JPS6340878A - Gps position measuring instrument - Google Patents

Gps position measuring instrument

Info

Publication number
JPS6340878A
JPS6340878A JP18429586A JP18429586A JPS6340878A JP S6340878 A JPS6340878 A JP S6340878A JP 18429586 A JP18429586 A JP 18429586A JP 18429586 A JP18429586 A JP 18429586A JP S6340878 A JPS6340878 A JP S6340878A
Authority
JP
Japan
Prior art keywords
satellite
movement
calculation
measured
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18429586A
Other languages
Japanese (ja)
Inventor
Hideo Takai
高井 秀夫
Yasuyuki Uekusa
康之 植草
Hisao Kishi
岸 久夫
Chogo Sekine
兆五 関根
Harumasa Hojo
晴正 北條
Koji Yamada
耕司 山田
Noboru Yamaoka
山岡 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nissan Motor Co Ltd
Original Assignee
Japan Radio Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nissan Motor Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP18429586A priority Critical patent/JPS6340878A/en
Publication of JPS6340878A publication Critical patent/JPS6340878A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent errors and increase accuracy of position measuring calculation by comparing a rectilinear range to a satellite measured on the basis of a satellite radio wave and that obtained by dead reckoning with each other and, when a difference between both is larger than a prescribed value, stopping a position calculation. CONSTITUTION:Satellite radio waves received by an antenna 1 are amplified, detected and inputted to a CPU 15 via a data detecting filter 14. Thus, the three-dimensional position of an object whose position is to be measured on terrestrial coordinates is measured. On the other hand, a dead reckoning instrument 25 connected to a bearing sensor and a vehicle speed sensor detects the quantity of vehicle movement in a vector value and the predicted value of the quantity of the movement of synchronous timing between before and after the movement is obtained by a synchronism monitor 24. When synchronism is impossible or there is a large difference between the quantity of movement calculated from the output of a voltage controlled oscillator 9, the CPU 15 stops a position calculation whereby the error of the calculation is prevented and an accuracy in a position measurement is increased.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、G P S (G 1obal P os
itionin。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on GPS (Global Pos.
itionin.

3ystem )による位置ス1測装置に関する。3 system).

[従来技術] GPS位置計測装置は、人工WI星からの電波を測位に
必要な復数個の衛星について受信することにより、航2
機、船舶、車両その他の被測位体の位置を測位するもの
であるが、その原理、方式等については特開昭60−1
5573、電子通(工学会技術研究報告VOI、84.
ff1.78.5ANE84−12.自動車技術198
5.Vol、39−1(衛星航法グローバル ポジショ
ンニング システム)、航海62号NAVSTAR/G
PS (全世界測位システム)等に詳しい。
[Prior art] A GPS positioning device receives radio waves from an artificial WI star for multiple satellites necessary for positioning.
It measures the position of aircraft, ships, vehicles, and other objects to be positioned, and its principles and methods are described in Japanese Patent Application Laid-Open No. 60-1
5573, Electronic Communication (Technical Research Report of the Society of Engineering VOI, 84.
ff1.78.5ANE84-12. Automotive technology 198
5. Vol, 39-1 (Satellite Navigation Global Positioning System), Voyage No. 62 NAVSTAR/G
Familiar with PS (Worldwide Positioning System), etc.

しかしながら、これら従来よりのGPS位置位置側1測
噴っては、衛星から直接波を受けることを前IWとして
いるので、受信儂がビル簀からの反射波等の妨害波を受
けるような場合には、被測位体の位置を誤って測位して
しまうという問題点があった。
However, since these conventional GPS position measurements are based on receiving waves directly from satellites, if the receiver receives interference waves such as reflected waves from a building fence, However, there was a problem in that the position of the object to be measured was incorrectly determined.

[発明の目的] この発明は上記問題点を改善し、受信機が妨害波を受信
したとしても、誤った測位をしてしまうことがないGP
S位置計測装首を提供することを目的とする。
[Object of the invention] This invention improves the above problems and provides a GP that does not perform incorrect positioning even if the receiver receives interference waves.
The purpose of this invention is to provide an S position measurement neck device.

