JPS6346619B2 - - Google Patents

Info

Publication number
JPS6346619B2
JPS6346619B2 JP1936479A JP1936479A JPS6346619B2 JP S6346619 B2 JPS6346619 B2 JP S6346619B2 JP 1936479 A JP1936479 A JP 1936479A JP 1936479 A JP1936479 A JP 1936479A JP S6346619 B2 JPS6346619 B2 JP S6346619B2
Authority
JP
Japan
Prior art keywords
complex
fourier inverse
signal
outputs
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1936479A
Other languages
Japanese (ja)
Other versions
JPS55112054A (en
Inventor
Botaro Hirosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1936479A priority Critical patent/JPS55112054A/en
Priority to US06/121,943 priority patent/US4300229A/en
Priority to AU55634/80A priority patent/AU527333B2/en
Priority to CA000346089A priority patent/CA1134519A/en
Publication of JPS55112054A publication Critical patent/JPS55112054A/en
Publication of JPS6346619B2 publication Critical patent/JPS6346619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26534Pulse-shaped multi-carrier, i.e. not using rectangular window

Description

【発明の詳細な説明】 本発明は多チヤンネルパルス振幅変調(以下
PAMと略称する。)信号を直交多重することによ
り情報伝送効率を上昇せしめる直交多重信号の送
信装置に関わり、特に複数個の複素ベースバンド
PAM信号をデイジタル処理により直交振幅(以
下QAMと略称する。)変調して直交多重するデ
イジタル処理形送信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides multi-channel pulse amplitude modulation (hereinafter referred to as
It is abbreviated as PAM. ) Related to orthogonal multiplex signal transmission equipment that increases information transmission efficiency by orthogonally multiplexing signals, especially multiple complex baseband
The present invention relates to a digital processing type transmitter that performs quadrature amplitude (hereinafter abbreviated as QAM) modulation and orthogonal multiplexing of a PAM signal through digital processing.

この種の送信装置としては既に昭和52年特許願
第104609号明細書(特開昭54−37520号公報)に
より“直交多重信号のデイジタル処理形送信号装
置”が提案されている。しかしこの直交多重信号
のデイジタル処理形送信装置においては入力とし
てN/2点複素データしかないにも拘らずT/2秒
毎にN点逆フーリエ変換を行う必要があり、(た
だしTは各PAM信号のクロツク周期であり、
N/Tはサンプリング周波数である。)しかも各
所にT/2秒毎の切替制御部等を設ける必要があ
り、ハードウエア期模が複雑となる欠点を有して
いた。
As this type of transmitting device, a "digital processing type transmitting signal device for orthogonal multiplexed signals" has already been proposed in Patent Application No. 104609 of 1972 (Japanese Unexamined Patent Publication No. 54-37520). However, in this digital processing transmitter for orthogonal multiplexed signals, it is necessary to perform N-point inverse Fourier transform every T/2 seconds, even though there is only N/2-point complex data as input (where T is for each PAM is the clock period of the signal,
N/T is the sampling frequency. ) Furthermore, it is necessary to provide switching control units for every T/2 seconds at various locations, which has the disadvantage of complicating the hardware design.

本発明の目的は上記の欠点に鑑み、N/2点逆フ
ーリエ変換器の使用を可能にしT/秒毎の切替制
御部を極が減少させた直交多重信号のデイジタル
処理形送信装置を提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks, it is an object of the present invention to provide a digital processing type transmitting device for orthogonal multiplexed signals, which allows the use of an N/2-point inverse Fourier transformer and reduces the number of switching control units every T/second. It is something.

以下図面を用いて本発明を説明する。 The present invention will be explained below using the drawings.

第1図は直交多重QAM信号の送受信系を表わ
すブロツク図であり、10,11,……,12L-1
クロツク周期T秒で互いに同期した2L個のPAM
信号が入力される入力端、20,21,……,2L-
はL個のT/2秒遅延回路、30,31,……,
2L-1は2L個の送信ベースバンドフイルタ40
1,……,42L-1は2L個の変調器、5は各変調
の出力を全て加算し伝送路に送出する多重化回
路、6は伝送路、70,71,……,72L-1は2L個
の復調器、80,81,……,82L-1は2L個の受信
ベースバンドフイルタ、90,91……,9L-1
L個のT/2秒遅延回路、100,101,……,
10L-1はL個のT秒遅延回路、110,111
……,112L-1は2L個のPAM信号が出力される
出力端である。
Figure 1 is a block diagram showing the transmission/reception system of orthogonal multiplexed QAM signals, where 1 0 , 1 1 , ..., 1 2L-1 are 2L PAMs synchronized with each other with a clock period of T seconds.
Input terminals where signals are input, 2 0 , 2 1 , ..., 2 L-
1 is L T/2 second delay circuits, 3 0 , 3 1 , ...,
3 2L-1 has 2L transmit baseband filters 4 0 ,
4 1 , ..., 4 2L-1 is a 2L modulator, 5 is a multiplexing circuit that adds all the outputs of each modulation and sends it to the transmission path, 6 is a transmission path, 7 0 , 7 1 , ..., 7 2L-1 is 2L demodulators, 8 0 , 8 1 , ..., 8 2L-1 is 2L reception baseband filters, 9 0 , 9 1 ..., 9 L-1 is L T /2 second delay circuit, 10 0 , 10 1 , ...,
10 L-1 are L T-second delay circuits, 11 0 , 11 1 ,
..., 11 2L-1 is an output terminal from which 2L PAM signals are output.

