is positive, the operational amplifier P1 which receives these voltages as input outputs a voltage that satisfies the input condition (CVps>Vpa). This voltage causes the switch S1 to remain conductive, allowing rapid charging to continue.

前記電池の端子電圧がピーク点aを過ぎると、前記分圧
点P1の電圧’l’PIは、前記電池の端子電圧に対応
して降下するが、前記接続点P2の電圧VP2は前記分
圧点P1の電圧Vlとの電圧差がなくなるまで上昇する
。前記接続点P2の電圧VP2が上昇している時は、コ
ンデンサC2は充電され、ダイオードD1には順方向電
圧vD1が生ずるから、上述したように急速充電が続け
られる。前記分圧点P1の電圧VPtと前記接続点P2
の電圧”P2が等しくなるとコンデンサC2は充電され
なくなp1コンデンサC2の端子電圧VC2は最大値V
C2MAIとなυ、ダイオードD1の順方向電圧VD1
はゼロとなる。さらに急速充電が継続して前記電池の端
子電圧が降下すると、前記接続点P2の電圧”P2は前
記分圧点P1の電圧Vl+の降下に対して前記のフィル
ター回路2の時定数によって決まる遅れを持ちながら降
下するが、コンデンサC2はダイオードD1により放電
を阻止されてお9、コンデンサC2の端子電圧VO2は
最大値VC2MAIを保持し続け、前記接続点P3の電
圧VP3は前記接続点P2の電圧VP2に対応して降下
する0これにより前記接続点P3の電圧Vp5は前記接
続点P4の電圧VP4より小さくなり、これらの電圧を
入力とする演算増幅器OP+は前記入力条件(Vp s
< Vp 4)を満足する電圧をスイッチS1に出力す
る0これによりスイッチS1は開放状態となり、急速充
電が停止する。
When the terminal voltage of the battery passes the peak point a, the voltage 'l'PI at the voltage dividing point P1 drops in accordance with the terminal voltage of the battery, but the voltage VP2 at the connection point P2 decreases below the voltage dividing point P1. The voltage increases until there is no voltage difference with the voltage Vl at point P1. When the voltage VP2 at the connection point P2 is rising, the capacitor C2 is charged and the forward voltage vD1 is generated in the diode D1, so that rapid charging continues as described above. The voltage VPt at the voltage dividing point P1 and the connection point P2
When the voltage ``P2'' becomes equal, capacitor C2 is no longer charged, and the terminal voltage VC2 of p1 capacitor C2 becomes the maximum value V.
C2MAI and υ, forward voltage VD1 of diode D1
becomes zero. Further, when the rapid charging continues and the terminal voltage of the battery drops, the voltage "P2" at the connection point P2 has a delay determined by the time constant of the filter circuit 2 with respect to the drop in the voltage Vl+ at the voltage dividing point P1. However, the capacitor C2 is prevented from discharging by the diode D19, and the terminal voltage VO2 of the capacitor C2 continues to hold the maximum value VC2MAI, and the voltage VP3 at the connection point P3 is equal to the voltage VP2 at the connection point P2. As a result, the voltage Vp5 at the connection point P3 becomes smaller than the voltage VP4 at the connection point P4, and the operational amplifier OP+, which receives these voltages as input, meets the input condition (Vp s
<Vp 4) A voltage satisfying 4) is output to the switch S1. This causes the switch S1 to be in an open state, and rapid charging is stopped.

