JPS6336155B2 - - Google Patents

Info

Publication number
JPS6336155B2
JPS6336155B2 JP3936981A JP3936981A JPS6336155B2 JP S6336155 B2 JPS6336155 B2 JP S6336155B2 JP 3936981 A JP3936981 A JP 3936981A JP 3936981 A JP3936981 A JP 3936981A JP S6336155 B2 JPS6336155 B2 JP S6336155B2
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
circular groove
semiconductor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3936981A
Other languages
Japanese (ja)
Other versions
JPS57154878A (en
Inventor
Masanori Tanabe
Satoshi Shimada
Motohisa Nishihara
Kazuji Yamada
Yoshitaka Matsuoka
Michitaka Shimazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3936981A priority Critical patent/JPS57154878A/en
Publication of JPS57154878A publication Critical patent/JPS57154878A/en
Publication of JPS6336155B2 publication Critical patent/JPS6336155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は半導体センサに係り、特に圧力、差圧
又は力などを歪量に変換し、これを電気抵抗の変
化として検出する半導体センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor sensor, and more particularly to a semiconductor sensor that converts pressure, differential pressure, force, etc. into an amount of strain and detects this as a change in electrical resistance.

半導体基板自体をダイアフラムとして圧力、差
圧に応動させ、該基板の一方の主面に不純物を拡
散してピエゾ抵抗素子を形成した半導体ダイアフ
ラム形感圧素子はこれまで種々の提案がある。そ
のような提案の1つとして第1図に示すような外
周肉厚部11と中央肉厚部12と円形溝部13と
を備えた半導体ダイアフラムがある。円形溝部1
3の厚さhは肉薄であり、この肉薄部に対応する
平滑面側にピエゾ抵抗素子が拡散形成されてい
る。このような形状のダイアフラム形感圧素子
は、中央肉厚部が剛体の作用をなし、中心剛体付
き円板として印加圧力に応動する。
Various proposals have been made so far regarding semiconductor diaphragm type pressure sensitive elements in which a piezoresistive element is formed by using a semiconductor substrate itself as a diaphragm to respond to pressure and differential pressure and by diffusing impurities onto one main surface of the substrate. One such proposal is a semiconductor diaphragm having a peripheral thick part 11, a central thick part 12, and a circular groove part 13 as shown in FIG. Circular groove 1
The thickness h of No. 3 is thin, and the piezoresistive element is diffused and formed on the smooth surface side corresponding to this thin portion. In a diaphragm pressure-sensitive element having such a shape, the central thick portion acts as a rigid body, and responds to applied pressure as a disk with a central rigid body.

このような形状の感圧素子を圧力なばのセンサ
として組み込むためには、種々の技術的課題を解
決して実用化しなければならない。その課題の1
つは、過負荷印加時の信頼性を向上することであ
る。このような課題はダイアフラム形感圧素子の
みの問題でなく、センサ構成さらには伝送器全体
を考慮して検討すべき問題である。しかるに、セ
ンサ構成の段階でこの課題が解決されなければ、
安定な性能を有する差圧伝送器の具現化は困難で
ある。すなわち、前述したダイアフラム形感圧素
子を用いたセンサを差圧伝送器に応用する場合に
は感圧素子自体はもとより該素子の支持部材も含
めたセンサ構成全体の検討が重要なポイントとな
る。
In order to incorporate a pressure sensitive element having such a shape as a pressure sensor, various technical problems must be solved and put into practical use. One of the challenges
One is to improve reliability when overload is applied. Such a problem is not only a problem of the diaphragm type pressure-sensitive element, but also a problem that should be considered in consideration of the sensor configuration and the transmitter as a whole. However, if this issue is not resolved at the sensor configuration stage,
It is difficult to realize a differential pressure transmitter with stable performance. That is, when applying a sensor using the above-mentioned diaphragm-type pressure-sensitive element to a differential pressure transmitter, it is important to consider the entire sensor configuration, including not only the pressure-sensitive element itself but also the support member for the element.

本発明の目的は、過負荷印加時の信頼性を向上
し得る新規な構成の半導体センサを提供すること
にある。
An object of the present invention is to provide a semiconductor sensor with a novel configuration that can improve reliability when overload is applied.

