JPS6334984A - Superconducting circuit device and manufacture thereof - Google Patents

Superconducting circuit device and manufacture thereof

Info

Publication number
JPS6334984A
JPS6334984A JP61177557A JP17755786A JPS6334984A JP S6334984 A JPS6334984 A JP S6334984A JP 61177557 A JP61177557 A JP 61177557A JP 17755786 A JP17755786 A JP 17755786A JP S6334984 A JPS6334984 A JP S6334984A
Authority
JP
Japan
Prior art keywords
superconducting
coupling parts
critical current
loose coupling
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61177557A
Other languages
Japanese (ja)
Inventor
Hideaki Nakane
中根 英章
Nobuo Miyamoto
信雄 宮本
Ushio Kawabe
川辺 潮
Hidekazu Goto
英一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Hitachi Ltd
Priority to JP61177557A priority Critical patent/JPS6334984A/en
Publication of JPS6334984A publication Critical patent/JPS6334984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To enable the adjustment of superconducting critical current of loose coupling parts to be performed at the room temperature and atmospheric pressure or with a technically easy process by a method wherein a substrate is provided with a pair of isolated superconducting electrodes and multiple electrodes to be loose coupling parts between the superconducting electrodes. CONSTITUTION:After forming a pair of superconducting electrodes at high superconducting critical temperature and melting point, splitted microbridge type loose coupling parts 2 are formed of multiple patterns in parallel using a material in high superconducting coherence length. At this time, the superconducting critical current as a microbridge is equivalent to the multiple of splitted numbers of superconducting critical current per piece of splitted loose coupling parts 2. Therefore, the superconducting critical current value can be easily adjusted to a designed value by dividing a part of splitted loose coupling parts 2 by a trimming device. Furthermore, if the superconducting critical current per piece of splitted loose coupling parts 2 is measured before trimming process to count the numbers of loose coupling parts 2 to be removed by trimming process, the trimming process can be performed at the room temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導回路装置およびその製造方法に係り、特
に量子磁束パラメトロン回路への応用に好適な超電導回
路装置およびその製造方法に関す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting circuit device and a method for manufacturing the same, and particularly to a superconducting circuit device and a method for manufacturing the same suitable for application to a quantum flux parametron circuit.

[従来の技術] 従来、超電導回路装置の弱結合部の形成に際して、超電
導臨界電流Imの調整は難しく1例えば、特開昭60−
189275号公報に記載のように液体ヘリウム温度に
冷却した基板に反応ガスを触れさせて電子ビーム5を印
加して基板上に導体パターンを形成することによって弱
結合部10を形成するとなっていた。(第2図参照) [発明が解決しようとする問題点] 上記従来技術は、電子ビーム露光機中での基板の極低温
冷却や反応ガスの導入などの技術的困難さについて配慮
がされておらず、実現性について問題があった。本発明
の目的は弱結合部の超電導臨界電流の調整を室温、大気
圧で行うこと、あるいは技術的に容易な方法で行える超
電導回路装置およびその製造方法を提供することにある
[Prior Art] Conventionally, when forming a weak coupling part of a superconducting circuit device, it is difficult to adjust the superconducting critical current Im.
As described in Japanese Patent No. 189275, the weak coupling portion 10 is formed by exposing a substrate cooled to liquid helium temperature to a reactive gas and applying an electron beam 5 to form a conductive pattern on the substrate. (See Figure 2) [Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into account technical difficulties such as cooling the substrate to a cryogenic temperature in an electron beam exposure machine and introducing a reactive gas. First, there were problems with feasibility. SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting circuit device and a method for manufacturing the same, in which the superconducting critical current of a weak coupling portion can be adjusted at room temperature and atmospheric pressure, or by a technically easy method.

[問題点を解決するための手段] 上記目的は、弱結合部を複数の微/J%な弱結合部の並
列接続構造とし、超伝導臨界電流の調整の際には、それ
らの微小弱結合部の並列接続部の一部をトリミング装置
で除去することにより達成される。
[Means for solving the problem] The above purpose is to create a parallel connection structure of a plurality of weak coupling parts of weak / J%, and when adjusting the superconducting critical current, the weak coupling parts are connected in parallel. This is achieved by removing part of the parallel connection of the parts with a trimming device.