第1図にて第R番目の入力端(Rは0R<L
とする)1Rおよび第(L+R)番目の入力端
1L+Rに各々第R番目のPAM信号および第(L+
R)番目のPAM信号が入力されるものとする。
第R番目のPAM信号は2RにてT/2秒の遅延を
受けた後送信ベースバンドフイルタ3Rにて帯域
制限および波形成形されて変調器4Rに至る。
In Figure 1, the R-th input terminal (R is 0R<L
)1 R and (L+R)th input terminal
1 L+R respectively the Rth PAM signal and the (L+
It is assumed that the R)th PAM signal is input.
The R-th PAM signal is delayed by T/2 seconds at 2R , is band-limited and waveform-shaped at transmission baseband filter 3R , and then reaches modulator 4R .

一方第(L+R)番目のPAM信号はそのまま
送信ベースバンドフイルタ3L+Rにて帯域制限お
よび波形成形されて変調器4L+Rに至る。変調器
Rおよび4L+Rにおいては周波数fRの同相キヤリ
アcos2πfRtおよび直交キヤリアsin2πfRtが変調
キヤリアとして入力されれ両変調出力が多重化回
路5で加算されることにより中心周波数fRなるR
番目のQAM信号が形成される。
On the other hand, the (L+R)th PAM signal is band-limited and waveform-shaped by the transmission baseband filter 3 L+R as it is, and then reaches the modulator 4 L+R . In the modulators 4 R and 4 L+R , the in-phase carrier cos2πf R t of frequency f R and the orthogonal carrier sin2πf R t of frequency f R are input as modulation carriers, and both modulation outputs are added in the multiplexing circuit 5 to obtain the center frequency f R becomes R
The second QAM signal is formed.

ここで各変調器にて使用されるキヤリアの周波
数は1RL−1なるRに対しfR−fR-1=T-1
と設定されており、変調器40,41,……,4L-
におけるキヤリアは余弦波と正弦波とが交互に
配置されている。
Here, the frequency of the carrier used in each modulator is f R - f R-1 = T -1 for R, which is 1RL-1.
The modulators 4 0 , 4 1 , ..., 4 L-
The carrier in No. 1 has cosine waves and sine waves arranged alternately.

このような送信側の変調操作により多重化回路
5から直交多重されたQAM信号が出力されるこ
とは既によく知られている。多重化回路5から出
力された直交多重QAM信号は伝送路6を介して
受信側に伝送される。受信側では前記送信側と全
く逆の変換が行われ出力端110,111,……,
112L-1に対応する各PAM信号が得られる。こ
こで送信ベースバンドフイルタ30,31,……,
2L-1および受信ベースバンドフイルタ80,81
……,82L-1は全て同一周波数応答G(ω)でそ
の3dB低下帯域(片側実効帯域と称す)1/2T
ヘルツの低域通過フイルタであるとし、G2(ω)
が1/2Tのヘルツで6dB低下する通常のナイキ
ストフイルタであるとすると受信側の出力端11
,111,……,112L-1には適当なサンプリン
グ時点で符号間干渉もなくチヤンネル間干渉もな
いPAM信号が得られることが知られている。
It is already well known that an orthogonally multiplexed QAM signal is output from the multiplexing circuit 5 by such a modulation operation on the transmitting side. The orthogonal multiplexed QAM signal output from the multiplexing circuit 5 is transmitted to the receiving side via the transmission line 6. On the receiving side, a conversion completely opposite to that on the transmitting side is performed, and the output terminals 11 0 , 11 1 , . . .
11 Each PAM signal corresponding to 2L-1 is obtained. Here, the transmission baseband filters 3 0 , 3 1 , ...,
3 2L-1 and reception baseband filters 8 0 , 8 1 ,
......, 8 2L-1 all have the same frequency response G (ω) and its 3 dB lower band (referred to as one-sided effective band) 1/2T
Assume that it is a Hertzian low-pass filter, and G 2 (ω)
is a normal Nyquist filter that reduces by 6 dB at 1/2 T hertz, then the output terminal 11 on the receiving side
It is known that a PAM signal without intersymbol interference or interchannel interference can be obtained at an appropriate sampling point for 0 , 11 1 , . . . , 11 2L-1 .

