JPS6335404Y2 - - Google Patents

Info

Publication number
JPS6335404Y2
JPS6335404Y2 JP1980051208U JP5120880U JPS6335404Y2 JP S6335404 Y2 JPS6335404 Y2 JP S6335404Y2 JP 1980051208 U JP1980051208 U JP 1980051208U JP 5120880 U JP5120880 U JP 5120880U JP S6335404 Y2 JPS6335404 Y2 JP S6335404Y2
Authority
JP
Japan
Prior art keywords
heat
resistant
insulating tube
oxygen sensor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980051208U
Other languages
Japanese (ja)
Other versions
JPS56153852U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980051208U priority Critical patent/JPS6335404Y2/ja
Publication of JPS56153852U publication Critical patent/JPS56153852U/ja
Application granted granted Critical
Publication of JPS6335404Y2 publication Critical patent/JPS6335404Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、センサ素子を保護するための防水構
造を有する酸素センサに関するものである。
[Detailed Description of the Invention] The present invention relates to an oxygen sensor having a waterproof structure for protecting a sensor element.

酸素センサとは、酸化イツトリウム等で安定化
されたジルコニア等の固体電解質を材料とする容
器状基材の内外表面に、白金系金属薄膜からなる
内外電極層を形成せしめた固体電解質容器(セン
サ素子)に、内部標準物質として、例えば空気の
様に一定の酸素を含有した気体等を用い、このセ
ンサ素子の内外電極に夫々接触する内部標準物質
と、被測定ガスとの平衡酸素分圧の比を電位差に
変換し、もつて被測定ガスの酸素濃度を検出する
もので、自動車においてはエンジンの空燃比制御
機構にフイードバツクされる排ガス中の酸素濃度
を検出する役割を果しており、三元触媒を用いた
排ガス浄化システムには欠くことのできないもの
である。
An oxygen sensor is a solid electrolyte container (sensor element) in which inner and outer electrode layers made of platinum-based metal thin films are formed on the inner and outer surfaces of a container-shaped base material made of a solid electrolyte such as zirconia stabilized with yttrium oxide, etc. ), use a gas containing a certain amount of oxygen, such as air, as the internal standard substance, and calculate the ratio of the equilibrium oxygen partial pressure between the internal standard substance that contacts the inner and outer electrodes of the sensor element, and the gas to be measured. is converted into a potential difference, thereby detecting the oxygen concentration of the gas being measured.In automobiles, it plays the role of detecting the oxygen concentration in the exhaust gas, which is fed back to the air-fuel ratio control mechanism of the engine, and uses a three-way catalyst. It is indispensable for the exhaust gas purification system used.