[作用コ 複数の微小な並列接続部を弱結合部とする超電導回路の
弱結合部における超電導臨界電流は微小な並列接続部1
個当りの臨界電流の整数倍に規格化されている。このた
め、微小な並列接続部1個当りの臨界電流がわかれば、
必要な臨界電流を実現する微小並列接続部の個数がわか
り、室温、大気圧中でトリミング装置で必要な個数にト
リミングすることができる。従って、電子ビーム露光機
中での極低温冷却や反応ガスの4人などの技術課題を除
くことができる。
[Action] The superconducting critical current at the weak coupling part of a superconducting circuit in which multiple minute parallel connections are used as weak coupling parts is
It is normalized to an integral multiple of the critical current per individual. Therefore, if the critical current per minute parallel connection is known,
The number of minute parallel connections that achieve the required critical current can be determined and trimmed to the required number using a trimming device at room temperature and atmospheric pressure. Therefore, technical problems such as cryogenic cooling in the electron beam exposure machine and the need for four people to handle the reactant gas can be eliminated.

[実施例] 以下1本発明の実施例を図面により説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は第1の実施例を説明する図である。Nbなどの
超電導臨界温度が高く、融点の高い超電導電極1を形成
した後、超電導コヒーレンス長の大きな材料、例えば、
釦、釦−インジウム合金を用いて、長さ1〜3μm、幅
1μm程度のパターンを複数個、並列に形成した、マイ
クロブリッジ形の分割した弱結合部2とする。このとき
、マイクロブリッジとしての超電導臨界電流は、分割し
た弱結合部2の1個当りの超電導臨界電流の分割個数倍
になる。従来、マイクロブリッジの超電導臨界電流値を
制御する有効な方法は見い出されておらず、設計値に合
わせることは極めて難しかった。
FIG. 1 is a diagram illustrating a first embodiment. After forming the superconducting electrode 1 such as Nb, which has a high superconducting critical temperature and a high melting point, a material having a large superconducting coherence length, for example,
A microbridge-shaped divided weak coupling portion 2 is formed by forming a plurality of patterns in parallel, each having a length of 1 to 3 μm and a width of approximately 1 μm, using a button and a button-indium alloy. At this time, the superconducting critical current as a microbridge is multiplied by the number of divided superconducting critical currents per one divided weak coupling part 2. Until now, no effective method has been found to control the superconducting critical current value of microbridges, and it has been extremely difficult to adjust it to the designed value.

本実施例によれば、分割した弱結合部2の1部をトリミ
ング装置で除去することにより、超電導臨界電流値を容
易に設計値に合せることができるという効果がある。さ
らに、トリミングの前に5分割した弱結合部2の1個当
り超電導臨界電流を測定しておけば、トリミングで除去
すべき弱結合部の個数がわかるため、トリミングを室温
中で行なえるという効果がある。また、室温中での弱結
合部の抵抗値と超電導臨界電流値は特定の関係があるた
め、通常の抵抗パターンのトリミングと同様に抵抗値の
測定と同時にトリミングを行えるという効果があり、こ
の場合にはトリミング装置として従来、実用されている
装置をそのまま利用できるという利点がある。
According to this embodiment, the superconducting critical current value can be easily adjusted to the design value by removing a portion of the divided weak coupling portion 2 using a trimming device. Furthermore, if you measure the superconducting critical current for each of the weak coupling parts 2 divided into 5 parts before trimming, you can know the number of weak coupling parts to be removed by trimming, which has the advantage that trimming can be performed at room temperature. There is. In addition, since there is a specific relationship between the resistance value of the weak coupling part and the superconducting critical current value at room temperature, there is an effect that trimming can be performed at the same time as the resistance value measurement, similar to the trimming of a normal resistance pattern. This has the advantage that a conventionally used trimming device can be used as is.

この際には、第3図に示す第2の実施例のように弱結合
部に並列に弱結合部保護電極3を設けることで抵抗測定
の際に弱結合部を破壊することなく、測定及びトリミン
グができるという効果がある。トリミングが終った後に
弱結合部保護電極3も除去する。
In this case, by providing the weak coupling part protection electrode 3 in parallel with the weak coupling part as in the second embodiment shown in FIG. It has the effect of being able to be trimmed. After the trimming is completed, the weak coupling portion protection electrode 3 is also removed.

