JPS6341251B2 - - Google Patents

Info

Publication number
JPS6341251B2
JPS6341251B2 JP21329883A JP21329883A JPS6341251B2 JP S6341251 B2 JPS6341251 B2 JP S6341251B2 JP 21329883 A JP21329883 A JP 21329883A JP 21329883 A JP21329883 A JP 21329883A JP S6341251 B2 JPS6341251 B2 JP S6341251B2
Authority
JP
Japan
Prior art keywords
signal
phase
phase error
satellite
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21329883A
Other languages
Japanese (ja)
Other versions
JPS60106235A (en
Inventor
Masahiro Morikura
Takayoshi Maki
Tatsuro Shomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21329883A priority Critical patent/JPS60106235A/en
Priority to GB08404366A priority patent/GB2135844B/en
Priority to FR8402715A priority patent/FR2541533B1/en
Priority to CA000447963A priority patent/CA1218427A/en
Priority to US06/582,215 priority patent/US4554672A/en
Publication of JPS60106235A publication Critical patent/JPS60106235A/en
Publication of JPS6341251B2 publication Critical patent/JPS6341251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B21/00Generation of oscillations by combining unmodulated signals of different frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/38Angle modulation by converting amplitude modulation to angle modulation
    • H03C3/40Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C2200/00Indexing scheme relating to details of modulators or modulation methods covered by H03C
    • H03C2200/0004Circuit elements of modulators
    • H03C2200/0029Memory circuits, e.g. ROMs, RAMs, EPROMs, latches, shift registers

Description

【発明の詳細な説明】 (技術分野) 本発明は、クロツク完全同期方式を用い、現用
及び予備の2系統を有する衛星通信方式におい
て、現用系から予備系へ無瞬断にてクロツク位相
を切り替える方式に関するものである。
Detailed Description of the Invention (Technical Field) The present invention uses a complete clock synchronization method to switch the clock phase from the working system to the protection system without momentary interruption in a satellite communication system that has two systems, a working system and a backup system. It is related to the method.

(背景技術) 再生中継器を用いて通信を行う場合には、複数
の地球局から送信されるデイジタル通信信号のク
ロツクタイミングの周波数および位相は一般に異
なる。また衛星の位置変化に従い生ずるドツプラ
効果による周波数偏移により、再生中継器で受信
したデイジタル通信信号のクロツクタイミング周
波数は異なる。一方、再生中継器の信号識別及び
多重化分離回路、交換機などの回路動作は、単一
のクロツクタイミングまたは同一のクロツク発振
器の出力から分周あるいは逓倍などによりコヒー
レントな複数のクロツクタイミングまたは統一ク
ロツクタイミングで処理する必要がある。したが
つて衛星を中継するデイジタル通信信号について
も、クロツクタイミングを統一クロツクタイミン
グに周波数及び位相を一致させる必要がある。こ
のようなクロツク制御方法を従来からクロツク完
全同期方式と呼んでいる。クロツク完全同期方式
を採用した地球局においては衛星と地球局間に日
本では最大0.27秒程度の伝搬遅延を有するクロツ
ク位相同期系を構成せねばならず、送信部の周波
数変換器、大電力増幅装置等の予備系への切り替
えを行う際に地球局の送信クロツクが位相同期を
確立するまでに数秒程度必要となりその間デイジ
タル通信回線が断となる欠点があつた。
(Background Art) When communicating using a regenerative repeater, the clock timing frequencies and phases of digital communication signals transmitted from a plurality of earth stations generally differ. Furthermore, the clock timing frequency of the digital communication signal received by the regenerative repeater differs due to a frequency shift due to the Doppler effect that occurs as the position of the satellite changes. On the other hand, circuit operations such as signal identification and multiplexing/demultiplexing circuits of regenerative repeaters, switching equipment, etc. are performed using a single clock timing or multiple clock timings that are coherent or unified by frequency division or multiplication from the output of the same clock oscillator. It is necessary to process at clock timing. Therefore, it is necessary to match the frequency and phase of the clock timing of the digital communication signals relayed by the satellite to the unified clock timing. This type of clock control method has conventionally been called a complete clock synchronization method. In an earth station that employs a complete clock synchronization system, a clock phase synchronization system must be constructed between the satellite and the earth station that has a propagation delay of about 0.27 seconds at maximum in Japan, and requires a frequency converter and high-power amplifier in the transmitter. When switching to the standby system, it takes several seconds for the earth station's transmitting clock to establish phase synchronization, and the digital communication line is disconnected during that time.

