JPS6338268A - Manufacture of infrared ray detection element - Google Patents

Manufacture of infrared ray detection element

Info

Publication number
JPS6338268A
JPS6338268A JP61182257A JP18225786A JPS6338268A JP S6338268 A JPS6338268 A JP S6338268A JP 61182257 A JP61182257 A JP 61182257A JP 18225786 A JP18225786 A JP 18225786A JP S6338268 A JPS6338268 A JP S6338268A
Authority
JP
Japan
Prior art keywords
crystal
layer
type
cdte
insulating protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61182257A
Other languages
Japanese (ja)
Inventor
Mitsuo Yoshikawa
吉河 満男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61182257A priority Critical patent/JPS6338268A/en
Publication of JPS6338268A publication Critical patent/JPS6338268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an infrared ray detecting element which has less leakage current, a high sensitivity and no sensitivity deviation by laminating a P-type Hg1-yCdyTe crystal and a CdTe layer having large X-value multiply on the surface of a P-type Hg1-xCdxTe crystal, selectively etching the CdTe to remove it, forming an insulating protective film, and then forming an N-type layer. CONSTITUTION:A P-type Hg1-xCdxTe crystal 1 is formed on a substrate 6 made of CdTe crystal. A P-type Hg1-yCdyTe crystal 2 is formed on the crystal 1. The crystal 2 is so grown that its thickness becomes 1.0+ or -0.1mum. Thereafter, a CdTe layer 5 is formed. Only the layer 5 is etched, and selectively etched so that the crystal 2 is not etched. For example, an etchant uses a mixture of fluoric acid, nitric acid, acetic acid and water at 3:5:6:6 by weight. As a result of the etching, the crystal 2 having uniform thickness can be obtained. An insulating protective film 3 is formed on the surface except an N-type layer forming region. With the film 3 as a mask atoms of Boric acid B are ion implanted to form an N-type layer 4.

Description

【発明の詳細な説明】 〔概要〕 この発明は、多層からなる水銀・カドミウム・テルル(
以後Hg+−xCdx Teと記す)結晶の表面にCd
TeNを形成し、選択的にCdTeJatのエツチング
を行い、絶縁保護膜形成後にN層を形成し、高感度の均
一な赤外線検知素子を得ることを可能とする。
[Detailed Description of the Invention] [Summary] The present invention is directed to a multilayer mercury, cadmium, tellurium (mercury, cadmium, tellurium)
Cd on the surface of the crystal (hereinafter referred to as Hg+-xCdx Te)
TeN is formed, CdTeJat is selectively etched, and an N layer is formed after forming an insulating protective film, thereby making it possible to obtain a highly sensitive and uniform infrared sensing element.

〔産業上の利用分野〕[Industrial application field]

この発明は、赤外線検知素子の製造方法に係り、特に多
素子を形成するlIg、ycdXTe結晶からなる赤外
線検知素子の製造方法に関するものである。
The present invention relates to a method for manufacturing an infrared sensing element, and more particularly to a method for manufacturing an infrared sensing element made of lIg, ycdXTe crystals forming multiple elements.

被測温体は、高温度になるに従って、波長の短い赤外線
を輻射する。室温に近い物体からの赤外線を観測するに
は、波長8〜14μmを高感度に検知することのできる
赤外線検知素子が必要とされている。この室温付近の温
度を高感度に検知する材料としてHg1−yCdy T
e結晶が用いられている。
The object to be measured radiates infrared rays with a shorter wavelength as the temperature increases. In order to observe infrared rays from objects near room temperature, an infrared sensing element that can detect wavelengths of 8 to 14 μm with high sensitivity is required. Hg1-yCdy T is a material that can detect temperatures near room temperature with high sensitivity.
e crystal is used.

〔従来の技術〕[Conventional technology]

従来、赤外線検知素子は、第2図に示す工程によって製
作されていた。即ち、第2図(alに示すように、カド
ミウム・テルル(CdTe)基板6に形成されたP−F
lg、−xCdxTe結晶1の表面に、X値の大きいP
−H)B、ヤCd、 Te結晶2を形成する。X値が大
きいと、ハンドギヤツブは大となり、このP−Hg、、
Cd。
Conventionally, infrared sensing elements have been manufactured by the process shown in FIG. That is, as shown in FIG.
lg, -xCdxOn the surface of the Te crystal 1, P with a large X value
-H) B, Y, Cd, Te crystal 2 is formed. When the X value is large, the hand gear knob becomes large, and this P-Hg...
Cd.

