JPS6343190B2 - - Google Patents

Info

Publication number
JPS6343190B2
JPS6343190B2 JP59009207A JP920784A JPS6343190B2 JP S6343190 B2 JPS6343190 B2 JP S6343190B2 JP 59009207 A JP59009207 A JP 59009207A JP 920784 A JP920784 A JP 920784A JP S6343190 B2 JPS6343190 B2 JP S6343190B2
Authority
JP
Japan
Prior art keywords
carbon
graphite
casting
refractory layer
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59009207A
Other languages
Japanese (ja)
Other versions
JPS60152362A (en
Inventor
Masanao Kondo
Tetsuo Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKECHI SERAMITSUKUSU KK
Original Assignee
AKECHI SERAMITSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKECHI SERAMITSUKUSU KK filed Critical AKECHI SERAMITSUKUSU KK
Priority to JP920784A priority Critical patent/JPS60152362A/en
Publication of JPS60152362A publication Critical patent/JPS60152362A/en
Publication of JPS6343190B2 publication Critical patent/JPS6343190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続鋳造法において使用される鋳造用
ノズルに関するものであり、さらに詳しくは該鋳
造用ノズルの構造の改良に関するものである。 連続鋳造法において使用される鋳造用ノズルと
しては親鍋からタンデイツシユ間に使用されるロ
ングノズル、タンデイツシユで使用される上部ノ
ズル、下部ノズル、スライデイングノズル、タン
デイツシユからモールド間で使用される浸漬ノズ
ル等がある。これら鋳造用ノズルのうち主として
ロングノズル、浸漬ノズルは比較的大型かつ長い
形状のものが使用され、温度勾配もでき易く熱衝
撃条件も厳しいため、高熱伝導性を有し、溶鋼に
濡れ難い性質を有する天然黒鉛を含んだ黒鉛質耐
火物であるアルミナ−グラフアイト質、アルミナ
−シリカ−グラフアイト質等のスポーリング抵抗
が高く、高耐蝕性を有する鋳造用ノズルが主とし
て使用されている。このような黒鉛を含む耐火物
の結合材としては衆知の如く粘土のようなセラミ
ツクボンドを使用する場合もあれば、タール、ピ
ツチ或いは合成樹脂等を利用したカーボンボンド
を使用する場合も知られている。しかし最近は黒
鉛とのなじみの他、耐スポーリング抵抗がセラミ
ツクボンドより優れていることもあり、結合材と
してカーボンボンドが使用されるようになつてき
ており、特に耐スポーリング性を要求されるロン
グノズル、浸漬ノズルの場合はほとんどがこのカ
ーボンボンドの黒鉛質耐火物、即ち含炭素質母材
が使用されている。図面第1図は従来公知のロン
グノズルの場合、同第2図は同上浸漬ノズルの場
合を夫々示しており、何れも溶鋼通過用内孔2
a,2bを有する含炭素質母材1a,1bに構成
されており、第2図の浸漬ノズルの場合は外周面
の一部に適宜の厚みのスラグライン用耐火物が一
体的に設けられている。 しかしながら最近の連続鋳造の多様化により、
カーボンの含有量が30ppm以下というような非常
にカーボンの低い極低炭素鋼が鋳造されるように
なつてきた。こうした極低炭素鋼を鋳造する場
合、当然のことながら耐火物からのほんの微量の
カーボン混入も目標のカーボン含有量30ppm以下
に押えることの障害となつてきている。 従つてカーボンボンドの黒鉛質耐火物はもとよ
り、セラミツクボンドの黒鉛質耐火物も同様、母
体の溶損、カーボンの溶出、脱炭等により溶鋼中
へのカーボンの混入源となり、含炭素質でない鋳
造用ノズルが要求されるようになつてきた。 従来、含炭素質でない耐火物として使用されて
いるものとしては、溶融石英質の耐火物がある
が、これは公知の如く鋼中のMnとSiO2が低溶融
物であるマンガン珪酸塩を形成し、溶損され易い
ために多連鋳に適していない欠点を有しており、
その改良として溶融石英にジルコンまたはジルコ
ニヤ等の高耐蝕性を有する耐火物原料を添加した
鋳造用ノズルが開発されているが、これらの耐火
材料も根本的に耐スポーリング抵抗等の問題で完
全なものとは言い難く、改良が要求されている。 本願発明は上記従来の欠点を改善し、特に極低
炭素鋼を鋳込む場合にカーボンの溶鋼中への混入
を防止し、初期の目標である極低炭素の鋼を多連
続鋳込むことができるようにしたものである。以
下図面第3,4図の実施例について詳しく説明す
る。 本願発明は基本的には母体に高耐蝕性、高耐ス
ポーリング性を有する黒鉛質耐火物を使用し、溶
鋼と接触する部分、即ち溶鋼の通過用内孔2から
外周方向に対し少くとも2mmの厚み、全くカーボ
ンを含まない耐火物層4を形成するものである。
該カーボンを含まない耐火物層4は、公知の溶融
石英質、その改良品等でも良いが、できる限り溶
鋼に対し高い耐蝕性を有する材質から選択される
のが良く、BNを2〜30重量パーセント含有する
ものが最も良い。その場合、結合材としては、カ
ーボンを含まない耐火物層4ということからして
カーボンボンド以外の結合材が選択される。そし
てカーボンを含まない耐火物層4以外の外周方向
の耐火物層は高耐蝕性、高耐スポーリング性を有
する従来公知のカーボンボンドであるアルミナ−
グラフアイト質(C20〜40%、Al2O340〜60%、
SiO210〜30%の組成)等が選択されて黒鉛質耐
火物層1となつている。 この場合、黒鉛質耐火物層1とカーボンを含ま
ない耐火物層4との熱膨脹率或いは結合材の違い
により両耐火物層の接触面は、製造時、使用時の
熱履歴により歪みを生じ、最終的には全体的に割
れ等を発生する場合が生じ易い欠点を有する。従
つてその歪み発生の欠点を解消するために、両者
間に分離層5を介設してその接触面が80%以上分
離されていることを特徴とするものである。即ち
80%以上分離することにより熱膨脹率或いは結合
材の違いから生じる製造時、使用時の熱履歴によ
る亀裂の発生を防止でき、それ以下だと亀裂の発
生を防止できない。この分離層5は焼成時容易に
焼失する紙、ポリプロピレン、ナイロン特を成形
時にセツトすることにより製造される。3はスラ
ブライン用耐火物である。 なお本発明による鋳造用ノズルは特に極低炭素
鋼用に有効であるが、この鋼種に限定されるもの
ではなく、全ての鋼種に適用されるものであるこ
とはいうまでもない。 次に本発明による実施例について以下に説明す
る。
The present invention relates to a casting nozzle used in a continuous casting method, and more particularly to an improvement in the structure of the casting nozzle. Casting nozzles used in the continuous casting method include long nozzles used between the parent pot and the tundish, upper nozzles, lower nozzles, sliding nozzles used in the tundish, and immersion nozzles used between the tundish and the mold. There is. Among these casting nozzles, long nozzles and immersion nozzles are mainly used with relatively large and long shapes, and because they are prone to temperature gradients and have severe thermal shock conditions, they have high thermal conductivity and are difficult to wet with molten steel. Casting nozzles that have high spalling resistance and high corrosion resistance, such as alumina-graphite and alumina-silica-graphite, which are graphite refractories containing natural graphite, are mainly used. As a binding material for such graphite-containing refractories, it is well known that ceramic bond such as clay is sometimes used, and carbon bond using tar, pitch, synthetic resin, etc. is also known. There is. Recently, however, carbon bond has come to be used as a bonding material, not only because it is compatible with graphite but also because its anti-spalling resistance is superior to ceramic bond. In the case of long nozzles and immersion nozzles, this carbon-bonded graphite refractory, that is, a carbon-containing base material, is used in most cases. Figure 1 shows the case of a conventionally known long nozzle, and Figure 2 shows the case of the immersion nozzle.