(発明の課題) 本発明はこれらの欠点を除去するためクロツク
完全同期方式を採用した衛星通信方式において地
球局の送信クロツクとして位相及び周波数可変発
振器を用いることによつて送信部を予備系に切り
替える場合にも、デイジタル通信回線に瞬断が生
じないようにすることを目的としており、以下図
面について詳細に説明する。
(Problems to be solved by the invention) In order to eliminate these drawbacks, the present invention switches the transmitting section to a standby system by using a variable phase and frequency oscillator as the earth station's transmitting clock in a satellite communication system that employs a complete clock synchronization system. The purpose is to prevent momentary interruptions in the digital communication line even in the case of a digital communication line, and the drawings will be described in detail below.

(発明の構成および作用) 第1図は本発明の実施例の衛星搭載装置ブロツ
ク構成図である。1は送受信アンテナ、2は受信
部、3は再生中継器、4は復調器、5は識別器、
6はクロツク再生部、7は位相比較器、8はクロ
ツク発振器、9は信号分離回路、10はベースバ
ンドスイツチ、11は信号多重化回路、12は変
調回路、13は送信部である。
(Structure and operation of the invention) FIG. 1 is a block diagram of a satellite-mounted device according to an embodiment of the invention. 1 is a transmitting and receiving antenna, 2 is a receiving section, 3 is a regenerative repeater, 4 is a demodulator, 5 is a discriminator,
6 is a clock regenerating section, 7 is a phase comparator, 8 is a clock oscillator, 9 is a signal separating circuit, 10 is a baseband switch, 11 is a signal multiplexing circuit, 12 is a modulation circuit, and 13 is a transmitting section.

この装置の特徴は、クロツク発振器8の出力と
受信信号からクロツク信号を再生するクロツク再
生回路6の出力とが、位相比較回路7に供給され
て両信号の位相比較を行うところにある。この位
相比較回路7の出力には、両信号の位相差が誤差
信号として得られる。この誤差信号は11の信号
多重化回路にてデータと多重化され、12の変調
回路にて変調されて13の送信部を経て下り回線
へ送出される。
The feature of this device is that the output of the clock oscillator 8 and the output of the clock regeneration circuit 6 which regenerates the clock signal from the received signal are supplied to a phase comparator circuit 7 to compare the phases of both signals. The phase difference between both signals is obtained as an error signal at the output of the phase comparison circuit 7. This error signal is multiplexed with data by an 11 signal multiplexing circuit, modulated by a 12 modulating circuit, and sent to the downlink via a 13 transmitter.

第2図は本発明の実施例方式の地球局構成図で
ある。21は送受信アンテナ、22は受信部、2
3は復調器、24は分離回路、25は受信タイミ
ング制御部、26はゲート回路、27は第1送信
部の位相誤差ラツチ回路、28は第2送信部の位
相誤差ラツチ回路、29は送信クロツク制御部、
30はループフイルタ、31は位相及び周波数可
変発振器、32は送信タイミング制御部、33は
変調器、34は切替制御回路、35,36は切替
回路、37は第1送信部、38は第2送信部であ
る。
FIG. 2 is a diagram showing the configuration of an earth station according to an embodiment of the present invention. 21 is a transmitting and receiving antenna, 22 is a receiving section, 2
3 is a demodulator, 24 is a separation circuit, 25 is a reception timing control section, 26 is a gate circuit, 27 is a phase error latch circuit of the first transmitting section, 28 is a phase error latch circuit of the second transmitting section, and 29 is a transmitting clock. control unit,
30 is a loop filter, 31 is a variable phase and frequency oscillator, 32 is a transmission timing control section, 33 is a modulator, 34 is a switching control circuit, 35 and 36 are switching circuits, 37 is a first transmission section, and 38 is a second transmission Department.