第1図の入力端10,11,……,12L-1から多
重化回路5の出力までの送信部の信号処理操作を
全てデイジタル処理にて行なうことを考える。即
ち、複数個のPAM信号を各々サンプリング周波
数1/Tヘルツのサンプル値系列とし、多重化回
路5の出力に対応するサンプリング周波数fsヘル
ツのサンプル値系列を生成するものとする。この
サンプリング周波数fsは多重化後の信号スペクト
ルにおいて折返しによる干渉を生じないよう一定
程度高い周波数に設定しておかねばならない。
Let us consider that the signal processing operations of the transmitting section from the input terminals 1 0 , 1 1 , . . . , 1 2L-1 in FIG. 1 to the output of the multiplexing circuit 5 are all performed by digital processing. That is, each of the plurality of PAM signals is made into a sample value series with a sampling frequency of 1/T hertz, and a sample value series with a sampling frequency f s hertz corresponding to the output of the multiplexing circuit 5 is generated. This sampling frequency f s must be set to a certain high frequency so as not to cause interference due to aliasing in the signal spectrum after multiplexing.

更に後のデイジタル処理を容易にするためにfs
は1/Tの整数倍に選ぶ必要がある。また、第1
図の20,21,……,2L-1等におけるT/2秒
遅延差を付与するにはfsは1/Tの偶数倍である
事が必要である。
f s to further facilitate subsequent digital processing.
must be selected as an integral multiple of 1/T. Also, the first
In order to provide a delay difference of T/2 seconds at 2 0 , 2 1 , . . . , 2 L-1, etc. in the figure, f s needs to be an even multiple of 1/T.

ここでfsとして1/TのN倍の周波数を選んだ
とする。但しNは偶数であり、入力PAMチヤネ
ル数2Lより大であるとする。いま入力端1R
入力されるT秒毎のPAM信号サンプル値列をXR
(ZN)とする。但し、z=ej2f/fsである。
Here, it is assumed that a frequency N times 1/T is selected as f s . However, it is assumed that N is an even number and larger than the number of input PAM channels, 2L. The PAM signal sample value sequence every T seconds that is now input to input terminal 1 R is
( ZN ). However, z=e j2f/fs .

更に送信ベースバンドフイルタをz変換したも
のをG(z)と表わせば0RL−1なるRに
対し送信ベースバンドフイルタ3Rの出力UR(z)
および送信ベースバンドフイルタ3R+Lの出力VR
(z)は各々次式で表わされる。
Furthermore, if the transmitting baseband filter is z-transformed and expressed as G(z), the output of the transmitting baseband filter 3 R is U R (z) for R which is 0RL-1.
and the output of transmitting baseband filter 3 R+L V R
(z) are each expressed by the following equations.

UR(Z)=XR(ZN)G(Z)ZN/2 ……(1) VR(Z)=XR+L(ZN)G(Z) ……(2) (1)、(2)式で与えられるUR(Z)、VR(Z)はRが
偶数ならば各々cos2πfRtおよびsin2πfRtにより
変調された後加算されR番目のQAM信号を形成
し、Rが奇数ならば各々sin2πfRtおよびcos2πfR
tにより変調された後加算されR番目のQAM信
号を形成する。
U R (Z)=X R (Z N )G(Z)Z N/2 ……(1) V R (Z)=X R+L (Z N )G(Z) ……(2) (1 ), U R (Z) and V R (Z) given by equation (2) are modulated by cos2πf R t and sin2πf R t, respectively, if R is an even number, and then added to form the R-th QAM signal, If R is an odd number, sin2πf R t and cos2πf R
t and then summed to form the Rth QAM signal.

従つて送信出力のサンプル値系列Y(Z)は次
の如く表わされる。
Therefore, the sample value series Y(Z) of the transmitted output is expressed as follows.