従来の酸素センサは、内部標準物質として空気
を用いた場合、通常第1図に示す様な構造とな
る。素子1は酸化イツトリウム等で安定化された
ジルコニア等の容器状基材の内外表面に、内外電
極層1b,1cを形成せしめた固体電解質容器か
らなり、例えば耐熱鋼等の耐熱材料からなるハウ
ジング2に固定するための肩部1aを持ち、内外
電極層1b,1cはこの肩部より上側の外側表面
もしくは開口部端面において分離、絶縁されてい
る。該素子1とハウジング2との間隙には、例え
ば黒鉛等の耐熱導電体からなる導電リング3が充
填せられ、更にタルク、アスベスト等の耐熱材料
からなるクツシヨンリング4が充填されており、
素子1の外側電極層1cに発生した電位は、肩部
1aの上側から導電リング3を介してハウジング
2に伝達される。一方、素子1の開口部には、例
えば耐熱鋼等からなり空気導入用の貫通孔を持つ
たステム5が挿入され、素子開口部内面とステム
5との間隙には、例えば黒鉛等からなる導電材6
が充填されている。また、ハウジング2の上部に
は、保護カバー位置決めリング8によつて保護カ
バー7が固定されておりこの保護カバー7の上端
部にはアルミナ等の耐熱絶縁体からなる後部絶縁
管9が保持されており、該後部絶縁管9には導電
体からなる電位取出し用端子10が固定されてい
る。該端子10と前記ステム5との間には、耐熱
鋼等の耐熱弾性体で導電性を有する材料からなる
コイル状のスプリング11が装着され、素子1の
開口部近傍内面と導電材6及び導電材6とステム
5との接触を確保すると同時に、振動等により導
電体6の形状が崩れない様に保持しており、素子
1の内側電極層1bに発生した電位は、素子1の
開口部近傍の内面から導電体6、ステム5及びス
プリング11を介して端子10に伝達される。し
かしながらかかる構造の従来型酸素センサは、次
の如き欠点を有している。
A conventional oxygen sensor usually has a structure as shown in FIG. 1 when air is used as an internal standard substance. The element 1 consists of a solid electrolyte container in which inner and outer electrode layers 1b and 1c are formed on the inner and outer surfaces of a container-shaped base material such as zirconia stabilized with yttrium oxide or the like, and a housing 2 made of a heat-resistant material such as heat-resistant steel. The inner and outer electrode layers 1b and 1c are separated and insulated at the outer surface or the end surface of the opening above the shoulder. The gap between the element 1 and the housing 2 is filled with a conductive ring 3 made of a heat-resistant conductor such as graphite, and further filled with a cushion ring 4 made of a heat-resistant material such as talc or asbestos.
The potential generated on the outer electrode layer 1c of the element 1 is transmitted to the housing 2 from above the shoulder portion 1a via the conductive ring 3. On the other hand, a stem 5 made of, for example, heat-resistant steel and having a through hole for introducing air is inserted into the opening of the element 1, and a conductive stem 5 made of, for example, graphite is inserted into the gap between the inner surface of the element opening and the stem 5. Material 6
is filled. A protective cover 7 is fixed to the upper part of the housing 2 by a protective cover positioning ring 8, and a rear insulating tube 9 made of a heat-resistant insulator such as alumina is held at the upper end of the protective cover 7. A potential extraction terminal 10 made of a conductor is fixed to the rear insulating tube 9. A coiled spring 11 made of a heat-resistant elastic and conductive material such as heat-resistant steel is installed between the terminal 10 and the stem 5, and connects the inner surface near the opening of the element 1, the conductive material 6, and the conductive material. At the same time as ensuring contact between the material 6 and the stem 5, the shape of the conductor 6 is maintained so that it does not collapse due to vibration etc., and the potential generated in the inner electrode layer 1b of the element 1 is transferred to the vicinity of the opening of the element 1. is transmitted from the inner surface of the terminal 10 via the conductor 6, stem 5, and spring 11. However, the conventional oxygen sensor having such a structure has the following drawbacks.

1 黒鉛等の耐熱導電体は、耐熱性が十分ではな
いため取付位置が限定され、一定の突出し量を
確保しようとすれば、素子自体を大きくする必
要がある。
1 Heat-resistant conductors such as graphite do not have sufficient heat resistance, so mounting positions are limited, and if a certain amount of protrusion is to be ensured, the element itself must be made larger.

2 黒鉛等は熱伝達率も高い場合が多く、酸素セ
ンサを自動車の排気管に取付けて走行する際、
露出部(上半部)に水が飛来した場合水による
温度降下がハウジング2、導電リング3を介し
て速やかに素子1に伝達される。かかる事態が
素子1が高温状態にある時発生すれば、熱衝撃
に弱いジルコニア等から成る素子1は破壊され
る。
2 Graphite etc. often have a high heat transfer rate, so when driving with an oxygen sensor attached to the exhaust pipe of a car,
When water hits the exposed portion (upper half), the temperature drop due to the water is quickly transmitted to the element 1 via the housing 2 and the conductive ring 3. If such a situation occurs when the element 1 is in a high temperature state, the element 1 made of zirconia or the like, which is susceptible to thermal shock, will be destroyed.

上記の如き欠点を解決するために、セラミツク
等からなる絶縁管の先端にセンサ素子を取りつ
け、該絶縁管をハウジングに係止、固定した酸素
センサについてさきに提案した。
In order to solve the above-mentioned drawbacks, an oxygen sensor was previously proposed in which a sensor element was attached to the tip of an insulating tube made of ceramic or the like, and the insulating tube was locked and fixed to a housing.

この改良された酸素センサの詳細を第2図及び
第3図にしたがつて説明する。
Details of this improved oxygen sensor will be explained with reference to FIGS. 2 and 3.