発明が解決しようとする問題点 最近では電子機器の電源電圧の低下に伴う電池の直列接
続数の低下により−ΔV電圧の小さい充電装置の要求が
高まってきた。しかしながら、上記のような構成では被
充電電池の端子電圧の上昇が平坦な所での誤動作を防止
する為に、抵抗R2゜コンデンサC+、抵抗R3,コン
デンサC2よυ決まる時定数を大きくしておく必要があ
り、ダイオードD1の順方向電圧降下も比較的大きいこ
とから−ΔV電圧が大きく、また任意に設定できないと
いう問題点を有していた。
Problems to be Solved by the Invention Recently, there has been an increasing demand for a charging device with a small -ΔV voltage due to a decrease in the number of batteries connected in series due to a decrease in the power supply voltage of electronic devices. However, in the above configuration, the time constant determined by resistor R2, capacitor C+, resistor R3, and capacitor C2 is set large in order to prevent malfunctions when the terminal voltage of the charged battery is flat. Since the voltage drop in the forward direction of the diode D1 is relatively large, the -ΔV voltage is large, and there is a problem that it cannot be set arbitrarily.

本発明は上記問題点に鑑み一ΔY電圧を任意に設定する
ことのできる電池の充電装置を提供するものである。
In view of the above problems, the present invention provides a battery charging device that can arbitrarily set the -ΔY voltage.

問題点を解決するための手段 この目的を達成するために本発明の電池の充電装置は、
被充電電池の両端子間に設けられる第1の分圧回路と、
前記電池の充電電圧に対応した分圧電圧を記憶し、この
記憶電圧と前記分圧電圧を比較することにより前記電池
の充電電圧特性に現われるピーク点を検出するピーク点
検出回路と、前記ピーク点検出後、前記電池の充電電圧
が前記ピーク点電圧より低い状態を任意時間継続したこ
とにより急速充電を停止させる制御回路とから構成され
ている。
Means for Solving the Problems To achieve this objective, the battery charging device of the present invention comprises:
a first voltage divider circuit provided between both terminals of the battery to be charged;
a peak point detection circuit that stores a divided voltage corresponding to the charging voltage of the battery and detects a peak point appearing in the charging voltage characteristic of the battery by comparing the stored voltage with the divided voltage; and the peak inspection circuit. and a control circuit that stops rapid charging when the charging voltage of the battery continues to be lower than the peak point voltage for an arbitrary period of time after charging.

作用 前記ピーク点検出から充電制御が動作するまでの時間と
、−ΔV電社圧は正の相関関係があることから、上記構
成において前記ピーク点検出から充電制御が動作するま
での時間を任意に設定することで、−ΔV電社圧任意に
設定できることになる0 実施例 以下本発明の一実施例について、図面を参照しながら説
明する。第1図は本発明の一実施例における電池の充電
装置の回路構成を示すものである。
Effect Since there is a positive correlation between the time from the peak point detection to the charge control operation and -ΔV electric pressure, the time from the peak point detection to the charge control operation in the above configuration can be set arbitrarily. By setting -ΔV electric pressure, it is possible to arbitrarily set the voltage to 0.Example Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a circuit configuration of a battery charging device according to an embodiment of the present invention.

第1図において、1はツェナーダイオードπ1、抵抗R
1よりなる第1の分圧回路、2は第1の演算増幅器OP
+、ダイオードD+、コンデンサC(抵抗R2、R3、
スイッチS2よりなるピーク点検出回路、3はトランジ
スタQ1、抵抗Ra、Rs。
In Figure 1, 1 is a Zener diode π1, a resistor R
1 is a first voltage dividing circuit, and 2 is a first operational amplifier OP.
+, diode D+, capacitor C (resistance R2, R3,
A peak point detection circuit consisting of a switch S2, 3 a transistor Q1, and resistors Ra and Rs.