Y(Z)= 〓 〓R=0,2ゥ Y(Z)= 〓 〓 R=0,2u

Claims (1)

【特許請求の範囲】 1 クロツク周期T秒で互いに同期がとれた2L
個(ただしLは正整数)のベースバンドデータに
て周波数f0、f1、……、fL-1なるL個の複素キヤ
リアを直交変調し、その出力を直交多重する信号
処理過程をN/Tヘルツ(ただしNは偶数であ
り、N≧2L)のサンプリング速度にて行なう際
に、前記Tと最小キヤリヤ周波数f0との積f0Tの
少数部であるパラメータγが0.5に設定された直
交多重信号デイジタル処理形送信装置において、
前期2L個のベースバンドデータに選択的にT/
2秒遅延を付加し複素化を施して複素信号群a1
a2,……,aLを出力する前処理回路と、該複素信
号群a1,a2,……,aLおよび(N/2−L)個の
ダミー信号を入力としT/2秒毎にN/2点オフ
セツトフーリエ逆変換を行うオフセツトフーリエ
逆変換器と、該オフセツトフーリエ逆変換器に接
続され実効帯域巾が1/Tヘルツで線形位相勾配
のみが段階的に異なるN/2個の複素帯域フイル
タで構成されるポリフエーズ回路とより成り、該
ポリフエーズ回路のN/2個の実部出力を時分割
多重する事により直交多重信号を得る事を特徴と
する直交多重信号のデイジタル処理形送信装置。 2 クロツク周期T秒で互いに同期がとれた2L
個(ただしLは正整数)のベースバンドデータに
てL個の複素キヤリアを直交変調し、その出力を
直交多重する信号処理過程をN/Tヘルツ(ただ
しNは偶数であり、N≧2Lである。)のサンプリ
ング速度にてデイジタル処理する送信装置におい
て、前記2L個のベースバンドデータに選択的に
T/2秒遅延を付加し複素化を施し二組の複素信
号群a1,a2,……,aLおよびb1,b2,……,bL
出力する前処理回路と、該複素信号群a1,a2,…
…,aLおよび(N/2−L)個のダミー信号を入
力としT/2秒毎にN/2点オフセツトフーリエ
逆変換を行う第一のオフセツトフーリエ逆変換器
と、前記複素信号群b1,b2,……,bLおよび
(N/2−L)個のダミー信号を入力とし前記第
一のオフセツトフーリエ逆変換器と同一構成の第
二のオフセツトフーリエ逆変換器と、前記第一の
オフセツトフーリエ逆変換器に接続され実効帯域
幅が1/Tヘルツで線形位相勾配のみが段階的に
異なるN/2個の複素帯域フイルタで構成される
第一のポリフエーズ回路と、前記第二のオフセツ
トフーリエ逆変換器に接続され前記第一のポリフ
エーズ回路と同一構成の第二のポリフエーズ回路
と、前記第一のポリフエーズ回路N/2個の実部
出力を実数部とし前記第二のポリフエーズ回路の
N/2個の虚部出力を虚数部とする事により得ら
れるN/2個の複素信号に対し所望の周波数オフ
セツトを施した後出力の実数部のみをとり出す後
処理回路とを含み、該後処理回路の出力として得
られるN/2個の実信号を時分割多重することに
より直交多重信号を得る事を特徴とする直交多重
信号のデイジタル処理形送信装置。
[Claims] 1. 2Ls synchronized with each other with a clock cycle of T seconds
A signal processing process in which L complex carriers with frequencies f 0 , f 1 , ..., f L-1 are orthogonally modulated using baseband data (where L is a positive integer) and the outputs are orthogonally multiplexed is N. /T Hertz (where N is an even number and N≧2L), the parameter γ, which is the fractional part of the product f 0 T of the above T and the minimum carrier frequency f 0 , is set to 0.5. In the orthogonal multiplexed signal digital processing transmitter,
Selectively T/ to the first 2L baseband data
A 2-second delay is added and complexization is performed to obtain the complex signal group a 1 ,
A preprocessing circuit that outputs a 2 , ..., a L and the complex signal group a 1 , a 2 , ..., a L and (N/2-L) dummy signals are input, and the processing time is T/2 seconds. An offset Fourier inverse transformer that performs an N/2 point offset Fourier inverse transform for each N/2 point offset Fourier inverse transformer, and an N An orthogonal multiplexed signal comprising a polyphase circuit composed of /2 complex band filters, and obtaining an orthogonal multiplexed signal by time-division multiplexing N/2 real part outputs of the polyphase circuit. Digital processing type transmitter. 2 2L synchronized with each other with a clock period of T seconds
The signal processing process that orthogonally modulates L complex carriers using baseband data of 30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 form 2000 3000 30000 form orthogonal form, orthogonal multiplexed form, using baseband data of In a transmitting device that performs digital processing at a sampling rate of ..., a L and a preprocessing circuit that outputs b 1 , b 2 , ..., b L , and the complex signal group a 1 , a 2 , ...
..., a L and (N/2-L) dummy signals as input and performs N/2-point offset Fourier inverse transform every T/2 seconds, and the complex signal a second offset Fourier inverse transformer having the same configuration as the first offset Fourier inverse transformer, which inputs groups b 1 , b 2 , ..., b L and (N/2-L) dummy signals; and a first polyphase circuit connected to the first offset Fourier inverse transformer and comprising N/2 complex bandpass filters having an effective bandwidth of 1/T Hertz and differing only in linear phase gradient in steps. , a second polyphase circuit connected to the second offset Fourier inverse transformer and having the same configuration as the first polyphase circuit, and a real part output of N/2 of the first polyphase circuit as the real part. After applying a desired frequency offset to the N/2 complex signals obtained by using the N/2 imaginary part outputs of the second polyphase circuit as the imaginary part, only the real part of the output is extracted. 1. A digital processing type transmission device for orthogonal multiplexed signals, comprising a processing circuit, and obtaining an orthogonal multiplexed signal by time-division multiplexing N/2 real signals obtained as outputs of the post-processing circuit.
JP1936479A 1979-02-21 1979-02-21 Digital process type transmitter for orthogonal multiple signal Granted JPS55112054A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1936479A JPS55112054A (en) 1979-02-21 1979-02-21 Digital process type transmitter for orthogonal multiple signal
US06/121,943 US4300229A (en) 1979-02-21 1980-02-15 Transmitter and receiver for an othogonally multiplexed QAM signal of a sampling rate N times that of PAM signals, comprising an N/2-point offset fourier transform processor
AU55634/80A AU527333B2 (en) 1979-02-21 1980-02-18 Multi pam signals to ortho multiplex qam converter
CA000346089A CA1134519A (en) 1979-02-21 1980-02-20 Transmitter and receiver for an orthogonally multiplexed qam signal of a sampling rate n times that of pam signals, comprising an n/2-point offset fourier transform processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1936479A JPS55112054A (en) 1979-02-21 1979-02-21 Digital process type transmitter for orthogonal multiple signal