即ち、酸化イツトリウム等で安定化されたジル
コニア等の酸素イオン導電性材料からなり、開口
部近傍の外径が先端部より大となる様肩部20a
を形成した容器状の形状を持ち、内外表面に白金
系合金薄膜から成る内外電極層20b,20cを
形成し、必要であれば外側電極層を保護するため
の多孔質コーテイング層を形成(図示せず)した
素子20を、例えば耐熱鋼等の耐熱性導電材料か
ら成り、素子の最外周径よりやや大なる内径を持
つた円筒部と、該円筒部の連続的に縮小して素子
20の最外周径より小で素子先端部外径より大と
し、かつ素子20の肩部20aに対応する形状と
したテーパ部とからなる素子接触部22aと、前
記円筒部とほぼ同値の曲率を持ち前記テーパ部と
逆の方向に伸びる板状の取出し部22b及び保持
部22cとからなる外側電極用リード金具22に
挿入する。この時、例えば白金等の耐熱性の良好
な金属の粉末を含む導電ペーストを、素子肩部2
0aの外面とリード金具22の内面との間に少量
塗布すると、電気的な接触が確保され、耐久性も
向上する(図示せず)。次に、耐熱鋼等の耐熱導
電体の管から成り、一方の端にて管内面を外側に
折り曲げて素子20の開口部近傍の内面に接触す
る様に成形した素子接触部23aと、該接触部2
3aに連続して伸びる管状部23b及び該管状部
23bの素子接触部23bと逆の端部近傍におい
て、外周面から内周面に向つて貫通する空気導入
孔23cを持つた内側電極用リード金具23を素
子接触部23aが素子20の開口部内面に接触す
る様に載置する。この時、素子接触部23aと素
子20の開口部内面との間に耐熱性導電ペースト
を少量塗布すると効果的であることは前述の通り
である。次に、例えばアルミナ等の様に固体電解
質に比べて強度、耐熱衝撃性が高く、金属材料に
比べて熱伝達率の低い耐熱絶縁材料から成り、素
子最外周径よりやや小なる外径を有し、内側電極
用リード金具23の管状部23bの外径よりやや
大なる内径の貫通孔24aを持つた円筒状の内側
絶縁管24を、貫通孔24aに内側電極用リード
金具23の管状部23bを挿入する様にして組合
わせる。かかる状態で、内側絶縁管24と同種の
材料から成り、ハウジングに固定するための肩部
21aを持ち、外側電極用リード金具22の円筒
部外径よりやや大なる内径で、先端に素子20を
係止するために径を小とした素子係止部21bを
形成した貫通孔を持つた外側絶縁管21に挿入
し、外側電極用リード金具22を介して素子20
を外側絶縁管21の素子係止部21bに係止す
る。次に素子20と外側絶縁管21との間隙をガ
ラス等の耐熱シール材25を用いてシールし、さ
らに外側絶縁管21と内側絶縁管24との間隙に
耐熱性接着材26を充填して固着せしめた後、下
端に素子保護カバー27aを持つた耐熱鋼等から
成るハウジング27に挿入し、保護カバー28、
耐熱クツシヨン材29、保護カバー位置決めリン
グ30を用いて固定する。次に、外側電極用リー
ド金具22の取出し部22bの端部と保護カバー
28の上端部とを溶接等により導電性を確保しつ
つ接合し、さらに内側電極用リード金具23の管
状部上端に被覆線32の芯線を露出させて挿入し
圧着等により結合した後、被覆線32を後部保護
カバー33、耐熱弾性体34によつて固定する。
かくして改良された酸素センサは完成する。この
改良型酸素センサによれば従来の酸素センサの欠
点が解消され、一定の突出し量を確保しつつ素子
を小型化することが可能となり、水が飛来しても
ハウジングを通して伝達される温度降下による素
子割れも防止できる。
That is, the shoulder portion 20a is made of an oxygen ion conductive material such as zirconia stabilized with yttrium oxide or the like, and the outer diameter near the opening is larger than the tip.
The inner and outer electrode layers 20b and 20c made of platinum-based alloy thin films are formed on the inner and outer surfaces, and if necessary, a porous coating layer is formed to protect the outer electrode layer (not shown). The element 20 is made of a heat-resistant conductive material such as heat-resistant steel and has a cylindrical part having an inner diameter slightly larger than the outermost circumferential diameter of the element. an element contacting part 22a consisting of a tapered part that is smaller than the outer circumferential diameter and larger than the outer diameter of the tip of the element and has a shape corresponding to the shoulder part 20a of the element 20; It is inserted into the outer electrode lead fitting 22, which consists of a plate-shaped take-out part 22b and a holding part 22c, which extend in the opposite direction. At this time, a conductive paste containing powder of a heat-resistant metal such as platinum is applied to the element shoulder 2.
If a small amount is applied between the outer surface of Oa and the inner surface of lead metal fitting 22, electrical contact will be ensured and durability will also be improved (not shown). Next, an element contact portion 23a is formed of a tube made of a heat-resistant conductor such as heat-resistant steel, and the inner surface of the tube is bent outward at one end to contact the inner surface of the element 20 near the opening. Part 2
3a, and an air introduction hole 23c penetrating from the outer peripheral surface toward the inner peripheral surface near the end of the tubular part 23b opposite to the element contacting part 23b. 23 is placed so that the element contact portion 23a contacts the inner surface of the opening of the element 20. At this time, as described above, it is effective to apply a small amount of heat-resistant conductive paste between the element contact portion 23a and the inner surface of the opening of the element 20. Next, it is made of a heat-resistant insulating material such as alumina, which has higher strength and thermal shock resistance than solid electrolytes and has a lower heat transfer coefficient than metal materials, and has an outer diameter slightly smaller than the outermost diameter of the element. Then, a cylindrical inner insulating tube 24 having a through hole 24a with an inner diameter slightly larger than the outer diameter of the tubular part 23b of the inner electrode lead fitting 23 is inserted into the through hole 24a. Combine by inserting. In this state, a tube is made of the same material as the inner insulating tube 24, has a shoulder portion 21a for fixing to the housing, has an inner diameter slightly larger than the outer diameter of the cylindrical portion of the outer electrode lead fitting 22, and has the element 20 at its tip. The element 20 is inserted into an outer insulating tube 21 having a through hole in which an element locking part 21b with a small diameter is formed for locking, and the element 20 is inserted through an outer electrode lead fitting 22.
is locked to the element locking portion 21b of the outer insulating tube 21. Next, the gap between the element 20 and the outer insulating tube 21 is sealed using a heat-resistant sealing material 25 such as glass, and then the gap between the outer insulating tube 21 and the inner insulating tube 24 is filled with a heat-resistant adhesive 26 and fixed. After tightening, it is inserted into a housing 27 made of heat-resistant steel, etc., which has an element protection cover 27a at the lower end, and the protection cover 28,
It is fixed using a heat-resistant cushion material 29 and a protective cover positioning ring 30. Next, the end of the extraction part 22b of the outer electrode lead fitting 22 and the upper end of the protective cover 28 are joined by welding or the like while ensuring conductivity, and then the upper end of the tubular part of the inner electrode lead fitting 23 is coated. After the core wire of the wire 32 is exposed and inserted and bonded by crimping or the like, the covered wire 32 is fixed with the rear protective cover 33 and the heat-resistant elastic body 34.
The improved oxygen sensor is thus completed. This improved oxygen sensor eliminates the drawbacks of conventional oxygen sensors, makes it possible to downsize the element while maintaining a certain amount of protrusion, and reduces the temperature drop transmitted through the housing even when water is splashed onto it. Element cracking can also be prevented.