R6、コンデンサC2、第2の演算増幅器OP2、スイ
ッチS1よりなる制御回路、4は直流電源、5は被充電
電池である0 以上のように構成された電池の充電装置の動作について
第1図、第2図を用いて説明する。まず充電開始以前は
スイッチS1は開放状態、スイッチS2は導通状態でコ
ンデンサC1は放電されている。次に充電が開始される
とスイッチS1は導通状態、スイッチS2は開放状態と
なり、被充電電池5の端子電圧は第1の分圧回路1によ
って分圧され、分圧点P1には前記電池の端子電圧vB
ムτ丁からツェナーダイオードZIhのツェナー電圧v
ZDjを減じた分圧電圧Vlが印加される。この分圧電
圧VPjは第1の演算増幅器OPtの非反転入力端に加
えられ、放電状態にあったコンデンサC1は前記分圧電
圧VP+に等しくなるまで演算増幅器OP+の出力点P
5、ダイオードD1を経て瞬時に充電される。コンデン
サC1の端子電圧(演算増幅器OF+の反転入力電圧)
 Vp2と前記分圧電圧Vlが等しくなるように演算増
幅器OP+の出力点P5には前記分圧電圧VPiにダイ
オードD1の順方向電圧VDIを加えた電圧vpsが印
加される。
A control circuit consisting of R6, capacitor C2, second operational amplifier OP2, and switch S1, 4 is a DC power supply, and 5 is a battery to be charged.0 Regarding the operation of the battery charging device configured as above, FIG. This will be explained using FIG. First, before charging starts, the switch S1 is in an open state, the switch S2 is in a conductive state, and the capacitor C1 is discharged. Next, when charging is started, the switch S1 becomes conductive, the switch S2 becomes open, the terminal voltage of the battery 5 to be charged is divided by the first voltage dividing circuit 1, and the voltage dividing point P1 is connected to the terminal voltage of the battery 5. Terminal voltage vB
Zener voltage v of Zener diode ZIh from mu τ
A divided voltage Vl obtained by subtracting ZDj is applied. This divided voltage VPj is applied to the non-inverting input terminal of the first operational amplifier OPt, and the capacitor C1, which has been in a discharged state, remains at the output point P of the operational amplifier OP+ until it becomes equal to the divided voltage VP+.
5. Instantly charged via diode D1. Terminal voltage of capacitor C1 (inverting input voltage of operational amplifier OF+)
A voltage vps, which is the sum of the divided voltage VPi and the forward voltage VDI of the diode D1, is applied to the output point P5 of the operational amplifier OP+ so that Vp2 and the divided voltage Vl are equal.

この電圧”P3により抵抗R2、R3から成る第2の分
圧回路6の分圧点に接続されたl・ランジスタQ1のベ
ースがバイアスされて、このトランジスタQ1(伎導通
状態になる。これにより抵抗R4、コンデンサC2から
成るタイマー回路7のコンデンサC2は放電状態となり
、分圧点P4の端子電圧VP4ばほぼゼロ電位になる。
This voltage P3 biases the base of the transistor Q1 connected to the voltage dividing point of the second voltage dividing circuit 6 consisting of resistors R2 and R3, and this transistor Q1 becomes conductive. The capacitor C2 of the timer circuit 7 consisting of R4 and the capacitor C2 is in a discharged state, and the terminal voltage VP4 at the voltage dividing point P4 becomes almost zero potential.

このとき抵抗R5,R6から成る第3の分圧回路8の分
圧点P5の電圧VPSばコンデンサC2の端子電圧vp
4より大きく、第2の演算増幅器OP2¥:l:Vps
>Vpaの関係を満足する電圧をスイッチS1に出力し
、スイッチS1は導通状態を保持し急速充電が継続され
る0この状態は前記電池の端子電圧がピーク点aに達す
るまで持続される。前記電池の端子電圧がピーク点aを
過ぎると、第1の分圧電圧”PlがコンデンサC1の端
子電圧VP2より小さくなり、第1の演算増幅器OP+
の出力電圧VPSばほぼゼロ電位になる。
At this time, the voltage VPS at the voltage dividing point P5 of the third voltage dividing circuit 8 consisting of resistors R5 and R6 is the terminal voltage vp of the capacitor C2.
4, second operational amplifier OP2:l:Vps
A voltage satisfying the relationship >Vpa is output to the switch S1, and the switch S1 maintains a conductive state to continue rapid charging. This state is maintained until the terminal voltage of the battery reaches the peak point a. When the terminal voltage of the battery passes the peak point a, the first divided voltage "Pl" becomes smaller than the terminal voltage VP2 of the capacitor C1, and the first operational amplifier OP+
The output voltage VPS becomes almost zero potential.