Publications (2)

Publication Number Publication Date
JPS55112054A JPS55112054A (en) 1980-08-29
JPS6346619B2 true JPS6346619B2 (en) 1988-09-16

Family

ID=11997294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1936479A Granted JPS55112054A (en) 1979-02-21 1979-02-21 Digital process type transmitter for orthogonal multiple signal

Country Status (1)

Country Link
JP (1) JPS55112054A (en)

Also Published As

Publication number Publication date
JPS55112054A (en) 1980-08-29

Similar Documents

Publication Publication Date Title
US3678204A (en) Signal processing and transmission by means of walsh functions
US3488445A (en) Orthogonal frequency multiplex data transmission system
AU725718B2 (en) Pulse shaping for multicarrier modulation
US3511936A (en) Multiply orthogonal system for transmitting data signals through frequency overlapping channels
US4726041A (en) Digital filter switch for data receiver
US4785447A (en) FDM demultiplexer using oversampled digital filters
US3573380A (en) Single-sideband modulation system
JPH06252878A (en) Transmission method of data group, transmitter and receiver based thereon
JPS5821454B2 (en) FDM demodulator
US7394848B2 (en) Method and apparatus for time equalization
US3676598A (en) Frequency division multiplex single-sideband modulation system
CN1050488C (en) Apparatus for time division multiplexed processing of frequency division multiplexed signals
US4013842A (en) Method and apparatus for interfacing digital and analog carrier systems
US4312062A (en) System for digitally converting baseband channel signals into a frequency-division multiplex signal and vice versa
JPS59207768A (en) Digital type dc/ac amplitude modulating method
JPS6346619B2 (en)
EP0668679A2 (en) OFDM system
JPH084277B2 (en) Digital communication system
JPS6229939B2 (en)
JPS6346620B2 (en)
JPS6154296B2 (en)
JPS63200635A (en) Transmultiplexer
NO165980B (en) PROCEDURE FOR TRANSFORMING RESPECTIVE PROCESSING OF ELECTRONIC MULTIPLE SIGNALS, AND DEVICE FOR PROCESSING SUCH SIGNALS.
JPS6326575B2 (en)
JP4174905B2 (en) Orthogonal frequency division multiplex modulation method and orthogonal frequency division multiplex modulation device, and orthogonal frequency division multiplex demodulation method and orthogonal frequency division multiplex demodulation device