本発明は、円板の一方の面はその表面が平滑に
形成され、他方の面には外周肉厚部と中央肉厚部
の間に円形溝部が形成され、かつその円形溝部と
平滑面との間の厚さが肉薄である円板状半導体ダ
イアフラムを有するセンサにおいて、中央に貫通
孔を有する高絶縁性部材を半導体ダイアフラムと
金属支持部材の間に接合し、中央肉厚部の直径B
と円形溝部の外径Aとの比B/Aを0.5以上とし、
高絶縁性部材の貫通孔の直径CをB<C<Aとな
るように形成したことを特徴とする。
In the present invention, one side of the disk is formed to have a smooth surface, and the other side has a circular groove formed between the outer peripheral thick part and the central thick part, and the circular groove and the smooth surface are connected to each other. In a sensor having a disk-shaped semiconductor diaphragm with a thin thickness between the parts, a highly insulating member having a through hole in the center is joined between the semiconductor diaphragm and a metal support member, and the diameter of the central thick part is B.
and the outer diameter A of the circular groove, the ratio B/A is 0.5 or more,
A feature is that the diameter C of the through hole of the highly insulating member is formed so that B<C<A.

第2図は本発明の一実施例の概略構成図であ
る。第2図においてセンサはダイアフラム形感圧
素子1、この素子1と熱膨張係数が近似している
高絶縁性部材2および金属支持部材3を備えてい
る。ダイアフラム形感圧素子1の平滑面上には、
第3図に示すように、ボロン等のP形不純物で形
成するピエゾ抵抗素子5を<111>軸に沿つて配
置する。n形のシリコン単結晶基板からなる感圧
素子1の<111>軸に沿つてピエゾ抵抗を設けれ
ば最大ピエゾ抵抗感度が得られる。ピエゾ抵抗素
子5は円形溝に対応した薄肉層の内周側と外周側
に各々2個ずつ配置され、合計4個の素子5によ
つてフルブリツジを構成する。図では4つのフル
ブリツジが形成されている。
FIG. 2 is a schematic diagram of an embodiment of the present invention. In FIG. 2, the sensor includes a diaphragm-type pressure-sensitive element 1, a highly insulating member 2 whose coefficient of thermal expansion is similar to that of the element 1, and a metal support member 3. On the smooth surface of the diaphragm pressure sensitive element 1,
As shown in FIG. 3, a piezoresistive element 5 made of a P-type impurity such as boron is arranged along the <111> axis. Maximum piezoresistive sensitivity can be obtained by providing a piezoresistor along the <111> axis of the pressure sensitive element 1 made of an n-type silicon single crystal substrate. Two piezoresistive elements 5 are arranged on the inner circumferential side and the outer circumferential side of the thin layer corresponding to the circular groove, and a total of four elements 5 constitute a full bridge. In the figure, four full bridges are formed.

中央肉厚部の直径Bと円形溝部の外径Aとの比
B/Aを0.5以上とし、ピエゾ抵抗素子をフルブ
リツジに配置することにより、1Kgf/cm2以上の
低圧に対しても良好な変換感度を得ることができ
る。
By setting the ratio B/A between the diameter B of the central thick part and the outer diameter A of the circular groove to 0.5 or more, and arranging the piezoresistive element in a full bridge, good conversion can be achieved even at low pressures of 1 Kgf/cm 2 or more. Sensitivity can be obtained.

高絶縁性部材2としてはホウケイ酸ガラスを用
いており、金属支持部材3としてはFe−Ni系合
金を用いている。三者は低ひずみ接合法によつて
堅固に接合されている。差圧−電気信号の変換感
度及び精度についてはダイアフラム薄肉部の厚さ
h、外径A及び内径Bが重要なパラメータとな
り、B/Aを0.5以上とし印加差圧の基準レンジ
に応じてhを変えることにより、高感度で、か
つ、0.2%以下の高精度化が実現する。hとして
は具体的には数10〜数100μmのオーダーである。
かかる寸法検討により同図に示す実施例において
は、差圧伝送器としての変換静特性を十分満足す
るものが得られる。
As the highly insulating member 2, borosilicate glass is used, and as the metal support member 3, an Fe-Ni alloy is used. The three parts are firmly joined using a low strain joining method. Regarding the conversion sensitivity and accuracy of differential pressure to electric signal, the thickness h of the thin part of the diaphragm, the outer diameter A, and the inner diameter B are important parameters. By changing this, high sensitivity and high accuracy of 0.2% or less can be achieved. Specifically, h is on the order of several 10 to several 100 μm.
Through such dimensional studies, the embodiment shown in the figure can be obtained that fully satisfies the conversion static characteristics as a differential pressure transmitter.