しかしながらかかる改良型酸素センサにおいて
も、露出部に大量の水が飛来した場合、後部保護
管33の下端部のスリツト33aと保護管28の
上端部のへこみ28aとによつて形成されている
空気流入路から水が浸入し、さらに内側電極用リ
ード金具23の空気導入孔23cより内側電極用
リード金具23の内部を伝わつて先端部の素子2
0に到達し、この時素子20が高温状態にあれば
素子20が破壊されるという欠点を有している。
However, even in such an improved oxygen sensor, when a large amount of water comes flying into the exposed part, air flows in through the slit 33a at the lower end of the rear protective tube 33 and the recess 28a at the upper end of the protective tube 28. Water infiltrates from the channel and further travels inside the inner electrode lead fitting 23 through the air introduction hole 23c of the inner electrode lead fitting 23, and then reaches the element 2 at the tip.
0, and if the element 20 is in a high temperature state at this time, it has the disadvantage that the element 20 will be destroyed.

本考案は、露出部に大量の水が飛来しても、空
気の導入径路を介して水が素子先端に達する事を
防止すると同時に標準物質たる空気が素子の内側
に流入することを妨げない防水構造を有する酸素
センサを提供することを目的とする。
Even if a large amount of water splashes onto the exposed part, this design prevents the water from reaching the tip of the element through the air introduction path, and at the same time prevents air, which is a standard substance, from flowing into the inside of the element. An object of the present invention is to provide an oxygen sensor having a structure.