Te結晶2を形成することにより、後述するPN接合の
表面リーク電流を減らすことができる。
By forming the Te crystal 2, surface leakage current of the PN junction, which will be described later, can be reduced.

次に、第2図伽)に示すように、P−”g+−yCdy
 Te結晶2の表面を薄層にするために、薄層化工・ノ
チングを行う。次いで、P−1(g、うCdxTe粘晶
1のN lfi形成予定領域を除いた領域に、絶縁保護
膜3となる硫化亜鉛(以後ZnSと記す)を形成して、
この7.nS 119をマスクとして、硼素Bのに1子
をイオン注入して■層4を形成する。第2図(C1の状
態である。
Next, as shown in Figure 2), P−”g+−yCdy
In order to make the surface of the Te crystal 2 a thin layer, thin layer processing and notching are performed. Next, zinc sulfide (hereinafter referred to as ZnS), which will become the insulating protective film 3, is formed in the region of the CdxTe viscous crystal 1 excluding the region where Nlfi is planned to be formed.
This 7. Using nS 119 as a mask, ions of boron B are ion-implanted to form layer 4. Fig. 2 (state of C1).

これに、電極を形成して赤外線検知素子を形成する。Electrodes are formed on this to form an infrared sensing element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ト記した従来の赤外線検知素子の製造方法は、’Hg+
−yCdy Te結晶をエツチングする際に、このP−
11L−yCdy Te結晶の厚さを1.0 ±0.1
  μmに均一番こ制御することが困難であり、形成さ
れるN層のI’N接合部が均−深さにならず、検知感度
を不均一にすると共に、局所的にp−In、−xCd、
 Te結晶が表面tこ露出すると、’4g+−xcdy
 Te結晶のバンドギヤ・ノブが小さいために、表面の
リーク電流が多くなるという問題があった。
The conventional method of manufacturing the infrared sensing element described above is 'Hg+
-yCdy When etching Te crystal, this P-
11L-yCdy Te crystal thickness 1.0 ±0.1
It is difficult to control the thickness uniformly to μm, and the I'N junction of the formed N layer does not have a uniform depth, making the detection sensitivity uneven and locally p-In, - xCd,
When the surface of the Te crystal is exposed, '4g+-xcdy
Since the band gear knob of the Te crystal is small, there is a problem in that the surface leakage current increases.

この発明は、以上のような従来の状況から、リーク電流
が少なく高感度で感度偏差のない赤外線検知素子の製造
方法の提供を目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional situation, it is an object of the present invention to provide a method for manufacturing an infrared sensing element that has low leakage current, high sensitivity, and no sensitivity deviation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、P−Hg、−xCdxTe結晶の表面に
、X値の大きいP−)1g、−、Cdy Te結晶とC
dTe1iとを多重に積層し、CdTe層を選択上・ノ
チングして除去し、絶縁保護膜を形成した後に、14圏
を形成する。
In this invention, on the surface of the P-Hg, -xCdxTe crystal, P-)1g, -, Cdy Te crystal with a large X value and C
dTe1i are laminated in multiple layers, the CdTe layer is selectively removed by notching, and an insulating protective film is formed, after which 14 circles are formed.

〔作用〕[Effect]

CdTe1iiは選択的にエツチングされ、P−Hg+
−yCdyTeCdTe1iた状態を保つので、均一厚
みとなり、その表面に絶縁保護層が形成され、リーク電
流の少ない均一な高感度の赤外線検知素子となる。
CdTe1ii is selectively etched and P-Hg+
Since the -yCdyTeCdTe1i state is maintained, the thickness becomes uniform, and an insulating protective layer is formed on the surface, resulting in a uniform high-sensitivity infrared sensing element with low leakage current.