これによりトランジスタQ1のベース電圧もほぼゼロ電
位となり、トランジスタQ1は開放状態になる。従って
抵抗R4、コンデンサC2より成るタイマー回路7のコ
ンデンサC2の端子電圧vP4は抵抗R4とコンデンサ
C2により決まる時定数で徐々に充電され、抵抗R5,
R6より成る第3の分圧回路の分圧電圧VP5より大き
くなったとき、第2の演算増幅器OP2の出力は反転し
、スイッチS1は開放状態になり、急速充電は停止され
る。
As a result, the base voltage of the transistor Q1 also becomes approximately zero potential, and the transistor Q1 becomes an open state. Therefore, the terminal voltage vP4 of the capacitor C2 of the timer circuit 7 consisting of the resistor R4 and the capacitor C2 is gradually charged with a time constant determined by the resistor R4 and the capacitor C2, and the resistor R5,
When the voltage becomes larger than the divided voltage VP5 of the third voltage dividing circuit made up of R6, the output of the second operational amplifier OP2 is inverted, the switch S1 becomes open, and rapid charging is stopped.

以上のように本実施例によれば、抵抗R4、コンデンサ
C2より成るタイマー回路7の定数と抵抗Rs、Rgよ
り成る第3の分圧回路8の定数を任意に設定することに
より、被充電電池の端子電圧に現われるピーク点を検知
してから急速充電が停止するまでの時間tを任意に設定
できるようになり、前記時間tと正の相関関係がある一
ΔV電圧を任意に設定できることになる。
As described above, according to this embodiment, by arbitrarily setting the constant of the timer circuit 7 consisting of the resistor R4 and the capacitor C2 and the constant of the third voltage dividing circuit 8 consisting of the resistors Rs and Rg, the battery to be charged can be charged. It becomes possible to arbitrarily set the time t from when the peak point appearing in the terminal voltage of .

なお、本実施例では制御回路3の第3の分圧回路8とタ
イマー回路子を被充電電池の端子間に接続したが、他の
基準となる電圧端子間に接続してもよい。
In this embodiment, the third voltage dividing circuit 8 of the control circuit 3 and the timer circuit are connected between the terminals of the battery to be charged, but they may be connected between other reference voltage terminals.

