JPS6334333B2 - - Google Patents

Info

Publication number
JPS6334333B2
JPS6334333B2 JP56016330A JP1633081A JPS6334333B2 JP S6334333 B2 JPS6334333 B2 JP S6334333B2 JP 56016330 A JP56016330 A JP 56016330A JP 1633081 A JP1633081 A JP 1633081A JP S6334333 B2 JPS6334333 B2 JP S6334333B2
Authority
JP
Japan
Prior art keywords
vibration
iron core
orifice
chamber
magnetic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56016330A
Other languages
Japanese (ja)
Other versions
JPS57129944A (en
Inventor
Masanobu Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP1633081A priority Critical patent/JPS57129944A/en
Publication of JPS57129944A publication Critical patent/JPS57129944A/en
Publication of JPS6334333B2 publication Critical patent/JPS6334333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids
    • F16F13/305Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids magnetorheological
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid

Description

【発明の詳細な説明】 本発明はエンジンマウント等に利用して有効な
磁性流体式ダンパーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic fluid damper that is effective for use in engine mounts and the like.

従来走行状態に合せてバネ定数(減衰係数)を
変化させるようにしたエンジンマウントが種々提
案されている。例えば第1図に示すエンジンマウ
ント構造において、孔1を介して図示しないフレ
ームに取付けられたエンジンマウント2上には、
孔3を介して図示しないエンジンが取付けられて
いる。
Conventionally, various engine mounts have been proposed in which the spring constant (damping coefficient) can be changed depending on the driving condition. For example, in the engine mount structure shown in FIG. 1, on the engine mount 2 attached to the frame (not shown) through the hole 1,
An engine (not shown) is attached through the hole 3.

さてエンジンマウント2に伝達される振動に対
しては、室4内の流体がゴム板5を変形させるこ
とにより移動するが、大きな振動に対しては小孔
6を設けてここを流体が通りにくくして吸収して
いる。またエンジンからの小さな振動に対して
は、エンジンマウント2本体の円筒状ゴム部材7
のゴム質を柔かくして室4の体積を微少変化さ
せ、小孔6を介して流体を上下に移動させること
により前記振動を吸収していた。
Now, in response to vibrations transmitted to the engine mount 2, the fluid in the chamber 4 moves by deforming the rubber plate 5, but in response to large vibrations, small holes 6 are provided to make it difficult for fluid to pass through. and absorb it. Also, against small vibrations from the engine, the cylindrical rubber member 7 of the engine mount 2 body
The vibrations were absorbed by softening the rubber material, slightly changing the volume of the chamber 4, and moving the fluid up and down through the small holes 6.

しかしこの従来機構ではゴム部材7の柔かさ、
小孔6の大きさの設定等が非常にむづかしいばか
りでなく、一旦決定してしまえばこれを再度変化
させることは殆ど不可能であつた。従つて振動の
大きさに対応して小孔の大きさをこまかく変化さ
せ、振動吸収を夫々に対応させて制御することは
出来なかつたので、振動吸収機構としては不十分
であつた。
However, in this conventional mechanism, the softness of the rubber member 7,
Not only is it extremely difficult to set the size of the small hole 6, but once it has been determined, it is almost impossible to change it again. Therefore, it was not possible to finely change the size of the small hole in response to the magnitude of vibration and control vibration absorption in response to each of the vibrations, so it was insufficient as a vibration absorption mechanism.

本発明は前記従来の欠点を解消するために提案
されたもので、磁性流体を封入すると共に、該流
体の流れを電気的に制御することによりバネ定数
を任意に変化させ、振動の吸収をよりこまかく制
御できるようにした磁性流体式ダンパーを提供せ
んとするものである。
The present invention was proposed in order to eliminate the above-mentioned drawbacks of the conventional technology, and it is possible to arbitrarily change the spring constant by enclosing a magnetic fluid and controlling the flow of the fluid electrically, thereby improving vibration absorption. The present invention aims to provide a magnetorheological damper that can be precisely controlled.

以下図面の実施例について本発明を説明する
と、第1図は本発明の第1実施例、第2図は第2
実施例である。第1図において8は電磁石であ
り、該電磁石8は第3図の如く室4の軸心と直交
し、該軸心を取囲む状態で配設された円形の鉄心
9にコイル10が巻付けられて構成されており、
該コイル10はリード線11として外部に取出さ
れ、図示しない電源に接続されている。また電磁
石8は非磁性材12で構成された室内に装着され
ている。
The present invention will be explained below with reference to the embodiments shown in the drawings. Fig. 1 shows the first embodiment of the invention, and Fig. 2 shows the second embodiment of the invention.
This is an example. In FIG. 1, 8 is an electromagnet, and as shown in FIG. 3, the electromagnet 8 is orthogonal to the axis of the chamber 4, and a coil 10 is wound around a circular iron core 9 arranged to surround the axis. It is composed of
The coil 10 is taken out to the outside as a lead wire 11 and connected to a power source (not shown). Further, the electromagnet 8 is mounted inside a chamber made of a non-magnetic material 12.