次に、温度影響について説明する。半導体は本
来温度に敏感な性質があり、かかる拡散形半導体
ひずみゲージ方式のセンサはゲージの抵抗値及び
感度の目安となるゲージフアクタ等が所定の温度
係数を有する。本実施例では、常温〜300℃の平
均熱膨張係数が約3.1×10-6-1であるSi単結晶に
対し、約3.2×10-6-1のホウケイ酸ガラス及び
3.6×10-6-1のFe−Ni系合金によつてセンサを
構成しており、さらにこれらの部材を陽極接合法
という低ひずみの接合方法を用いることにより温
度特性の変調を低減する。
Next, temperature effects will be explained. Semiconductors are inherently sensitive to temperature, and in such a diffused semiconductor strain gauge type sensor, the resistance value of the gauge and the gauge factor, which is a measure of sensitivity, have a predetermined temperature coefficient. In this example, Si single crystal, which has an average thermal expansion coefficient of about 3.1 x 10 -6-1 from room temperature to 300 ℃, and borosilicate glass with an average coefficient of thermal expansion of about 3.2 x 10 -6-1 and
The sensor is made of a Fe-Ni alloy with a temperature of 3.6×10 -6 °C -1 , and the use of a low-strain bonding method called anodic bonding reduces variations in temperature characteristics.

次に、雑音影響の防止について説明する。差圧
伝送器においては、センサを設置する受圧部は普
通ステンレス鋼等の耐腐食性の金属材料によつて
製作される。かかる受圧部にセンサは堅固に設置
固定される必要があり、第2図の実施例に示す
Fe−Ni系合金からなる支持部材3の下部を受圧
部本体に溶接固定する事が望ましい。かかる状況
においてセンサを誘導雑音から保護するためには
差圧−電気信号変換部すなわちSiダイアフラム形
感圧素子1を受圧部本体と電気的に絶縁する必要
がある。本実施例においてはかかる要求を絶縁性
の高いホウケイ酸ガラスからなる部材2を前記感
圧素子1及びFe−Ni系合金3の間に設置するこ
とにより実現している。さらに、図示していない
が感圧素子1の基板に高電位を与えて、素子自体
も雑音を受けにくい構造としている。
Next, prevention of noise influence will be explained. In differential pressure transmitters, the pressure receiving part on which the sensor is installed is usually made of a corrosion-resistant metal material such as stainless steel. The sensor needs to be firmly installed and fixed on such a pressure receiving part, as shown in the embodiment shown in Fig. 2.
It is desirable to weld and fix the lower part of the support member 3 made of Fe-Ni alloy to the pressure receiving part body. In such a situation, in order to protect the sensor from induced noise, it is necessary to electrically insulate the differential pressure-to-electrical signal converter, that is, the Si diaphragm type pressure sensing element 1, from the pressure receiver main body. In this embodiment, this requirement is achieved by installing a member 2 made of borosilicate glass with high insulating properties between the pressure sensitive element 1 and the Fe--Ni alloy 3. Furthermore, although not shown, a high potential is applied to the substrate of the pressure-sensitive element 1, so that the element itself is structured to be less susceptible to noise.