In the case of the immersion nozzle shown in Fig. 2, a slag line refractory of an appropriate thickness is integrally provided on a part of the outer peripheral surface. There is. However, with the recent diversification of continuous casting,
Ultra-low carbon steels with extremely low carbon content, such as less than 30 ppm, are now being cast. When casting such ultra-low carbon steel, even the slightest amount of carbon mixed in from the refractories is becoming an obstacle to keeping the carbon content below the target of 30 ppm. Therefore, not only carbon bonded graphite refractories but also ceramic bonded graphite refractories become a source of carbon contamination in molten steel due to erosion of the matrix, elution of carbon, decarburization, etc., and non-carbon-containing castings. There is a growing demand for nozzles for this purpose. Conventionally, fused silica refractories have been used as non-carbonaceous refractories, but as is well known, Mn and SiO 2 in steel form manganese silicate, which is a low-melting substance. However, it has the disadvantage that it is not suitable for multiple casting because it is easily damaged by melting.
As an improvement, casting nozzles have been developed in which fused silica is added with highly corrosion-resistant refractory raw materials such as zircon or zirconia, but these refractory materials also have fundamental problems such as spalling resistance and cannot be fully manufactured. This is difficult to say, and improvements are required. The present invention improves the above-mentioned conventional drawbacks, prevents carbon from entering molten steel, especially when casting ultra-low carbon steel, and enables multiple continuous casting of ultra-low carbon steel, which was the initial goal. This is how it was done. The embodiments shown in FIGS. 3 and 4 will be described in detail below. Basically, the present invention uses a graphite refractory having high corrosion resistance and high spalling resistance for the matrix, and the part that comes into contact with molten steel, that is, at least 2 mm from the inner hole 2 for the passage of molten steel in the outer circumferential direction. , which forms a refractory layer 4 containing no carbon at all.
The carbon-free refractory layer 4 may be made of known fused silica or improved products thereof, but it is preferable to select a material that has high corrosion resistance against molten steel as much as possible. % is best. In that case, since the refractory layer 4 does not contain carbon, a binding material other than carbon bond is selected as the binding material. The refractory layers in the outer circumferential direction other than the carbon-free refractory layer 4 are made of alumina, which is a conventionally known carbon bond having high corrosion resistance and high spalling resistance.
Graphite (C20 ~ 40%, Al2O3 40~60%,
A composition of 10 to 30% SiO 2 ) is selected to form the graphite refractory layer 1 . In this case, due to the difference in coefficient of thermal expansion or bonding material between the graphite refractory layer 1 and the carbon-free refractory layer 4, the contact surface between the two refractory layers is distorted due to thermal history during manufacturing and use. It has the disadvantage that it is likely that cracks will eventually occur as a whole. Therefore, in order to eliminate the disadvantage of distortion generation, a separation layer 5 is interposed between the two, so that the contact surfaces are separated by 80% or more. That is,
By separating by 80% or more, it is possible to prevent the occurrence of cracks due to thermal history during manufacturing and use due to differences in thermal expansion coefficient or binding materials, and if it is less than that, cracks cannot be prevented. This separation layer 5 is manufactured by setting paper, polypropylene, or nylon material, which is easily burnt away during baking, at the time of molding. 3 is a refractory for slab lines. Although the casting nozzle according to the present invention is particularly effective for ultra-low carbon steel, it goes without saying that it is not limited to this type of steel and can be applied to all types of steel. Next, embodiments according to the present invention will be described below.