第4図は、トリミングの際に、弱結合部に別チップ上に
形成した小さなサーチコイル6を近づけ、分割した弱結
合部2を微小なインダクタンスループと見なした時の共
振周波数を測定しながらトリミングを行なう第3の実施
例を説明する図である。
Figure 4 shows that during trimming, a small search coil 6 formed on a separate chip is brought close to the weak coupling part, and the resonant frequency is measured when the divided weak coupling part 2 is regarded as a minute inductance loop. It is a figure explaining the 3rd example which performs trimming.

分割した弱結合部2は複数のインダクタンスループが重
なっている。分割した弱結部2の個数が2個の場合と3
個の場合を比較すると、2個の場合はインダクタンスル
ープが1個であり、共振点は1ケ所であるが、3個の場
合は2個で作る小さなループが2個と2個分のループの
外側に相当する大きなループが1個できる。共振点は小
さなループに対応するものと大きなループに対応するも
の(周波数が2分の1になる)があり、共振点が2ケ所
になる。同様に、分割した弱結合の個数−1の数の共振
点がある。この共振点の数により、トリミングするべき
微小な弱結合部を確認しながらトリミングできる。この
実施例はトリミングすべきチップへの電気的接続なしに
トリミングができるという効果がある。また、トリミン
グ装置内でチップを極低温に冷却できれば、分割した弱
結合部2で量子磁束パラメトロン回路(磁束量子を信号
媒体とする回路)を構成し、サーチコイル6と、サーチ
コイル6と同一基板上の量子磁束パラメトロン回路によ
り、トリミングされるべき量子磁束パラメトロンの出力
電流により発生する磁束の一部を検出し、検出磁束が最
大になるようにトリミングができる。この実施例では、
トリミング装置の試料設置部の雰囲気に対する制約はな
く、冷却に適した雰囲気を選択することができるという
効果がある。また、サーチコイル6はトリミングされる
べき試料の磁束を検出できる距離まで接近していれば良
く、試料と同一基板上、あるいは極端に近接される必要
はない。
The divided weak coupling portion 2 has a plurality of overlapping inductance loops. When the number of divided weak connections 2 is 2 and 3
Comparing the case of 2 inductances, there is one inductance loop and one resonance point, but in the case of 3 inductances, there is a small loop made by 2 and 2 loops. One large loop corresponding to the outside is created. There are two resonance points, one corresponding to a small loop and one corresponding to a large loop (where the frequency is halved). Similarly, there are the number of resonance points equal to the number of divided weak connections minus one. Due to the number of resonance points, trimming can be performed while checking the minute weak coupling portion to be trimmed. This embodiment has the advantage that trimming can be performed without electrical connection to the chip to be trimmed. In addition, if the chip can be cooled to an extremely low temperature in the trimming device, the divided weak coupling parts 2 can constitute a quantum flux parametron circuit (a circuit using magnetic flux quanta as a signal medium), and the search coil 6 and the same substrate as the search coil 6 can be connected. The above quantum flux parametron circuit detects a portion of the magnetic flux generated by the output current of the quantum flux parametron to be trimmed, and can perform trimming so that the detected magnetic flux is maximized. In this example,
There is no restriction on the atmosphere of the sample installation part of the trimming device, and there is an effect that an atmosphere suitable for cooling can be selected. Further, the search coil 6 only needs to be close enough to detect the magnetic flux of the sample to be trimmed, and does not need to be on the same substrate as the sample or extremely close to the sample.

量子磁束パラメトロン回路が従属接続されていても、サ
ーチコイル6を、調整すべき量子磁束パラメトロン回路
に近ずけるだけで良い。特に、サーチコイル6を透明基
板上に形成すると、レーザ光線によるトリミングが可能
となり、トリミングの際にサーチコイル6を除去する必
要がないという効果がある。
Even if the quantum flux parametron circuits are cascaded, it is sufficient to simply move the search coil 6 close to the quantum flux parametron circuit to be adjusted. In particular, when the search coil 6 is formed on a transparent substrate, trimming using a laser beam becomes possible, and there is an advantage that there is no need to remove the search coil 6 during trimming.