本考案の酸素センサは固体電解質容器の内外表
面に電極を形成した素子を、該素子全体が被測定
ガス内に位置するようにハウジングにより固定さ
れる絶縁管の先端に係止固定し、該絶縁管に後端
部と素子内面とをつなぐ空気導入孔を設け、該空
気導入孔の少くとも一部に耐熱性の多孔質フイル
タを装着したことを特徴とする。
In the oxygen sensor of the present invention, an element having electrodes formed on the inner and outer surfaces of a solid electrolyte container is fixed to the tip of an insulating tube fixed by a housing so that the entire element is located within the gas to be measured. It is characterized in that the tube is provided with an air introduction hole connecting the rear end portion and the inner surface of the element, and a heat-resistant porous filter is attached to at least a portion of the air introduction hole.

以下、本考案を実施例に基いて具体的に説明す
る。
Hereinafter, the present invention will be specifically explained based on examples.

第4図及び第5図に示す如く、前述の固体電解
質から成る素子20を前述の外側電極用リード金
具22に挿入し、耐熱鋼等の耐熱導電体から成
り、一方の端にて管内面を外側に折り曲げて素子
20の開口部近傍の内面に接触する様に成形した
素子接触部231aと、該接触部231aに連続
して伸びる管状部231b及び該管状部231b
の素子接触部231aと逆の端部近傍において外
周面から内周面に貫通する空気導入孔231c、
管状部231cの中央部付近の適当な位置に設け
た縮管部231eを持つた内側電極用リード金具
231に、例えば耐熱鋼細線から成るワイヤメツ
シユ等の高熱耐酸化性良好な材料から成り空気の
流通自在なフイルタ232を、空気導入孔231
cの有る側の端部から管状部231bの上半部内
に充填した構成体を、素子接触部231aが素子
20の開口部近傍の内面に接触する様に載置す
る。この時フイルタ232は、内側電極用リード
金具231の縮管部231eにより素子20の内
部へ落下することを阻止されている。また、素子
接触部231aと素子20開口部内面に少量の耐
熱導電ペーストを塗布するのが効果的であること
は前述の通りである。次に前述の内側絶縁管24
を組合わせた後、全体を外側絶縁管21の貫通孔
内に挿入し、素子20と外側絶縁管21との間隙
をガラス等の耐熱シール材にてシールし、外側絶
縁管21と内側絶縁管24との間隙及び内側絶縁
管24と内側電極用リード金具231の管状部2
31bとの間隙に夫々耐熱接着材を充填して固着
する。かかる状態で、耐熱鋼等から成り、下端に
素子保護カバー27aを持つたハウジングに、保
護カバー28、耐熱クツシヨン材29、保護カバ
ー位置決めリング30等を用いて固定し、外側電
極用リード金具22の取出し部22bの端部と保
護カバー28の上端部とを溶接等により導電性を
確保しつつ接合する。一方内側電極用リード金具
231の管状部231bの端部に被覆線32を先
端部の芯線を露出させて挿入し、圧着等により結
合した後、被覆線32を後部保護カバー33、耐
熱弾性体34より固定する。この時保護カバー2
8の上端部と、後部保護カバー33と重なる部分
の一部にへこみ又は切欠き等による空気流入路3
5を設けておく。該空気流入路35より万一水が
浸入し、内側電極用リード金具231の内部に空
気導入孔231cを介して浸入しても、フイルタ
232によつて水の流れが妨害され、素子20が
高温状態即ちフイルタ232の温度も高い場合に
は、液状の水はフイルタ232を通過する間に気
化し、液状のままで素子先端に達することは無
い。
As shown in FIGS. 4 and 5, the element 20 made of the aforementioned solid electrolyte is inserted into the aforementioned outer electrode lead metal fitting 22, and the element 20 made of a heat-resistant conductor such as heat-resistant steel is connected to the inner surface of the tube at one end. An element contact part 231a that is bent outward and formed to contact the inner surface near the opening of the element 20, a tubular part 231b that extends continuously from the contact part 231a, and the tubular part 231b.
an air introduction hole 231c penetrating from the outer circumferential surface to the inner circumferential surface near the end opposite to the element contact portion 231a;
The inner electrode lead fitting 231, which has a constricted pipe part 231e provided at an appropriate position near the center of the tubular part 231c, is made of a material with good high heat oxidation resistance, such as a wire mesh made of heat-resistant steel wire, for air circulation. A flexible filter 232 is connected to the air introduction hole 231.
The structure filled in the upper half of the tubular portion 231b from the end on the side where c is located is placed so that the element contact portion 231a contacts the inner surface of the element 20 near the opening. At this time, the filter 232 is prevented from falling into the inside of the element 20 by the tube contraction part 231e of the inner electrode lead fitting 231. Further, as described above, it is effective to apply a small amount of heat-resistant conductive paste to the element contact portion 231a and the inner surface of the opening of the element 20. Next, the above-mentioned inner insulating tube 24
After combining, the whole is inserted into the through hole of the outer insulating tube 21, the gap between the element 20 and the outer insulating tube 21 is sealed with a heat-resistant sealing material such as glass, and the outer insulating tube 21 and the inner insulating tube are 24 and the tubular portion 2 of the inner insulating tube 24 and the inner electrode lead fitting 231
A heat-resistant adhesive is filled in each gap with 31b and fixed. In this state, the protective cover 28, heat-resistant cushion material 29, protective cover positioning ring 30, etc. are used to fix the protective cover 28, heat-resistant cushion material 29, protective cover positioning ring 30, etc. to a housing made of heat-resistant steel or the like and having the element protective cover 27a at the lower end, and the outer electrode lead fitting 22 is fixed. The end of the extraction portion 22b and the upper end of the protective cover 28 are joined by welding or the like while ensuring conductivity. On the other hand, the covered wire 32 is inserted into the end of the tubular part 231b of the inner electrode lead fitting 231 with the core wire at the tip exposed, and after being connected by crimping or the like, the covered wire 32 is connected to the rear protective cover 33 and the heat-resistant elastic body 34. Make it more fixed. At this time, protective cover 2
The air inflow path 3 is formed by a dent or notch in the upper end of the 8 and a part of the part that overlaps with the rear protective cover 33.
Set 5. Even if water were to infiltrate from the air inflow path 35 and into the inside of the inner electrode lead fitting 231 through the air introduction hole 231c, the flow of water would be blocked by the filter 232 and the element 20 would be heated to a high temperature. In other words, when the temperature of the filter 232 is also high, liquid water vaporizes while passing through the filter 232 and does not reach the tip of the element while remaining in liquid form.