【表】【table】

【表】 上記の如く従来公知の含炭素質耐火物層が溶鋼
と直接接触する鋳造用ノズルに対し、本発明によ
る2層構造の鋳造用ノズルでは母体(外層)を高
耐蝕性、高耐スポーリング性を有する黒鉛質耐火
物層としてあるから、溶損に強いもので多連鋳造
に適するものである。また特にカーボン含有量
30ppm以下の低炭素鋼を鋳込む場合にカーボンC
の溶鋼中への混入が防止されて非常に少なく、初
期の目標である極低炭素鋼を有効に多連鋳造でき
る優れた効果がある。
[Table] In contrast to the conventional casting nozzle in which the carbonaceous refractory layer is in direct contact with molten steel, the two-layer structure casting nozzle according to the present invention has a matrix (outer layer) with high corrosion resistance and high corrosion resistance. Since it is a graphite refractory layer with poling properties, it is resistant to melting loss and is suitable for multiple casting. Also especially the carbon content
Carbon C when casting low carbon steel of 30ppm or less
This has the excellent effect of preventing the mixing of carbon into the molten steel and making it possible to effectively perform multiple continuous casting of ultra-low carbon steel, which was the initial goal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来公知のロングノズルの従断面図、
第2図は同上浸漬ノズルの縦断面図、第3図は本
発明によるロングノズルの縦断面図、第4図は同
上浸漬ノズルの縦断面図である。 1,1a,1b……含炭素質母材、2,2a,
2b……内孔、3,3a……スラブライン用耐火
物、4……カーボンを含まない耐火物層、5……
分離層。
Figure 1 is a cross-sectional view of a conventionally known long nozzle.
FIG. 2 is a longitudinal sectional view of the immersed nozzle, FIG. 3 is a longitudinal sectional view of the long nozzle according to the present invention, and FIG. 4 is a longitudinal sectional view of the immersed nozzle. 1, 1a, 1b...carbonaceous base material, 2, 2a,
2b... Inner hole, 3, 3a... Refractory for slab line, 4... Refractory layer not containing carbon, 5...
Separation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳造用ノズルの構造において溶鋼通過用内孔
から外周方向に対し少なくとも厚み2mmをカーボ
ンを含まない耐火物層とし、それ以外の外周方向
の耐火物層が高耐蝕性、高耐スポーリング性を有
する黒鉛質耐火物層で形成された2層構造とな
し、カーボンを含まない耐火物層と黒鉛質耐火物
層との接触面の少なくとも80%以上が分離されて
いることを特徴とする鋳造用ノズル。
1. In the structure of the casting nozzle, from the inner hole for passing molten steel to the outer circumferential direction, at least 2 mm thick is made of a refractory layer that does not contain carbon, and the other refractory layers in the outer circumferential direction have high corrosion resistance and high spalling resistance. For casting, characterized in that it has a two-layer structure formed of a graphite refractory layer with carbon-free refractory layer and graphite refractory layer, and at least 80% or more of the contact surface between the carbon-free refractory layer and the graphite refractory layer is separated. nozzle.
JP920784A 1984-01-19 1984-01-19 Nozzle for casting Granted JPS60152362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP920784A JPS60152362A (en) 1984-01-19 1984-01-19 Nozzle for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP920784A JPS60152362A (en) 1984-01-19 1984-01-19 Nozzle for casting