[発明の概要コ 上記目的を達成するために、この発明では、GPS位置
計測装置を、衛星電波を捕捉する耐重捕捉手段と、捕捉
衛星からの直線距離などの衛星データに基いて被測位体
の位置を演算する位置演算手段と、推測航法で被測位体
の現在位置を知ることにより被測位体と所定衛星との間
の直線距離をtri ′i4値として求める直線距離演
算手段と、該手段で求められた推測値と前記所定衛星の
衛星電波に阜いて実測された実測値とを比較し実訓幀と
1「測値の差が所定m以上大きいとき前記位置演算手段
にJ3 G)る位置演算を中止させる演算中止指令手段
と、を備えて構成し、妨害波を演算対染とする測位演算
を中止するようにした。
[Summary of the Invention] In order to achieve the above object, the present invention includes a GPS position measuring device that includes a heavy-duty capture means that captures satellite radio waves, and a positioning device that detects a positioning object based on satellite data such as the straight-line distance from the captured satellite. a position calculation means for calculating a position; a straight-line distance calculation means for determining the straight-line distance between the object to be measured and a predetermined satellite as a tri'i4 value by knowing the current position of the object to be measured by dead reckoning navigation; The obtained estimated value is compared with the actual value actually measured based on the satellite radio waves of the predetermined satellite, and if the difference between the measured values is greater than a predetermined meter, the position is determined by the position calculation means. and a calculation stop command means for stopping the calculation, so as to stop the positioning calculation using interference waves as a counter-contamination to the calculation.

[実施例] 以下、添付図面を用いてこの発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail using the accompanying drawings.

第1図はこの発明の一実施例に係る車両用のGPS位置
81測装置のブロック図、第2図は同期監視処理を承り
フローチV−ト、第3図は車両の走行状態の説明図、第
4図は同期監視処理にcljける演算概要を示す説明図
である。
FIG. 1 is a block diagram of a GPS position 81 measuring device for a vehicle according to an embodiment of the present invention, FIG. 2 is a flowchart for synchronous monitoring processing, and FIG. 3 is an explanatory diagram of the running state of the vehicle. FIG. 4 is an explanatory diagram showing an outline of calculations in clj in the synchronization monitoring process.

本例は、妨害波として反射波を検出し、反射波について
の測位演算を中止する対策を行ったGPS位置計測装芦
の例を示すものである。
This example shows an example of a GPS position measuring device that detects reflected waves as interference waves and takes measures to stop positioning calculations for the reflected waves.

受信機の原理を簡単に説明すると、第1図に示すように
まず、アンテナ1で受信したC/A信号は、局部発振器
2の信号と混合器3で混合された後、広帯域中間周波増
幅器4で増幅される。一方、PN信号発生器5からは衛
星側と同じPN信号が発生され、これと前記広帯域中間
周波増幅器4から出力される信号とが混合器6で掛は算
され、帯域通過フィルタ7に入力される。
To briefly explain the principle of the receiver, as shown in FIG. is amplified. On the other hand, the same PN signal as that on the satellite side is generated from the PN signal generator 5, and this is multiplied by the signal output from the broadband intermediate frequency amplifier 4 in the mixer 6, and then input to the band pass filter 7. Ru.

このとき、PN信号発生器5のPN符号と受信した信号
のPN符号とを完全に重ね合わせる必要があるが、この
ため、PN位相差検出器8と電圧υj御発振器[VC○
(+)]9とが設けられている。
At this time, it is necessary to completely overlap the PN code of the PN signal generator 5 and the PN code of the received signal.
(+)]9 is provided.

PN位相差検出器8は2つのPN符号の位相差を検出し
、その差により電圧制御発搬器の周波数を変え、PN信
号発生器5の位相を制御する。
The PN phase difference detector 8 detects the phase difference between the two PN codes, changes the frequency of the voltage controlled oscillator based on the difference, and controls the phase of the PN signal generator 5.

帯域通過フィルタ7を通過した信号は、検波用の電圧制
御発@器[VC○(2) ] 10から出力される信号
と混合器11で掛番プ算され、以後、低域通過フィルタ
12を通され、データ符号とされ、ビット同期制御j器
13で制御されるデータ検出フィルタ14を介して中央
処理装置15へ出力される。
The signal that has passed through the band pass filter 7 is multiplied by the signal output from the detection voltage control oscillator [VC○(2)] 10 in the mixer 11, and then passed through the low pass filter 12. The signal is passed through, converted into a data code, and output to the central processing unit 15 via a data detection filter 14 controlled by a bit synchronization controller 13.