第5図は、分割した弱結合部として、トンネル接合を微
小接合部8に分割した第4の実施例を説明する図であり
、従来のジョセフソン回路の作製にも応用できるという
効果がある。
FIG. 5 is a diagram illustrating a fourth embodiment in which a tunnel junction is divided into minute junction portions 8 as divided weak coupling portions, which has the advantage that it can also be applied to the production of conventional Josephson circuits.

第6図は、分割した弱結合部2の各々の弱結合部の下層
にトリミング用電極9をあらかじめ設置した第5の実施
例を説明する図であり、トリミングの際に、機械的手段
、イオンビーム、電子ビームなどの粒子ビーム的手段、
レーザーなどの光学的手段によらず、電流を通電するこ
とにより、所望の微小弱結合部を除去できる。この実施
例では、トリミング装置などの特殊な装置を用いること
なしにトリミングできるという効果がある。
FIG. 6 is a diagram illustrating a fifth embodiment in which a trimming electrode 9 is installed in advance in the lower layer of each weak coupling part of the divided weak coupling parts 2, and when trimming, mechanical means, ion beam, particle beam means such as electron beam,
A desired weak weak coupling portion can be removed by applying current, without using optical means such as a laser. This embodiment has the advantage that trimming can be performed without using a special device such as a trimming device.

以上の実施例では、トリミングの際に不要部分を除去す
る方法を採用している。他に、特定の弱結合部にイオン
ビーム、あるいは電子ビームなどを照射して弱結合部の
超電導特性を変化させると分割した弱結合部2の1個分
の超電導臨界電流の整数倍以外の値にトリミングするこ
とができる。
In the above embodiments, a method of removing unnecessary portions during trimming is adopted. In addition, if a specific weak coupling part is irradiated with an ion beam or an electron beam to change the superconducting characteristics of the weak coupling part, a value other than an integer multiple of the superconducting critical current of one divided weak coupling part 2 can be obtained. It can be trimmed to.

この実施例では、超電導臨界電流を正確にトリミングで
きるという効果がある。
This embodiment has the advantage that the superconducting critical current can be trimmed accurately.

さらに、半導体基板上に超電導電極を近接させて形成す
る近接効果ブリッジの超電導臨界電流を調整する場合に
もイオンビーム、電子ビーム、あるいは光ビームを弱結
合部に照射することにより調整ができ、その際、第4図
の実施例と同様にサーチコイル6により電子磁束パラメ
トロン回路の出力をa察しながら超電導臨界電流を調整
できるという効果がある。
Furthermore, when adjusting the superconducting critical current of a proximity effect bridge formed by placing superconducting electrodes close to each other on a semiconductor substrate, it is possible to adjust the superconducting critical current by irradiating the weak coupling part with an ion beam, electron beam, or light beam. In this case, as in the embodiment shown in FIG. 4, there is an effect that the superconducting critical current can be adjusted while observing the output of the electron flux parametron circuit using the search coil 6.

[発明の効果] 本発明によれば、ジョセフソン接合の弱結合部の超電導
臨界電流を正確に補正できるので、ジョセフソン回路動
作の高速化、高マージン化が実現できるという効果があ
る。特に、超電導臨界電流を正確に制御したマイクロブ
リッジ形の弱結合部を量子磁束パラメトロン回路に使用
すると、従来のジョセフソン回路よりさらに高速で消費
電力の小さな回路を実現できるという効果がある。
[Effects of the Invention] According to the present invention, the superconducting critical current of the weak coupling portion of the Josephson junction can be accurately corrected, so that the Josephson circuit can operate at higher speeds and with higher margins. In particular, the use of microbridge-type weak coupling sections with precisely controlled superconducting critical currents in quantum flux parametron circuits has the effect of realizing circuits that are faster and consume less power than conventional Josephson circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図ないし第6図は本発明のそれぞれ異
なる実施例を示す斜視図、第2図は従来技術の斜視図。 1・・超電導電極、2・・・分割した弱結合部、3・・
・弱結合部保護電極、4・・・絶縁膜、5・・・電子ビ
ーム、6・・サーチコイル、7・・分割した上部電極、
8・・・分割したトンネル接合、9・・・トリミング用
電極、10・・・弱結合部。
1 and 3 to 6 are perspective views showing different embodiments of the present invention, and FIG. 2 is a perspective view of the prior art. 1...Superconducting electrode, 2...Divided weak coupling part, 3...
・Weak coupling part protection electrode, 4... Insulating film, 5... Electron beam, 6... Search coil, 7... Divided upper electrode,
8... Divided tunnel junction, 9... Trimming electrode, 10... Weak coupling part.