次に過負荷影響について説明する。第2図のセ
ンサは半導体ダイアフラムの上下両面のいずれの
方向から差圧が印加された場合についてもほぼ同
等で、且つ高感度、高精度を示すが、通常の被測
定差圧に対し数倍〜数10倍の圧力が加わつた場合
においても、これに耐えうるように設計されてい
る。センサの過負荷に対する強度的な信頼性に対
してはダイアフラム自身の破壊強度と、該ダイア
フラムと前記ホウケイ酸ガラス部材との接合強度
が重要となる。このうち、前者についてはダイア
フラムの加工条件等の配慮により高い信頼性を示
すが、後者の場合には前記ガラス部材の寸法形状
が強度的に重要となる。この場合の強度はダイア
フラム下面から過負荷が加わつた場合の方が弱
い。この理由は圧力がダイアフラムとガラス部材
をはく離するように作用するからである。したが
つて、ダイアフラムとガラス部材の接合部に角部
が存在すると、この部分の応力集中が大きくな
り、はく離しやすくなつてしまう。
Next, the overload effect will be explained. The sensor shown in Figure 2 exhibits almost the same level of differential pressure when applied from either the upper or lower surfaces of the semiconductor diaphragm, and also exhibits high sensitivity and accuracy, but it is several times higher than the normal differential pressure to be measured. It is designed to withstand even when tens of times more pressure is applied. For the reliability of the sensor against overload, the breaking strength of the diaphragm itself and the bonding strength between the diaphragm and the borosilicate glass member are important. Among these, the former shows high reliability due to consideration of processing conditions of the diaphragm, but in the latter case, the dimensions and shape of the glass member are important in terms of strength. In this case, the strength is weaker when the overload is applied from the bottom surface of the diaphragm. The reason for this is that the pressure acts to separate the diaphragm and the glass member. Therefore, if a corner exists at the joint between the diaphragm and the glass member, stress concentration at this part will increase, making it easier for the glass member to separate.

応力集中を最も弱くするには、半導体ダイアフ
ラム薄肉部の外径Aとガラス部材の貫通孔の径
Ag′を等しくするのが理想的である。しかし、ガ
ラス部材2に貫通孔を設ける際には角部に切欠き
が若干生じ、これを考慮しないでダイアフラム1
とガラス部材2を接合すると、この部分に大きな
応力集中が起こり、はく離に対する強度が低下す
る。そこで、実施例では孔径Ag′の寸法をB<
Ag′<Aにすることにより、貫通孔の切欠きの影
響をなくしている。
In order to minimize stress concentration, the outer diameter A of the semiconductor diaphragm thin section and the diameter of the through hole in the glass member should be adjusted.
Ideally, Ag′ should be equal. However, when providing a through hole in the glass member 2, a slight notch is created at the corner, and without taking this into consideration, the diaphragm 1
When the glass member 2 is bonded to the glass member 2, a large stress concentration occurs in this portion, and the strength against peeling is reduced. Therefore, in the example, the dimension of the pore diameter Ag′ was set to B<
By setting Ag'<A, the influence of the notch of the through hole is eliminated.

静圧影響は差圧伝送器特有の問題である。すな
わち、差圧伝送器は化学プラント等の配管系に設
置されて使用されるが、配管系には常時極めて高
圧のライン圧(すなわち静圧)が印加されてい
る。伝送器が検出する圧力はかかるライン圧では
なく、例えば配管の途中に設けたオリフイスによ
つて生じる微小差圧を検出するもので、配管系を
流れる流体の流量検出等に応用することが多い。
したがつて、かかる静圧に対しては電気信号が生
じてはならないものであり、これを低減すること
によつて伝送器として実用できる。
Static pressure effects are a problem specific to differential pressure transmitters. That is, a differential pressure transmitter is installed and used in a piping system of a chemical plant or the like, and an extremely high line pressure (ie, static pressure) is constantly applied to the piping system. The pressure detected by the transmitter is not the line pressure but, for example, detects a minute differential pressure generated by an orifice installed in the middle of the piping, and is often applied to detecting the flow rate of fluid flowing through the piping system.
Therefore, no electrical signal should be generated in response to such static pressure, and by reducing this, it can be put to practical use as a transmitter.