電圧1iIJti1発振器10で発振した信号と帯域通
過フィルタ7を通過した信号の位相の同期作業は2個の
周波数2逓倍器16.17と混合PJ18とで構成され
る搬送波追跡回路で行われる。
Phase synchronization between the signal oscillated by the voltage 1iIJti1 oscillator 10 and the signal passed through the bandpass filter 7 is performed by a carrier tracking circuit composed of two frequency doublers 16, 17 and a mixing PJ 18.

電圧fi制御発振器10で発振された搬送波は受信した
しバンドと同じ値のドプラシフトをもっているので、こ
れを安定発振器19で発生される基準信号との差をとる
ことにより、WI星と受信機間の?1線速度に相当する
ドプラカウントをドプラ測定器20で測定する。
Since the carrier wave oscillated by the voltage fi controlled oscillator 10 has a Doppler shift of the same value as the received band, by taking the difference between this and the reference signal generated by the stable oscillator 19, the carrier wave between the WI star and the receiver is calculated. ? A Doppler count corresponding to one linear velocity is measured by a Doppler measuring device 20.

又、安定発振器19より発振された信号をもとにクロッ
ク発生器21で作られた時間と、PN信号発生器5で発
生されクロック発生器22を経て作られた時間との差を
測定することにより、擬似距離測定器23で凝叡距離が
求められる。
Furthermore, the difference between the time generated by the clock generator 21 based on the signal oscillated by the stable oscillator 19 and the time generated by the PN signal generator 5 and generated by the clock generator 22 is measured. Accordingly, the cohesive distance is determined by the pseudo-range measuring device 23.

以上の原理により、中央処理装置15はデータ検出フィ
ルタ14より、所定数の衛星について衛星データを受け
ることができ、被測位体たる車両の地球P!!標上にお
ける3次元位置が計測されることになる。
Based on the above principle, the central processing unit 15 can receive satellite data for a predetermined number of satellites from the data detection filter 14, and the earth P of the vehicle, which is the object to be positioned! ! The three-dimensional position on the elevation will be measured.

付属された推測航法装置25は、図示しない方位センサ
と車速センサとに接続され、基準位置に対し車両の移動
mをベクトル値で検出するものである。
The attached dead reckoning navigation device 25 is connected to a direction sensor and a vehicle speed sensor (not shown), and detects the movement m of the vehicle with respect to a reference position using vector values.

同期監視装置24は、傭能的に、車両と衛星との間の直
線距離を推測値として求める直線距離演算手段と、反射
波を検出したとき演算中止指令を出力する演算中止指令
手段とを有している。
The synchronization monitoring device 24 functionally includes a straight-line distance calculation means that calculates the straight-line distance between the vehicle and the satellite as an estimated value, and a calculation stop command means that outputs a calculation stop command when a reflected wave is detected. are doing.

同期監?fl装置24の作用を第2図フローチセートに
示した。
Synchronous supervisor? The operation of the fl device 24 is shown in FIG.

ステップ201は、電圧制御fI1発振器9の出力信号
の取込み処理を示している。
Step 201 shows the process of taking in the output signal of the voltage controlled fI1 oscillator 9.

ステップ202は、入力した電圧11111 un発振
器9からの信号の周波数に基いて同期タイミングの移f
7J ffiΔ丁を算出する処理を示している。
Step 202 shifts the synchronization timing f based on the frequency of the input voltage 11111un signal from the oscillator 9.
7J shows the process of calculating ffiΔt.

ステップ203は、推測航法装置25より、車両の移U
t aをベクトル値(方位と距ti>で入力する処理を
示している。
In step 203, the dead reckoning device 25 sends the vehicle
This shows the process of inputting ta as a vector value (azimuth and distance ti>).

ステップ204は、中央処理装置15より衛星の仰角θ
と方位角データを入力する処理を示している。
In step 204, the central processing unit 15 determines the elevation angle θ of the satellite.
This shows the process of inputting azimuth data.

ステップ205は、同期タイミング移1FJI ffi
の予測値ΔT′を算出する処理を示している。このn出
方式を第3図及び第4図を用いてd1明する。
Step 205 is a synchronization timing shift 1FJI ffi
It shows the process of calculating the predicted value ΔT'. This n-output method will be explained using FIGS. 3 and 4.