発明の効果 以上のように本発明は被充電電池の両端子間に設けられ
る第1の分圧回路と、前記電池の充電電圧に対応した分
圧電圧を記憶し、この記憶電圧と分圧電圧を比較するこ
とにより、前記電池の充電特性上に顕われるビーク点分
検出するピーク点検出回路と、前記ピーク点検出後、前
記電池の充電電圧が前記ピーク電圧より低い状態を任意
の時間継続することにより急速充電を制御する制御回路
を備えるものであり、前記ピーク点検出から急速充電が
制御されるまでの時間を任意に設定することにより、前
記時間と正の相関関係にあるーΔV電圧を任意に設定す
ることができるので、従来と比べて−ΔV電圧の低い−
ΔV制御方式の充電装置が実現でき、実用的効果は犬な
るものがある。
Effects of the Invention As described above, the present invention includes a first voltage dividing circuit provided between both terminals of a battery to be charged, a divided voltage corresponding to the charging voltage of the battery, and a divided voltage corresponding to the charging voltage of the battery. a peak point detection circuit that detects a peak point that appears on the charging characteristics of the battery by comparing the peak points; and after detecting the peak point, the charging voltage of the battery continues to be lower than the peak voltage for an arbitrary period of time. The device is equipped with a control circuit that controls quick charging by controlling the rapid charging, and by arbitrarily setting the time from the detection of the peak point until the quick charging is controlled, the -ΔV voltage that has a positive correlation with the above-mentioned time can be set. Since it can be set arbitrarily, -ΔV voltage is lower than before.
A charging device using the ΔV control method can be realized, and the practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の充電装置の回路は第2図は
同充電装置による電池の充電特性図、第3図は従来の充
電装置の回路図、第4図は第2図に相当する従来の充電
特性図でちる。 1・・・・・・第1の分圧回路、2・・・・・・ピーク
点検出回路、3・・・・・・制御回路、6・・・・・−
第2の分圧回路、7・・・・・・タイマー回路、8・・
・・・・第3の分圧回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 /−ぺ回外 2− フィ2レグ−団路 3−−△Vイ央1Bや町ボ汀迂]ン各−4−一 昌の騨
j艷3 6− 覧jセ乙 45 3  図 第4図
Fig. 1 shows the circuit of the battery charging device according to the present invention, Fig. 2 shows the charging characteristics of the battery by the same charging device, Fig. 3 shows the circuit diagram of the conventional charging device, and Fig. 4 corresponds to Fig. 2. This is a diagram of the conventional charging characteristics. 1...First voltage dividing circuit, 2...Peak point detection circuit, 3...Control circuit, 6...-
Second voltage dividing circuit, 7... Timer circuit, 8...
...Third voltage divider circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure/-Pe supination 2-Fi 2 leg-Danro 3--△V Io 1B and town bo tein detour] N each - 4-1 Chang's door 3 6- View 45 3 Figure No. Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)被充電電池の両端子間に設けられる第1の分圧回
路と、前記電池電圧に対応した分圧電圧を記憶し、この
記憶電圧と前記分圧電圧を比較することにより前記電池
の充電電圧特性に現われるピーク点を検出するピーク点
検出回路と、前記ピーク点検出後、前記電池電圧が前記
ピーク点電圧より低い状態を任意時間継続したことによ
り急速充電を停止させる制御回路とを備えた電池の充電
装置。
(1) A first voltage dividing circuit provided between both terminals of the battery to be charged and a divided voltage corresponding to the battery voltage are memorized, and the stored voltage and the divided voltage are compared to A peak point detection circuit that detects a peak point appearing in charging voltage characteristics; and a control circuit that stops rapid charging when the battery voltage continues to be lower than the peak point voltage for an arbitrary period of time after detecting the peak point. battery charging device.
(2)ピーク点検出回路は、第1の分圧回路の分圧点と
演算増幅器の非反転入力端子とを接続し、前記演算増幅
器の出力端子と反転入力端子間にダイオードをそのアノ
ード側が前記演算増幅器の出力端子側になるように接続
し、前記演算増幅器の反転入力端子をコンデンサを介し
て接地し、前記演算増幅器の出力端子を第2の分圧回路
を介して接地した構成のものであって、前記演算増幅器
の出力電圧により電池の充電電圧特性に現われるピーク
点の検出を行う特許請求の範囲第1項記載の電池の充電
装置。
(2) The peak point detection circuit connects the voltage dividing point of the first voltage dividing circuit and the non-inverting input terminal of the operational amplifier, and connects a diode between the output terminal and the inverting input terminal of the operational amplifier so that its anode side is The inverting input terminal of the operational amplifier is connected to the output terminal side of the operational amplifier, the inverting input terminal of the operational amplifier is grounded via a capacitor, and the output terminal of the operational amplifier is grounded via a second voltage dividing circuit. 2. The battery charging device according to claim 1, wherein a peak point appearing in charging voltage characteristics of the battery is detected based on the output voltage of the operational amplifier.
(3)制御回路は、ピーク点検出回路における分圧回路
の分圧点とトランジスタのベースを接続し、前記トラン
ジスタのエミッタを接地し、前記電池の両端子間に抵抗
とコンデンサからなるタイマー回路を接続し、前記抵抗
とコンデンサの接続点に前記トランジスタのコレクタを
接続し、前記抵抗と前記コンデンサの接続点と演算増幅
器の一方の入力端子とを接続し、前記電池の両端子間に
接続された第3の分圧回路の分圧点と前記演算増幅器の
他方の入力端子を接続し、前記演算増幅器の出力端子と
充電電流を制御するスイッチとを接続した構成であって
、前記タイマー回路及び前記第3の分圧回路の定数選択
によって前記ピーク点検出から急速充電が停止するまで
の時間を任意に設定しうる特許請求の範囲第1項記載の
電池の充電装置。
(3) The control circuit connects the voltage dividing point of the voltage dividing circuit in the peak point detection circuit to the base of the transistor, grounds the emitter of the transistor, and connects a timer circuit consisting of a resistor and a capacitor between both terminals of the battery. the collector of the transistor is connected to the connection point of the resistor and the capacitor, the connection point of the resistor and the capacitor is connected to one input terminal of the operational amplifier, and the collector of the transistor is connected between both terminals of the battery. The voltage dividing point of the third voltage dividing circuit is connected to the other input terminal of the operational amplifier, and the output terminal of the operational amplifier is connected to a switch that controls the charging current, the timer circuit and the 2. The battery charging device according to claim 1, wherein the time from detection of the peak point until rapid charging is stopped can be arbitrarily set by selecting a constant of the third voltage dividing circuit.
JP61193290A 1986-08-19 1986-08-19 Battery charger Expired - Lifetime JPH0630552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193290A JPH0630552B2 (en) 1986-08-19 1986-08-19 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193290A JPH0630552B2 (en) 1986-08-19 1986-08-19 Battery charger