Publications (2)

Publication Number Publication Date
JPS60152362A JPS60152362A (en) 1985-08-10
JPS6343190B2 true JPS6343190B2 (en) 1988-08-29

Family

ID=11714022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP920784A Granted JPS60152362A (en) 1984-01-19 1984-01-19 Nozzle for casting

Country Status (1)

Country Link
JP (1) JPS60152362A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153160A (en) * 1985-12-24 1987-07-08 黒崎窯業株式会社 Refractory composition for continous casting
KR20060032239A (en) * 2004-10-11 2006-04-17 주식회사 포스코 Dual structure submerged nozzle
JP5470585B2 (en) * 2010-04-27 2014-04-16 株式会社神戸製鋼所 How to use injection pipes in continuous casting.
CN109732073B (en) * 2019-01-24 2021-04-30 北京利尔高温材料股份有限公司 Gradient composite tundish nozzle for continuous casting and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927727A (en) * 1972-06-29 1974-03-12
JPS56139260A (en) * 1980-03-31 1981-10-30 Shinagawa Refract Co Ltd Nozzle for casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927727A (en) * 1972-06-29 1974-03-12
JPS56139260A (en) * 1980-03-31 1981-10-30 Shinagawa Refract Co Ltd Nozzle for casting

Also Published As

Publication number Publication date
JPS60152362A (en) 1985-08-10

Similar Documents

Publication Publication Date Title
US4210264A (en) Immersion nozzle for continuous casting of molten steel
US4870037A (en) Prevention of Al2 O3 formation in pouring nozzles and the like
JPS6343190B2 (en)
JPH0212664B2 (en)
CA1168019A (en) Immersion nozzle for continuous casting of molten steel
US6475426B1 (en) Resin-bonded liner
JP4533051B2 (en) Continuous casting nozzle having an inner hole
JPH0857601A (en) Nozzle for continuous casting
GB2080505A (en) Composite Refractory Slabs for Lining Tundishes
JP2627473B2 (en) Long stopper for continuous casting
JPH0338027B2 (en)
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP4081453B2 (en) Immersion nozzle for continuous casting
JPH07115912B2 (en) Casting nozzle
JPH0526590B2 (en)
JPS6115777B2 (en)
JPH0718467Y2 (en) Immersion nozzle for continuous casting
JP2524510Y2 (en) Long nozzle for continuous casting
JPS6153150A (en) Nozzle for molten steel casting
JPH0751818A (en) Carbon containing nozzle for casting
AU751983B2 (en) A continuous casting nozzle for molten steel
JPS58120569A (en) Nozzle for casting
JPS62263915A (en) Gas blowing lance for treating molten metal
JPH0628779B2 (en) Immersion nozzle for continuous casting
JPS6361106B2 (en)