ここで本地球局構成図の中で無瞬断クロツクタ
イミング制御を行う場合に中心となる31の位相
及び周波数可変発振器について詳述する。
Here, in this earth station configuration diagram, the 31 phase and frequency variable oscillators, which are central when performing uninterrupted clock timing control, will be described in detail.

第3図は位相及び周波数可変発振器の構成図
(特願昭58−26340)であり、40は高安定固定発振
器、41は90°電力分配器、42,43はミサキ、
44は周波数制御信号45と位相制御信号46に
よつて周波数と位相を可変できる信号発生部、4
7は電力結合器、48は信号出力、49,50は
41の90°電力分配器の出力信号、51,52は
44の信号発生部の出力信号である。
Figure 3 is a configuration diagram of a variable phase and frequency oscillator (Japanese Patent Application No. 58-26340), in which 40 is a highly stable fixed oscillator, 41 is a 90° power divider, 42 and 43 are Misaki,
44 is a signal generator whose frequency and phase can be varied by a frequency control signal 45 and a phase control signal 46;
7 is a power combiner, 48 is a signal output, 49 and 50 are output signals of the 90° power divider 41, and 51 and 52 are output signals of the signal generator 44.

これを動作させるには所望する周波数変化量
ΔDと位相変化量ΔDを与える制御信号を45,
46を通じて44の信号発生部へ入力する。信号
発生部ではこれらの制御信号をもとに次式に示す
信号51,52を出力する。
To operate this, the control signal that gives the desired frequency change amount ΔD and phase change amount ΔD is 45,
The signal is input to the signal generator 44 through 46. Based on these control signals, the signal generator outputs signals 51 and 52 shown in the following equations.

51の信号……bcos(2πΔDt+ΔD) 52の信号……bsin(2πΔDt+ΔD) 一方40の固定発振器出力をA(t)=a′sin
(2πDt+′D)とすると41の出力信号49,5
0は次式で与えられる。
51 signal... bcos (2πΔ D t+Δ D ) 52 signal... bsin (2πΔ D t+Δ D ) On the other hand, the fixed oscillator output of 40 is expressed as A(t)=a′sin
(2π D t+′ D ), then 41 output signals 49,5
0 is given by the following equation.

49の信号……asin(2πDt+D) 50の信号……acos(2πDt+D) 以上より48の信号出力B(t)は次式となる。Signal of 49... asin (2π D t+ D ) Signal of 50... acos (2π D t+ D ) From the above, the signal output B(t) of 48 becomes the following equation.

B(t)=ab{sin(2πDt+D)cos(2πΔD
+ΔD)+cos(2πDt+D)sin(2πΔDt+Δ
D) =absin{2π(D+ΔD)t+(D+ΔD)} 従つて所望する周波数変化量ΔDと位相変化量
ΔDを有する信号が得られる。
B(t)=ab{sin( 2πD t+ D ) cos( 2πΔD t
+ ΔD )+cos( 2πDt + D )sin( 2πΔDt
D )=absin{2π( D + ΔD )t+( D + ΔD )} Therefore, a signal having the desired frequency change amount ΔD and phase change amount ΔD is obtained.