Publications (2)

Publication Number Publication Date
JPS6352644A true JPS6352644A (en) 1988-03-05
JPH0630552B2 JPH0630552B2 (en) 1994-04-20

Family

ID=16305455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193290A Expired - Lifetime JPH0630552B2 (en) 1986-08-19 1986-08-19 Battery charger

Country Status (1)

Country Link
JP (1) JPH0630552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253231A (en) * 1990-03-01 1991-11-12 Nippon Densan Corp Battery charger
JPH054736U (en) * 1991-06-28 1993-01-22 星和電機株式会社 Battery charger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144545A (en) * 1982-02-19 1983-08-27 三洋電機株式会社 Battery charging circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144545A (en) * 1982-02-19 1983-08-27 三洋電機株式会社 Battery charging circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253231A (en) * 1990-03-01 1991-11-12 Nippon Densan Corp Battery charger
JPH054736U (en) * 1991-06-28 1993-01-22 星和電機株式会社 Battery charger

Also Published As

Publication number Publication date
JPH0630552B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JPH0363302B2 (en)
JPS62155734A (en) Source circuit
JP3017128B2 (en) Charge control device
US5537024A (en) Circuit arrangement to detect a voltage
US6002239A (en) Charging current adapter circuit for cells or batteries
JP3761336B2 (en) Capacitor power storage device
JPS6352644A (en) Battery charger
JP2897094B2 (en) Charge / discharge device
JP2995142B2 (en) Series battery charger
JP2004274874A (en) Charge control circuit
JP3713828B2 (en) Charging method, charging device and charging control circuit
JP2610298B2 (en) Battery charging circuit
JPH0787675A (en) Charging device for battery set
JP3175839B2 (en) Charging device and charging method
JPH08214467A (en) Secondary battery charging circuit
JPH0727805Y2 (en) Sealed lead acid battery charger
JP2543063B2 (en) Charger
JPH053634A (en) Battery charging and discharging circuit
SU1534633A2 (en) Automatic device for charging storage battery
JPS6188732A (en) Charger
SU1554074A1 (en) Automatic device for charging storage battery
JP2622851B2 (en) Rechargeable battery charger
JPS6345816Y2 (en)
KR890004480Y1 (en) Low voltage security circuit
JP3082537B2 (en) Charger