′IS3図に示すように車両26が地点PAで所定1f
fi星S1の信号Waを受信し他の衛星信号も受信して
測位を行い、次に車両が地点Paに移動した時に次の測
位を行うものとする。地点PAではすべてのに9号を直
接受信するので正確な位置が求められるが、地点PBで
は衛星Siの直接波wbは建物にさえぎられ伝搬経路の
長い反射波wb −を受信するため、測定した位置の誤
差が大きくなる。
'As shown in the IS3 diagram, the vehicle 26 is at a predetermined 1f at point PA.
It is assumed that positioning is performed by receiving the signal Wa of star fi S1 and other satellite signals, and then the next positioning is performed when the vehicle moves to point Pa. At point PA, the exact position is required because all 9 signals are directly received, but at point PB, the direct wave wb from satellite Si is blocked by buildings and the reflected wave wb -, which has a long propagation path, is received, so measurements were taken. The position error becomes large.

そこで、このような反射波Wb′による測位の誤差をな
くすのが、この計算の目的である。車両26が地点PA
にあるときの衛星3iの位置をPSA、地点P[3にあ
るときの位置をPSaとする。
Therefore, the purpose of this calculation is to eliminate positioning errors caused by such reflected waves Wb'. Vehicle 26 is at point PA
The position of satellite 3i when it is at point P[3 is assumed to be PSA, and the position when it is at point P[3 is PSa.

まず、第1に、第4図を参照して、ステップ203で、
入力した推測航法データを用いて、移動後の衛星3iの
位置PSnと移動後の車両26の位i??Psとを結ぶ
直線LBを含み路面27と直角に交わる平面Fを想定し
、車両2Gの移動mのボ面Fへの投影距離aを求める。
First, referring to FIG. 4, in step 203,
Using the input dead reckoning data, the position PSn of the satellite 3i after movement and the position i? of the vehicle 26 after movement are determined. ? Assuming a plane F that includes a straight line LB connecting the plane Ps and intersects the road surface 27 at right angles, the projected distance a of the movement m of the vehicle 2G onto the plane F is determined.

第2に、移動前の車両位置PAと移動後の衛星位置PS
aとの間の距1)ILMを求める。移動前の車両位置P
Aは前の測位において3次元的に求まっていると共t=
移動後の衛星の位置PSB4.を軌道データにより求ま
るので、この距11L1.lは一義的に定まるものであ
る。
Second, the vehicle position PA before movement and the satellite position PS after movement.
1) Find the ILM. Vehicle position P before movement
A is determined three-dimensionally in the previous positioning, and t=
Satellite position after movement PSB4. is determined from the orbit data, so this distance 11L1. l is uniquely determined.

第3に、前記距離LBと距!!1ffL1.lとの差△
1−1を求める。
Thirdly, the distance LB and distance! ! 1ffL1. Difference from l△
Find 1-1.

△L+  =LM−Ln  =a  −cos  θ第
4に、移動前の車両位置PAと移動前の衛星位置PSA
との間の距離をLAとし、距離LBと距MLAとの距離
差△Lを求める。
△L+ = LM - Ln = a - cos θ Fourth, the vehicle position PA before movement and the satellite position PSA before movement
Let LA be the distance between the two, and calculate the distance difference ΔL between the distance LB and the distance MLA.

八L=LB−LA =へL+ + (LM−LA ) =ΔL1+△L2 第5に、上記距l1li差△Lを光速で割り、予測同期
タイミング移動量△T′を求める。
8L=LB-LA=toL++(LM-LA)=ΔL1+ΔL2 Fifth, the above distance l1li difference ΔL is divided by the speed of light to obtain the predicted synchronization timing movement amount ΔT'.

かくして求められた同期タイミングの移動量の予測値Δ
T−は衛星Stからの電波が小山に直接届くなら、移動
後の地点ρBにおいて、PN位相差検出器8.電圧制御
発搬器9.PN信号発生器5で構成されるPLLで同期
がとれるタイミングの移動量を示すものである。
The predicted value Δ of the movement amount of the synchronization timing obtained in this way
If the radio waves from the satellite St reach the small mountain directly, T- is the PN phase difference detector 8. at the point ρB after moving. Voltage control transmitter9. This shows the amount of movement of the timing at which synchronization can be achieved in the PLL constituted by the PN signal generator 5.

第2図にもどり、ステップ206はPN位相差検出器8
から出力される信号に基いて前記PLLの同期不能を判
断する処理を示している。同期不能は渾音や乱反射等の
発生によって生ずるものである。同期不能の場合には、
処理をステップ209へ移行させ、同期不能でないなら
処理をステップ207へ移行させる。
Returning to FIG. 2, step 206 is the PN phase difference detector 8.
3 shows a process of determining whether the PLL is out of synchronization based on a signal output from the PLL. The inability to synchronize is caused by the occurrence of ringtones, diffused reflections, etc. If synchronization is not possible,
The process moves to step 209, and if synchronization is not impossible, the process moves to step 207.