次に第2図の地球局の動作について説明する。
37の第1送信部からデイジタル信号を送出して
いる場合には、アンテナ21から下り回線の信号
を受信し、22の受信部にて中間周波数帯に変換
され、23の復調器にてベースバンド信号に復調
され、24の分離回路でデータ信号と位相誤差信
号が分離される。
Next, the operation of the earth station shown in FIG. 2 will be explained.
When a digital signal is being transmitted from the first transmitting section 37, the downlink signal is received from the antenna 21, converted to an intermediate frequency band by the receiving section 22, and converted to a baseband signal by the demodulator 23. The signal is demodulated, and 24 separation circuits separate the data signal and phase error signal.

24の分離回路出力は26のゲート回路で27
の第1位相誤差ラツチ回路に書き込まれる。この
位相誤差情報をもとに29の送信クロツク制御部
では周波数制御入力により31の位相及び周波数
可変発振器を制御し、クロツク同期を確立する。
24 separation circuit outputs are 26 gate circuits and 27
is written into the first phase error latch circuit. Based on this phase error information, the transmission clock control section 29 controls the variable phase and frequency oscillator 31 using a frequency control input to establish clock synchronization.

次に第1送信部から第2送信部へ切り替える場
合の制御フローを第4図に示し、各状態のフレー
ム構成例を、第5図に示す。ここでRは基準局同
期バースト、S1,S2は従局同期バースト、D1
D2は従局データバースト、S′2は従局補助バース
トである。
Next, FIG. 4 shows a control flow when switching from the first transmitter to the second transmitter, and FIG. 5 shows frame configuration examples in each state. Here, R is the reference station synchronous burst, S 1 and S 2 are the slave station synchronous burst, D 1 ,
D 2 is a slave station data burst, and S′ 2 is a slave station auxiliary burst.

第1送信部からデイジタル信号を送信している
場合には、第5図の1に示すように従局のバース
ト送信は同期バーストS1とデータバーストD1
存在する。今、第2送信部へ切り替える命令が与
えられた場合には、第5図の2に示すように従局
は補助バーストを第2送信部を通じて衛星へ送信
し、S1の同期バーストと同様に位相誤差検出を行
う。この位相誤差情報は第2図28の第2位相誤
差ラツチ回路に書き込まれる。補助バーストがR
回受信されたことを確認した後、第2位相誤差ラ
ツチ回路の内容をもとに、31の発振器の位相制
御入力により、発振器の出力位相をステツプ状に
変化させ、周波数制御入力の内容を27のラツチ
回路から28のラツチ回路へ変更し、無瞬断にて
送信部の切り替えを行うことができる。
When a digital signal is being transmitted from the first transmitter, the slave station's burst transmission includes a synchronization burst S1 and a data burst D1 , as shown in 1 in FIG. Now, if a command to switch to the second transmitter is given, the slave transmits an auxiliary burst to the satellite through the second transmitter, as shown in 2 in Figure 5, and the phase is changed in the same way as the synchronization burst in S1 . Perform error detection. This phase error information is written into the second phase error latch circuit of FIG. 28. Auxiliary burst is R
After confirming that the second phase error latch has been received, the output phase of the oscillator is changed in steps by the phase control input of the 31 oscillator based on the content of the second phase error latch circuit, and the content of the frequency control input is changed to 27. By changing the latch circuit from 1 to 28, the transmitter can be switched without interruption.

(発明の効果) 以上説明したようにクロツク完全同期方式を採
用した衛星通信方式において、送信部および/又
は受信部の現用、予備の2系統を切り替える際
に、デイジタル信号に瞬断を生じさせることがな
いという利点を有する。
(Effects of the Invention) As explained above, in a satellite communication system that employs a complete clock synchronization system, momentary interruptions can occur in digital signals when switching between the working and standby systems of the transmitter and/or receiver. It has the advantage of not having