本考案の他の実施例を第6図ないし第9図に示
す。本考案は第6図に示す如く内側電極用リード
金具231の素子接触部231aの形状を変化さ
せた場合、及び第7図に示す如く内側電極用リー
ド金具231の管状部に相当する部分が線状にな
つた場合でも夫々適用は可能である。さらに、第
8図に示す如く、素子接触部231aのかわりに
導電性の耐熱フイルタ232aを用いても良く、
内側電極用リード金具全体を前記と同材質のフイ
ルタ232bと置き換えても本考案による効果は
前記実施例と同様に得られる。
Other embodiments of the invention are shown in FIGS. 6-9. In the present invention, when the shape of the element contacting part 231a of the inner electrode lead fitting 231 is changed as shown in FIG. 6, and as shown in FIG. They can be applied even if the situation is different. Furthermore, as shown in FIG. 8, a conductive heat-resistant filter 232a may be used instead of the element contact portion 231a.
Even if the entire lead metal fitting for the inner electrode is replaced with the filter 232b made of the same material as described above, the effects of the present invention can be obtained in the same manner as in the above embodiment.

本考案で使用するフイルタは、前記の如く耐熱
鋼線が最も適するが、このほか耐熱性があり耐蝕
性のあるものであれば使用でき、例えば炭素繊
維、セラミツクフアイバー、ガラスフアイバーな
どがあげられる。これらは、無定形状態のものを
前記管状部に挿入するようにしてもよいし、また
予じめ所定形状に成形したものを用いてもよい。
As mentioned above, heat-resistant steel wire is most suitable for the filter used in the present invention, but any other heat-resistant and corrosion-resistant material can be used, such as carbon fiber, ceramic fiber, glass fiber, etc. These may be inserted into the tubular part in an amorphous state, or may be formed into a predetermined shape in advance.