センサが静圧影響を受ける要因は各構成部材の
弾性係数の相違にある。すなわち、第2図の実施
例においては、上述したように熱膨張係数の類似
性及び絶縁性を考慮して温度特性の変調及び雑音
の影響の低減を図つているが、かかる部材につい
てはそれぞれの弾性係数が若干異なり、例えば<
110>面のSi単結晶では約1.7×104Kgf/mm2Fe−
Ni系合金では約1.6×104Kgf/mm2であり、これに
対してホウケイ酸ガラスでは約6.7×103Kgf/mm2
である。かかる構成は剛性の高いものの間に剛性
の低いものがはさまれていることになり、これが
静圧影響に対して重要な要因となつている。本実
施例においては、各部材の弾性係数の相違による
影響を各部材の形状寸法を最適にすることによ
り、低減するもので、前述した過負荷影響の低減
を図つた寸法を考慮した上で、各部材の寸法を決
めた。この結果、ガラス部材2の厚さtgとダイア
フラムの周辺肉厚部の厚さtsとの比tg/tsを1以
上とすることにより、静圧影響を許容限度内にお
さえることができた。
The reason why the sensor is affected by static pressure is the difference in the elastic modulus of each component. In other words, in the embodiment shown in FIG. 2, as mentioned above, the similarity of thermal expansion coefficients and insulation are taken into consideration to modulate the temperature characteristics and reduce the influence of noise. The elastic modulus is slightly different, for example <
110> Si single crystal has approximately 1.7×10 4 Kgf/mm 2 Fe−
For Ni-based alloys, it is approximately 1.6×10 4 Kgf/mm 2 , whereas for borosilicate glass it is approximately 6.7×10 3 Kgf/mm 2
It is. In such a configuration, a material with low rigidity is sandwiched between materials with high rigidity, and this is an important factor for the influence of static pressure. In this example, the influence due to the difference in the elastic modulus of each member is reduced by optimizing the shape and dimensions of each member, and after taking into consideration the dimensions intended to reduce the overload influence mentioned above, The dimensions of each member were determined. As a result, by setting the ratio t g /t s of the thickness t g of the glass member 2 to the thickness t s of the peripheral thick part of the diaphragm to be 1 or more, it is possible to suppress the effect of static pressure within the allowable limit. did it.

第4図は第2図の実施例と、本発明を適用しな
い例との静圧影響を比較した図である。実施例品
(イ)の寸法は、ts=2mm、tg=4mm、A=10mm、B
=7mm、Ag′=8mmである。また、ガラス部材2
を有するが本発明を適用していない例(ロ)は、ガラ
ス部材2の厚さtgが感圧素子1の厚さtsよりも小
さく、かつガラス部材2の貫通孔の直径が中央肉
厚部の直径Bよりも小さい。図のように本発明を
適用すれば静圧影響をも低減可能となる。
FIG. 4 is a diagram comparing the influence of static pressure between the embodiment shown in FIG. 2 and an example to which the present invention is not applied. Example product
The dimensions of (A) are: t s = 2 mm, t g = 4 mm, A = 10 mm, B
= 7 mm, Ag′ = 8 mm. In addition, glass member 2
In example (b) to which the present invention is not applied, the thickness t g of the glass member 2 is smaller than the thickness t s of the pressure-sensitive element 1, and the diameter of the through hole of the glass member 2 is smaller than the center wall. It is smaller than the diameter B of the thick part. If the present invention is applied as shown in the figure, it is also possible to reduce the effects of static pressure.

以上説明したように本発明によれば、過負荷影
響に対して有効に働き得る半導体センサを具現化
できる。
As explained above, according to the present invention, it is possible to realize a semiconductor sensor that can effectively work against the influence of overload.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から知られている半導体ダイアフ
ラムの説明図、第2図は本発明の一実施例の構成
を説明するための図、第3図は第2図の実施例に
おけるピエゾ抵抗素子の配置図、第4図は静圧特
性の比較図である。 1……感圧素子、2……ガラス部材、3……金
属部材、11……外周肉厚部、12……中央肉厚
部、13……円形溝部。
FIG. 1 is an explanatory diagram of a conventionally known semiconductor diaphragm, FIG. 2 is an explanatory diagram of the configuration of an embodiment of the present invention, and FIG. 3 is a diagram of a piezoresistive element in the embodiment of FIG. The layout diagram and FIG. 4 are comparison diagrams of static pressure characteristics. DESCRIPTION OF SYMBOLS 1... Pressure sensitive element, 2... Glass member, 3... Metal member, 11... Outer peripheral thick part, 12... Center thick part, 13... Circular groove part.