ステップ207は、面記ステップ202て・Q出された
同期タイミングの移動量Δ丁と、ステップ205で予測
された同期タイミングの移!IJ FlyAT′とを比
較する処理を示している。
Step 207 calculates the shift amount Δ of the synchronization timing outputted in step 202 and the shift of the synchronization timing predicted in step 205! It shows the process of comparing IJ FlyAT'.

ステップ208は、ステップ207の比較結果を判別す
るもので、比較結果が略一致していれば、衛星Siから
の電波は車両に略直接入射されていると判断しここで処
理を中断し、比較結果に人さな相違があればステップ2
10へ処理を移1テさせる。 ステップ209は、11
F測航法データと衛星データに基いて車両の現在位置に
対応する同期タイミングの予測値を求め、これを電圧制
御発振器9へ出力するものである。
Step 208 is to determine the comparison result of step 207, and if the comparison result substantially matches, it is determined that the radio waves from satellite Si are almost directly incident on the vehicle, and the process is interrupted here, and the comparison is made. If there is a slight difference in the results, step 2
Processing is moved to step 10. Step 209 is 11
F A predicted value of synchronization timing corresponding to the current position of the vehicle is obtained based on navigation data and satellite data, and this is output to the voltage controlled oscillator 9.

ステップ210は、P L Lの同期不能に基いて、又
は、同期タイミングの移動量が予測値と大さく外れてい
ることに基いて、中央処理装置15へ位置演算中止信号
を出力するものである。
Step 210 is for outputting a position calculation stop signal to the central processing unit 15 based on the inability to synchronize P L L or based on the fact that the movement amount of the synchronization timing is significantly different from the predicted value. .

以上のように、本実施例におけるGPS位1バt1エ1
1装置では、PLLの同期不能状態を検出すると共に受
信時の同期タイミングの移動量の予測を立て、同期不能
時及び、同期タイミングの移動量の実測値が予測値と大
きく異なるときには、中央処理5A置15の測位演算を
中止させることができる。
As mentioned above, in this embodiment, the GPS position 1
In one device, the synchronization failure state of the PLL is detected and a prediction of the amount of movement of the synchronization timing at the time of reception is made, and when synchronization is impossible and the actual value of the movement amount of the synchronization timing is significantly different from the predicted value, the central processing 5A The positioning calculation at position 15 can be stopped.

従って、本例に係るGPS位置計測装置では、反射波、
雑音等の妨害波による同期ずれを効果的に検出し適宜測
位演算を中止さけることができるので、中央処理装置1
5の測位演算の誤りを防止することができる。
Therefore, in the GPS position measuring device according to this example, reflected waves,
Since it is possible to effectively detect out-of-synchronization due to interference waves such as noise and stop positioning calculations as appropriate, the central processing unit 1
5 errors in positioning calculation can be prevented.

又、本例では、予測同期タイミングを電圧制御発振器9
へ出力するよう同期監視装置24を構成したので、同期
がとれない時にもPN信号発生器5から所定の同期タイ
ミングでPN符号を発生させることができ、復起信号を
即座に捕捉することが可能である。
In addition, in this example, the predicted synchronization timing is determined by the voltage controlled oscillator 9.
Since the synchronization monitoring device 24 is configured to output to It is.

[発明の効果] 以上の通り、この発明によれば、反射波等直接波以外の
電波による悪影響を防止することができ、高情度の測位
を円滑に行うことができるGPS位訪31測装首を提供
することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to prevent the adverse effects of radio waves other than direct waves such as reflected waves, and to smoothly perform highly sensitive positioning. The neck can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る車両用のGPS位置
計測装置のブロック図、第2図は同期監視処理を示すフ
ローチt−1〜、第3図は車両の走行状態の説明図、第
4図は同期監視処理における演c7概要を示す説明図で
ある。 5・・・PNIΔ号発生器 8・・・PN位相差検出器 9・・・電圧制御発振器 24・・・同期監視装置 25・・・推測航法装置
FIG. 1 is a block diagram of a GPS position measuring device for a vehicle according to an embodiment of the present invention, FIG. 2 is a flowchart from t-1 showing the synchronization monitoring process, and FIG. 3 is an explanatory diagram of the running state of the vehicle. FIG. 4 is an explanatory diagram showing an outline of operation c7 in the synchronization monitoring process. 5...PNIΔ generator 8...PN phase difference detector 9...Voltage controlled oscillator 24...Synchronization monitoring device 25...Dead reckoning navigation device