本考案は耐熱性のフイルタを空気導入孔の一部
に挿入するという簡単な手段で酸素センサ素子を
水による破損から確実に保護できるという効果を
有する。
The present invention has the effect that the oxygen sensor element can be reliably protected from damage caused by water by simply inserting a heat-resistant filter into a part of the air introduction hole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の酸素センサの断面図、第2図
は、改良された酸素センサの断面図、第3図は第
2図の主要構成を示す斜視図、第4図は本考案の
一実施例の断面図、第5図は本考案の内側電極用
リード金具の斜視図、第6図〜第9図は本考案の
他の実施例の主要部の断面図である。 図中、1,20……素子、2,27……ハウジ
ング、21……外側絶縁管、22……外側電極用
リード金具、23,231……内側電極用リード
金具、231e……縮管部、232……フイル
タ、24……内側絶縁管。
Fig. 1 is a cross-sectional view of a conventional oxygen sensor, Fig. 2 is a cross-sectional view of an improved oxygen sensor, Fig. 3 is a perspective view showing the main components of Fig. 2, and Fig. 4 is a cross-sectional view of an improved oxygen sensor. FIG. 5 is a perspective view of the inner electrode lead fitting of the present invention, and FIGS. 6 to 9 are cross-sectional views of main parts of other embodiments of the present invention. In the figure, 1, 20... Element, 2, 27... Housing, 21... Outer insulating tube, 22... Lead fitting for outer electrode, 23, 231... Lead fitting for inner electrode, 231e... Condensed tube part , 232...filter, 24...inner insulating tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 固体電解質容器の内外表面に電極を形成した素
子を、該素子全体が被測定ガス内に位置するよう
にハウジングにより固定される絶縁管の先端に係
止固定し、該絶縁管に後端部と素子内面とをつな
ぐ空気導入孔を設け、該空気導入孔の少くとも一
部に耐熱性の多孔質フイルタを装着したことを特
徴とする酸素センサ。
An element having electrodes formed on the inner and outer surfaces of the solid electrolyte container is fixed and fixed to the tip of an insulating tube fixed by a housing so that the entire element is located within the gas to be measured, and the rear end and the rear end are attached to the insulating tube. An oxygen sensor comprising: an air introduction hole connected to an inner surface of an element; and a heat-resistant porous filter attached to at least a part of the air introduction hole.
JP1980051208U 1980-04-16 1980-04-16 Expired JPS6335404Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980051208U JPS6335404Y2 (en) 1980-04-16 1980-04-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980051208U JPS6335404Y2 (en) 1980-04-16 1980-04-16

Publications (2)

Publication Number Publication Date
JPS56153852U JPS56153852U (en) 1981-11-17
JPS6335404Y2 true JPS6335404Y2 (en) 1988-09-20

Family

ID=29646121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980051208U Expired JPS6335404Y2 (en) 1980-04-16 1980-04-16

Country Status (1)

Country Link
JP (1) JPS6335404Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103494A (en) * 1975-02-01 1976-09-13 Bosch Gmbh Robert
JPS5370493A (en) * 1976-12-03 1978-06-22 Toyota Motor Co Ltd Oxygen sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53163190U (en) * 1977-05-27 1978-12-20
JPS548994U (en) * 1977-06-21 1979-01-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103494A (en) * 1975-02-01 1976-09-13 Bosch Gmbh Robert
JPS5370493A (en) * 1976-12-03 1978-06-22 Toyota Motor Co Ltd Oxygen sensor

Also Published As

Publication number Publication date
JPS56153852U (en) 1981-11-17

Similar Documents

Publication Publication Date Title
JPH0430536Y2 (en)
JPH0215017B2 (en)
JPS6336461B2 (en)
US4512871A (en) Oxygen sensor with heater
EP0896219B1 (en) Improved structure of oxygen sensing element
EP0056585B1 (en) Gas sensor having lead wires extending in insulating and hermetically sealed holder
US8257564B2 (en) Gas sensor, and gas sensor manufacturing method
JPH029713B2 (en)
US4478067A (en) Gas composition sensor
US4834863A (en) Oxygen sensor having a heater
JP2004004072A (en) Measurement sensor
JPS6335404Y2 (en)
JP4605783B2 (en) Gas sensor and gas sensor manufacturing method
JP2003322631A (en) Oxygen sensor
JPS6133132B2 (en)
JP4384994B2 (en) Gas sensor and gas sensor manufacturing method
JPS636677Y2 (en)
US4657660A (en) Apparatus for sensing oxygen concentration
JPS6345060B2 (en)
JPS6334980B2 (en)
JPS5832346B2 (en) oxygen sensor
US4405429A (en) Oxygen detector
JP2018185289A (en) Gas sensor
JPS6236127Y2 (en)
JPS6335406Y2 (en)