〔実施例〕〔Example〕

第1図は本発明の赤外線検知素子の製造方法を説明する
ための要部工程図であり、第1図(alに示すように、
CdTe結晶からなる基板6の上に、P−11゜、、C
d、 Te結晶1を形成する。このP−11g+−y+
Cdy Te結晶1の表面にp−1g、−、ca、 T
e結晶2を形成する。このP−111−yCdy Te
結晶2はその厚さが1.0±0.1 ttmになるよう
に成伎される。しかる後に、Cd T e 1ift5
を形成する。
FIG. 1 is a process diagram of the main parts for explaining the manufacturing method of the infrared sensing element of the present invention, and as shown in FIG. 1 (al),
On the substrate 6 made of CdTe crystal, P-11°, C
d. Forming Te crystal 1. This P-11g+-y+
p-1g, -, ca, T on the surface of CdyTe crystal 1
Form e-crystal 2. This P-111-yCdy Te
The crystal 2 is formed to have a thickness of 1.0±0.1 ttm. After that, Cd T e 1ift5
form.

このCdTe1W5のみをエツチングし、P−111!
+−yCdyTe結晶2のエツチングを行わない選択上
・ノチングを行う。例えばエツチング液として、弗酸(
IIF)。
Etching only this CdTe1W5, P-111!
+-yCdyTe crystal 2 is selectively notched without being etched. For example, as an etching solution, hydrofluoric acid (
IIF).

硝酸(HNOa )、酢酸(Cl1a C00H)、水
を3.5,6.6の重量比としたものを用いる。
Nitric acid (HNOa), acetic acid (Cl1a C00H), and water in a weight ratio of 3.5 and 6.6 are used.

エツチングされた結果、第1図[11)に示す均一厚さ
のp−Hg、−、Cd、 Te結晶2が得られる。
As a result of etching, a p-Hg, -, Cd, Te crystal 2 having a uniform thickness as shown in FIG. 1 [11] is obtained.

この表面に絶縁保護膜3をN層形成予定領域を除いた領
域に形成する。この絶縁保護膜3をマスクとして硼酸B
の原子をイオン注入してNIW4を形成する。此れに電
極形成を行って赤外線検知素子を製作する。
An insulating protective film 3 is formed on this surface except for the area where the N layer is to be formed. Using this insulating protective film 3 as a mask, boric acid B
Atoms are ion-implanted to form NIW4. Electrodes are formed on this to produce an infrared sensing element.

〔効果〕〔effect〕

以上の説明から明らかなように、この発明によれば、P
N接合部が均−深さで作成されると共に、結晶表面17
!(Hg+□CdyTe結晶)のバンドギャップが光電
変換層(Ilg 、−xcdxTe結晶)のバンドギャ
ップより大きく、表面リークが均一で小さなものとなり
、高品質の赤外線検知素子を製造する上で極めて有効な
効果を発揮する。
As is clear from the above description, according to the present invention, P
N junctions are created with uniform depth and the crystal surface 17
! The bandgap of the (Hg+□CdyTe crystal) is larger than the bandgap of the photoelectric conversion layer (Ilg, -xcdxTe crystal), and surface leakage is uniform and small, which is an extremely effective effect in manufacturing high-quality infrared sensing elements. demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外線検知素子の製造方法を説明する
ための要部工程図、 第2図は従来の赤外線検知素子の製造方法を説明するた
めの要部工程図である。 図において、1はP−Hg+−xCdx Te結晶、2
はP−Hg、、Cd、 Te結晶、3は絶縁保護膜、4
はNN、5はCdTe層を示す。 5CとA #部工社の 第1図 才■dか7印裳涜史欠ワ事Jめ唱凌3)kを訝θ月t)
ルbの零部工社U 第2図
FIG. 1 is a process diagram of essential parts for explaining the method of manufacturing an infrared sensing element of the present invention, and FIG. 2 is a process diagram of essential parts for explaining a conventional method of manufacturing an infrared sensing element. In the figure, 1 is P-Hg+-xCdx Te crystal, 2
are P-Hg, Cd, Te crystals, 3 is an insulating protective film, 4
indicates NN, and 5 indicates CdTe layer. 5C and A
Leb's Reibe Kosha U Figure 2

Claims (1)