Claims (1)

【特許請求の範囲】 1、基板と、該基板上に離して設けられた少なくとも1
対の超電導電極と、前記1対の超電導電極間の弱結合部
となる複数の電極とを有することを特徴とする超電導回
路装置。 2、特許請求の範囲第1項記載の超電導回路装置におい
て前記複数の電極として、超電導コヒーレンス長の大き
な材料を用いることを特徴とする超電導回路装置。 3、少なくとも1対の超電導電極を形成する工程と、前
記1対の超電導電極の弱結合部となる複数の電極を形成
する工程と、前記複数の電極の一部をトリミングする工
程とを有することを特徴とする超電導回路装置の製造方
法。
[Claims] 1. A substrate, and at least one substrate separately provided on the substrate.
A superconducting circuit device comprising a pair of superconducting electrodes and a plurality of electrodes serving as weak coupling portions between the pair of superconducting electrodes. 2. A superconducting circuit device according to claim 1, wherein a material having a large superconducting coherence length is used for the plurality of electrodes. 3. The method includes the steps of forming at least one pair of superconducting electrodes, forming a plurality of electrodes that serve as weak coupling portions between the pair of superconducting electrodes, and trimming a portion of the plurality of electrodes. A method for manufacturing a superconducting circuit device characterized by:
JP61177557A 1986-07-30 1986-07-30 Superconducting circuit device and manufacture thereof Pending JPS6334984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177557A JPS6334984A (en) 1986-07-30 1986-07-30 Superconducting circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177557A JPS6334984A (en) 1986-07-30 1986-07-30 Superconducting circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6334984A true JPS6334984A (en) 1988-02-15

Family

ID=16033040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177557A Pending JPS6334984A (en) 1986-07-30 1986-07-30 Superconducting circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6334984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269586A (en) * 1987-04-27 1988-11-07 Fujikura Ltd Manufacture of bridge-type josephson junction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269586A (en) * 1987-04-27 1988-11-07 Fujikura Ltd Manufacture of bridge-type josephson junction device

Similar Documents

Publication Publication Date Title
CA1092727A (en) Method for fabricating ultra-narrow metallic lines
US7541198B2 (en) Method of forming quantum-mechanical memory and computational devices
JP2569408B2 (en) Josephson device composed of many small weak couplings
US5665980A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
Duret et al. A UHF superconducting magnetometer utilizing a new thin film sensor
JPS61122584A (en) Manufacture of gradiometer having three-dimensional structure
JPS6334984A (en) Superconducting circuit device and manufacture thereof
US7888937B2 (en) Beam current sensor
JPH05299711A (en) Squid
KR20040073073A (en) Method for fabrication of superconducting quantum interference devices using high-tc intrinsic josephson junctions
Arbelaez et al. Magnetic field correction concepts for superconducting undulators
JP3692870B2 (en) 2-SQUID magnetometer and driving method thereof
JP2016149467A (en) Superconductive quantum interference device, and method of manufacturing the same
EP0583640A1 (en) Magnetic pickup coil
JPH0784020A (en) Magnetic sensor
JPH0378675A (en) Squid element
JP2748167B2 (en) Optical signal detection element
Muller The Development of a SQUID-based Gradiometer
Geng et al. Sweeping of trapped flux in superconducting films by a micro‐heat‐flushing method
JP3267352B2 (en) Superconducting quantum interference device and method of manufacturing the same
Adriaanse et al. First step towards application of high‐temperature superconductors for planar magnetic lenses
JPH05297093A (en) Magnetic sensor
JPH03190175A (en) Superconducting switching element
JPH04130676A (en) Dc-squid using quasi-planar josephson junction element
JPH0419582A (en) Oxide superconducting quantum interference device