Claims (2)

【特許請求の範囲】[Claims] (1)衛星電波を捕捉する衛星捕捉手段と、捕捉衛星か
らの直線距離などの衛星データに基いて被測位体の位置
を演算する位置演算手段と、推測航法で被測位体の現在
位置を知ることにより被測位体と所定衛星との間の直線
距離を推測値として求める直線距離演算手段と、該手段
で求められた推測値と前記所定衛星の衛星電波を用いて
実測された実測値とを比較し実測値と推測値の差が所定
量以上大きいとき前記位置演算手段における位置演算を
中止させる演算中止指令手段と、を備えて構成されるG
PS位置計測装置。
(1) A satellite acquisition means that captures satellite radio waves, a position calculation means that calculates the position of the object based on satellite data such as the straight-line distance from the captured satellite, and a dead reckoning method to determine the current position of the object. a straight-line distance calculation means for calculating the straight-line distance between the object to be measured and a predetermined satellite as an estimated value; and a computation stop command means for discontinuing the position computation in the position computation means when the difference between the actual measured value and the estimated value is greater than a predetermined amount.
PS position measuring device.
(2)前記推測値と前記実測値は、電波の伝播遅延時間
に換算されて演算される特許請求の範囲第1項記載のG
PS位置計測装置。
(2) The estimated value and the measured value are calculated by converting them into radio wave propagation delay times.
PS position measuring device.
JP18429586A 1986-08-07 1986-08-07 Gps position measuring instrument Pending JPS6340878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18429586A JPS6340878A (en) 1986-08-07 1986-08-07 Gps position measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18429586A JPS6340878A (en) 1986-08-07 1986-08-07 Gps position measuring instrument

Publications (1)

Publication Number Publication Date
JPS6340878A true JPS6340878A (en) 1988-02-22

Family

ID=16150829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18429586A Pending JPS6340878A (en) 1986-08-07 1986-08-07 Gps position measuring instrument

Country Status (1)

Country Link
JP (1) JPS6340878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040240A (en) * 1989-11-30 1991-08-13 Magnavox Government And Industrial Electronics Company Receiver architecture for use with a global positioning system
JP2010151725A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Gnss receiving apparatus and positioning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040240A (en) * 1989-11-30 1991-08-13 Magnavox Government And Industrial Electronics Company Receiver architecture for use with a global positioning system
JP2010151725A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Gnss receiving apparatus and positioning method

Similar Documents

Publication Publication Date Title
US7388539B2 (en) Carrier track loop for GNSS derived attitude
US7498980B2 (en) Carrier phase GPS positioning device and method
US6266584B1 (en) Robust autonomous GPS time reference for space application
EP2816374B1 (en) Vehicle positioning in high-reflection environments
KR970012260A (en) An integrated satellite positioning system / inertial navigation system provided for improved radar direction estimation
WO2006132003A1 (en) Gps reception device and gps positioning correction method
CA2975465A1 (en) Positioning determinations of receivers
EP1580571B1 (en) Controlling latency between data from global navigation satellites and data from a rotating laser system
US20020163467A1 (en) Positioning equipment
US6336061B1 (en) System and method for attitude determination in global positioning systems (GPS)
JP2001280997A (en) Gnss, inertial navigation system
JP2008139105A (en) Apparatus for measuring moving body position
US20120026033A1 (en) Position calculation method and apparatus with gps
JP2011053166A (en) Positioning method and device
JP2010164340A (en) Gnss-receiving device and positioning method
JPS6340878A (en) Gps position measuring instrument
CN109085626B (en) Positioning method and device
US6720913B1 (en) Lock slip detection using inertial information
US6172638B1 (en) Satellite signal receiver with detector of incoherence between code phase and carrier frequency measurements
JP2010060421A (en) Positioning system for moving body and gnss receiving apparatus
JP3569015B2 (en) GPS navigation device
JP3557024B2 (en) Positioning device
JP2008145183A (en) Measurement device, multipath determination method, and measurement method
JPH0626865A (en) Vehicle-bearing correcting apparatus
KR100341801B1 (en) Urban vehicle navigation system using multiple antennas