【特許請求の範囲】[Claims] 水銀・カドミウム・テルルHg_1_−_xCd_xT
e結晶(1)の表面にx値の大きいHg_1_−_yC
d_yTe結晶(2)を形成し、該Hg_1_−_yC
d_yTe結晶(2)の表面にカドミウム・テルルCd
Te層(5)を形成したる後に、該CdTe層(5)の
みを選択エッチングにより除去し、所定パターンの絶縁
保護膜(3)を前記Hg_1_−_yCd_yTe結晶
(2)の表面に形成したる後に、該絶縁保護膜(3)を
マスクとしてN層を形成することを特徴とする赤外線検
知素子の製造方法。
Mercury, cadmium, tellurium Hg_1_-_xCd_xT
eHg_1_-_yC with large x value on the surface of crystal (1)
d_yTe crystal (2) is formed, and the Hg_1_-_yC
Cadmium/tellurium Cd on the surface of d_yTe crystal (2)
After forming the Te layer (5), only the CdTe layer (5) is removed by selective etching, and an insulating protective film (3) with a predetermined pattern is formed on the surface of the Hg_1_-_yCd_yTe crystal (2). A method for manufacturing an infrared sensing element, characterized in that an N layer is formed using the insulating protective film (3) as a mask.
JP61182257A 1986-08-01 1986-08-01 Manufacture of infrared ray detection element Pending JPS6338268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182257A JPS6338268A (en) 1986-08-01 1986-08-01 Manufacture of infrared ray detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182257A JPS6338268A (en) 1986-08-01 1986-08-01 Manufacture of infrared ray detection element

Publications (1)

Publication Number Publication Date
JPS6338268A true JPS6338268A (en) 1988-02-18

Family

ID=16115088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182257A Pending JPS6338268A (en) 1986-08-01 1986-08-01 Manufacture of infrared ray detection element

Country Status (1)

Country Link
JP (1) JPS6338268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403760A (en) * 1990-10-16 1995-04-04 Texas Instruments Incorporated Method of making a HgCdTe thin film transistor
JPH0945953A (en) * 1995-08-01 1997-02-14 Nec Corp Array infrared detector
US7112795B2 (en) 2000-12-30 2006-09-26 Dong Jin Semichem Co., Ltd. Method of controlling metallic layer etching process and regenerating etchant for metallic layer etching process based on near infrared spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403760A (en) * 1990-10-16 1995-04-04 Texas Instruments Incorporated Method of making a HgCdTe thin film transistor
JPH0945953A (en) * 1995-08-01 1997-02-14 Nec Corp Array infrared detector
US7112795B2 (en) 2000-12-30 2006-09-26 Dong Jin Semichem Co., Ltd. Method of controlling metallic layer etching process and regenerating etchant for metallic layer etching process based on near infrared spectrometer

Similar Documents

Publication Publication Date Title
US8674401B2 (en) Deep diffused thin photodiodes
JPS6338268A (en) Manufacture of infrared ray detection element
Kukurudziak et al. High-responsivity silicon p–i–n mesa-photodiode
JPS5527657A (en) Method of manufacturing infrared ray detecting element
JPS5421265A (en) Forming method of semiconductor oxide film
JPS5331964A (en) Production of semiconductor substrates
JPH0454969B2 (en)
JPS5638835A (en) Manufacture of semiconductor device
JPS5463689A (en) Production of semiconductor substrate for solar battery
JPS63271979A (en) Manufacture of semiconductor device
RU2654998C1 (en) Method of manufacturing a multi-film silicon pin-photosensitive element
JPS52124860A (en) Electrode formation method for semiconductor devices
JPS5649523A (en) Manufacture of semiconductor device
JPS5527659A (en) Method of manufacturing semiconductor device
JPS57136376A (en) Semiconductor radiation detector
JPS55113379A (en) Method of fabrication for semiconductor pressure- sensitive element
JPS5724580A (en) Manufacture of infrared ray detecting element
JPS5568650A (en) Manufacturing method of semiconductor device
JPH04133363A (en) Manufacture of array type cdhgte infrared detector
JPS55130141A (en) Fabricating method of semiconductor device
JPS5478682A (en) Manufactre of semiconductor laser
JPH05167089A (en) Fabrication of semiconductor crystal
JPS5484979A (en) Production of semiconductor device
JPS63170960A (en) Manufacture of infrared-ray detector
JPS5563841A (en) Manufacture of semiconductor integrated circuit