Claims (1)

【特許請求の範囲】 1 円板の一方の面はその表面が平滑に形成さ
れ、他方の面には外周肉厚部と中央肉厚部の間に
円形溝部が形成され、かつその円形溝部と上記平
滑面との間の厚さが肉薄である円板状半導体ダイ
アフラムと、上記平滑面上の上記円形溝部に対応
する位置に拡散形成されたピエゾ抵抗素子と、上
記半導体ダイアフラムを支持するための金属支持
部材とを備えた半導体センサにおいて、中央に貫
通孔を有する高絶縁性部材を上記半導体ダイアフ
ラムと上記金属支持部材の間に接合し、上記中央
肉厚部の直径Bと上記円形溝部の外径Aとの比
B/Aを0.5以上とし、上記高絶縁性部材の貫通
孔の直径CをB<C<Aとなるように形成したこ
とを特徴とする半導体センサ。 2 特許請求の範囲第1項記載の半導体センサに
おいて、上記高絶縁性部材の厚さは上記半導体ダ
イアフラムの厚さより大であることを特徴とする
半導体センサ。
[Scope of Claims] 1. One side of the disk is formed to have a smooth surface, and the other side has a circular groove formed between the outer peripheral thick part and the central thick part, and the circular groove has a flat surface. a disk-shaped semiconductor diaphragm having a thin thickness between the smooth surface and the piezoresistive element diffused in a position corresponding to the circular groove on the smooth surface; In the semiconductor sensor equipped with a metal support member, a highly insulating member having a through hole in the center is joined between the semiconductor diaphragm and the metal support member, and a diameter B of the central thick portion and an outside of the circular groove portion are connected to each other. A semiconductor sensor characterized in that the ratio B/A to the diameter A is 0.5 or more, and the diameter C of the through hole of the highly insulating member is formed so that B<C<A. 2. The semiconductor sensor according to claim 1, wherein the thickness of the highly insulating member is greater than the thickness of the semiconductor diaphragm.
JP3936981A 1981-03-20 1981-03-20 Semiconductor sensor Granted JPS57154878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3936981A JPS57154878A (en) 1981-03-20 1981-03-20 Semiconductor sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3936981A JPS57154878A (en) 1981-03-20 1981-03-20 Semiconductor sensor

Publications (2)

Publication Number Publication Date
JPS57154878A JPS57154878A (en) 1982-09-24
JPS6336155B2 true JPS6336155B2 (en) 1988-07-19

Family

ID=12551133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3936981A Granted JPS57154878A (en) 1981-03-20 1981-03-20 Semiconductor sensor

Country Status (1)

Country Link
JP (1) JPS57154878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389830A (en) * 1989-09-01 1991-04-15 Matsushita Electric Ind Co Ltd Brush holding structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056672Y2 (en) * 1986-07-23 1993-02-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389830A (en) * 1989-09-01 1991-04-15 Matsushita Electric Ind Co Ltd Brush holding structure

Also Published As

Publication number Publication date
JPS57154878A (en) 1982-09-24

Similar Documents

Publication Publication Date Title
US5012677A (en) Differential pressure transmitter
US5872315A (en) Pressure detecting apparatus
JP2544435B2 (en) Multi-function sensor
JPS641733B2 (en)
JPH0425735A (en) Semicondcutor diaphragm for measuring pressure and differential pressure
EP2128583A2 (en) Pressure-sensor apparatus
JPH029704B2 (en)
US5932809A (en) Sensor with silicon strain gage
US20120216622A1 (en) Robust design of high pressure sensor device
US4212209A (en) Differential pressure to electric current transducer employing a strain sensitive resistive pattern on a substrate having a high modulus of elasticity
US7661317B2 (en) High pressure transducer having an H shaped cross-section
JPS6336155B2 (en)
EP0080186B1 (en) Semiconductor pressure transducer
JPH11211593A (en) Mounting structure of pressure detector
US7559248B2 (en) High pressure transducer having an H shaped cross-section
JPH07311110A (en) Composite sensor and composite transfer device using it
JP2512220B2 (en) Multi-function sensor
JPH0419495B2 (en)
JP2516211B2 (en) Semiconductor pressure sensor
JPS5845533A (en) Pressure detector
JPH10142086A (en) Semiconductor pressure sensor, its manufacturing method, and differential pressure transmitter using the same
JPS63196081A (en) Semiconductor-type pressure detector
JPH06102128A (en) Semiconductor composite function sensor
JPS58151536A (en) Differential pressure detector
JP2001124645A (en) Semiconductor pressure sensor