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の衛星搭載装置ブロツク
図、第2図は本発明実施例の地球局構成図、第3
図は位相及び周波数可変発振器の構成図、第4図
は送信部切替制御フロー図、第5図は送信部切替
制御中のフレーム構成である。 1……送受信アンテナ、2……受信部、3……
再生中継器、4……復調器、5……識別器、6…
…クロツク再生部、7……位相比較器、8……ク
ロツク発振器、9……信号分離回路、10……ベ
ースバンドスイツチ、11……信号多重化回路、
12……変調回路、13……送信部、21……送
受信アンテナ、22……受信部、23……復調
器、24……分離回路、25……受信タイミング
制御部、26……ゲート回路、27……第1位相
誤差ラツチ回路、28……第2位相誤差ラツチ回
路、29……送信クロツク制御部、30……ルー
プフイルタ、31……位相及び周波数可変発振
器、32……送信タイミング制御部、33……変
調器、34……切替制御回路、35,36……切
替回路、37……第1送信部、38……第2送信
部、40……高安定固定発振器、41……90゜電
力分配器、42……ミキサ、43……ミキサ、4
4……信号発生部、45……周波数制御入力端
子、46……位相制御入力端子、47……電力結
合器、48……信号出力端子。
Figure 1 is a block diagram of the satellite onboard equipment according to the embodiment of the present invention, Figure 2 is a configuration diagram of the earth station according to the embodiment of the present invention, and Figure 3 is a block diagram of the satellite onboard equipment according to the embodiment of the present invention.
FIG. 4 is a block diagram of a variable phase and frequency oscillator, FIG. 4 is a flowchart of transmitting section switching control, and FIG. 5 is a frame configuration during transmitting section switching control. 1... Transmitting/receiving antenna, 2... Receiving section, 3...
Regenerative repeater, 4... Demodulator, 5... Discriminator, 6...
... Clock regeneration unit, 7 ... Phase comparator, 8 ... Clock oscillator, 9 ... Signal separation circuit, 10 ... Baseband switch, 11 ... Signal multiplexing circuit,
12...Modulation circuit, 13...Transmission section, 21...Transmission/reception antenna, 22...Reception section, 23...Demodulator, 24...Separation circuit, 25...Reception timing control section, 26...Gate circuit, 27... First phase error latch circuit, 28... Second phase error latch circuit, 29... Transmission clock control section, 30... Loop filter, 31... Phase and frequency variable oscillator, 32... Transmission timing control section , 33...Modulator, 34...Switching control circuit, 35, 36...Switching circuit, 37...First transmitter, 38...Second transmitter, 40...Highly stable fixed oscillator, 41...90゜Power divider, 42...mixer, 43...mixer, 4
4... Signal generator, 45... Frequency control input terminal, 46... Phase control input terminal, 47... Power combiner, 48... Signal output terminal.

Claims (1)

【特許請求の範囲】 1 クロツク完全同期方式を用いかつ地球局送信
部を現用系及び予備系として2系統を持つ衛星通
信方式において、 衛星搭載装置に、受信した中継すべき信号と基
準信号とを比較して位相誤差を検出する検出手段
と、該位相誤差信号を当該地球局への下り回線送
信信号に多重化する多重手段とを設けると共に、 デイジタル通信信号を上記衛星に向けて送信す
ると共に、衛星からの信号を受信する地球局に
は、現用系の第1送信部と予備系の第2送信部と
を切り替える切替手段と、 受信信号に含まれる前記位相誤差信号に基づい
て、位相及び周波数を離散的に制御する可変発振
器により送信クロツクタイミングを制御する制御
手段とを設け、 現用系から予備系へ切り替える時には、あらか
じめ予備系を通じて補助信号を衛星に対して送信
することにより当該位相誤差信号を受信し、該位
相誤差信号が示す位相誤差量に応じて、前記制御
手段が現用系での送信クロツクタイミングからス
テツプ状に前記可変発振器の出力位相を制御する
ことを特徴とする衛星通信方式の無瞬断クロツク
タイミング制御方式。
[Scope of Claims] 1. In a satellite communication system that uses a complete clock synchronization system and has two systems of earth station transmitters as a working system and a standby system, a received signal to be relayed and a reference signal are transmitted to a satellite-mounted device. a detection means for comparing and detecting a phase error, and a multiplexing means for multiplexing the phase error signal into a downlink transmission signal to the earth station, and transmitting a digital communication signal toward the satellite; The earth station that receives signals from the satellite includes a switching means for switching between a first transmitting section of the working system and a second transmitting section of the backup system, and a switching means for switching between the first transmitting section of the working system and the second transmitting section of the standby system, and a switching means for changing the phase and frequency based on the phase error signal included in the received signal. control means for controlling the transmission clock timing using a variable oscillator that discretely controls the phase error signal. , and the control means controls the output phase of the variable oscillator in steps from the transmission clock timing in the working system according to the amount of phase error indicated by the phase error signal. Uninterrupted clock timing control method.
JP21329883A 1983-02-21 1983-11-15 Nonbreak clock timing control system of satellite communication system Granted JPS60106235A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21329883A JPS60106235A (en) 1983-11-15 1983-11-15 Nonbreak clock timing control system of satellite communication system
GB08404366A GB2135844B (en) 1983-02-21 1984-02-20 Oscillator with variable frequency and phase
FR8402715A FR2541533B1 (en) 1983-02-21 1984-02-20 OSCILLATOR VARIABLE IN PHASE AND IN FREQUENCY
CA000447963A CA1218427A (en) 1983-02-21 1984-02-21 Phase and frequency variable oscillator
US06/582,215 US4554672A (en) 1983-02-21 1984-02-21 Phase and frequency variable oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21329883A JPS60106235A (en) 1983-11-15 1983-11-15 Nonbreak clock timing control system of satellite communication system

Publications (2)

Publication Number Publication Date
JPS60106235A JPS60106235A (en) 1985-06-11
JPS6341251B2 true JPS6341251B2 (en) 1988-08-16

Family

ID=16636804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21329883A Granted JPS60106235A (en) 1983-02-21 1983-11-15 Nonbreak clock timing control system of satellite communication system

Country Status (1)

Country Link
JP (1) JPS60106235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024452U (en) * 1988-06-23 1990-01-11

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065454A (en) 2004-12-09 2006-06-14 한국전자통신연구원 Beacon signal generating apparatus for clock synchronization between earth station and on-board switch in satellite communication system, and phase synchronization apparatus using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024452U (en) * 1988-06-23 1990-01-11

Also Published As

Publication number Publication date
JPS60106235A (en) 1985-06-11

Similar Documents

Publication Publication Date Title
US4019138A (en) Frequency synchronizing system for satellite communication
JP2809179B2 (en) Radio broadcast communication system
EP0383908B1 (en) Mechanism for deriving accurate frequency reference for satellite communications burst demodulator
EP0046682B1 (en) Single channel duplex communication system
US4466130A (en) Two pilot frequency control for communication systems
JPS6341251B2 (en)
JPH1141159A (en) Communication equipment
JP3287015B2 (en) Auxiliary signal transmission method
JP2682345B2 (en) Compensation system for cross polarization interference generated at non-regenerative wireless relay stations
EP0990340A1 (en) Method of synchronization
JP2595751B2 (en) Wireless transceiver
JP2848160B2 (en) Wireless communication system
JPH0611125B2 (en) Same frequency relay system
JPH05191214A (en) Automatic frequency control system
JP2795090B2 (en) Apparatus and method for compensating interference signal generated in non-regenerative wireless relay station
JP3767348B2 (en) Regenerative relay type relay device
US20140241480A1 (en) Hitless efficient transmitter protection of all outdoor radios
JPH02141148A (en) Digital microwave communication system
JPS5949031A (en) Frequency control system of slave carrier wave of multi-direction multiplex communication system
JPH09261288A (en) Data transmission system
Knapp et al. TH‐3 Medium‐Haul Application: Frequency‐Diplexed Auxiliary Channel
JPH0533571B2 (en)
JP3287721B2 (en) Communication device
JPH0147058B2 (en)
JPH01154646A (en) Digital communication system capable of switching line