鉄心9の一部は切欠かれてオリフイス13を形
成しており、前記コイル10は該オリフイス13
を除く部分に巻付けられると共に、該オリフイス
13は前記小孔6と一致するようになつている。
小孔6は室4と、ゴム板5下部の室14とを非磁
性材12に設けられた孔15,15を介して連通
させている。そして室4,14、孔15,15、
小孔6内には磁性流体が充填されている。磁性流
体は水又は油等の流体の中にSF3O4等の固体粒子
を、4〜18容量%位混入させてなるものである。
A part of the iron core 9 is cut out to form an orifice 13, and the coil 10 is inserted into the orifice 13.
The orifice 13 is arranged to coincide with the small hole 6.
The small hole 6 communicates the chamber 4 with the chamber 14 below the rubber plate 5 through holes 15, 15 provided in the non-magnetic material 12. and chambers 4, 14, holes 15, 15,
The small holes 6 are filled with magnetic fluid. A magnetic fluid is made by mixing solid particles such as SF 3 O 4 in a fluid such as water or oil in an amount of about 4 to 18% by volume.

前記鉄心9が切れているオリフイス13部分に
は、コイル10に電流を通じると磁束が集中す
る。従つて電流が電磁石8に通じている間は、磁
性流体は小孔6部において見掛けの粘性値が変化
し、この見掛けの粘性値は第5図のように電流
(磁界)の大きさにともなつて変化する。そのた
め小孔6の流動抵抗が変化する。なお、鉄心9の
両端部は第3図の如く直角に切断してもよいが、
第7図の如く中央部が突出するよう斜めに切断し
ても、第8図の如く中央に突出部16,16を設
けてもよい。この第7図、第8図の如く両端中央
部を突出させておくと、この部分に強い磁束を形
成できる。また第1図の17はゴム部材7が外方
にふくらむのを防ぐ鉄製リングである。
When a current is passed through the coil 10, magnetic flux is concentrated in the orifice 13 where the iron core 9 is cut. Therefore, while current is flowing through the electromagnet 8, the apparent viscosity of the magnetic fluid changes in the small hole 6, and this apparent viscosity changes with the magnitude of the current (magnetic field) as shown in Figure 5. Change over time. Therefore, the flow resistance of the small hole 6 changes. Note that both ends of the iron core 9 may be cut at right angles as shown in FIG.
It may be cut diagonally so that the central portion protrudes as shown in FIG. 7, or the protruding portions 16, 16 may be provided in the center as shown in FIG. If the center portions of both ends are made to protrude as shown in FIGS. 7 and 8, a strong magnetic flux can be formed in these portions. Further, reference numeral 17 in FIG. 1 is an iron ring that prevents the rubber member 7 from bulging outward.

次に作用を説明すると、電磁石8に電流を通じ
ない時振動によりゴム部材7が変形すると、鉄心
9の両端部のオリフイス13部に位置する小孔6
を経て、室4及び14内の磁性流体がゴム板5を
変形させて移動する。しかしこの場合には小孔6
の大きさは一定であるので、振動の吸収をこまか
くは制御できない。
Next, to explain the operation, when the rubber member 7 is deformed due to vibration when no current is passed through the electromagnet 8, the small holes located in the orifices 13 at both ends of the iron core 9
Through this, the magnetic fluid in the chambers 4 and 14 deforms the rubber plate 5 and moves. However, in this case, small hole 6
Since the magnitude of is constant, vibration absorption cannot be precisely controlled.

次に電磁石8に通電すると、オリフイス13、
即ち小孔6部分に磁束が集中し、この小孔6部に
おける磁性流体の見掛けの粘性値は、電流の大き
さにともなつて変化する。従つて小孔6の流動抵
抗を任意に変化させることができ、よりこまかく
振動の吸収を制御できる。
Next, when the electromagnet 8 is energized, the orifice 13,
That is, the magnetic flux is concentrated in the small hole 6 portion, and the apparent viscosity value of the magnetic fluid in the small hole 6 portion changes with the magnitude of the current. Therefore, the flow resistance of the small hole 6 can be changed arbitrarily, and vibration absorption can be controlled more precisely.

第2図は第2実施例を示し、第1図との相違点
は室4と14を、小孔6の下方においてゴム板1
8で仕切り、室4内には水又は油のみを入れ、小
孔6を含む室14内のみに磁性流体を充填したも
のであるが、作用効果において差異はない。即
ち、ゴム部材7の変形は室4内の水又は油及びゴ
ム板18を介して室14内の磁性流体に伝えら
れ、小孔6を介して磁性流体が移動する。
FIG. 2 shows a second embodiment, and the difference from FIG.
8, only water or oil is placed in the chamber 4, and magnetic fluid is filled only in the chamber 14 that includes the small holes 6, but there is no difference in operation and effect. That is, the deformation of the rubber member 7 is transmitted to the magnetic fluid in the chamber 14 via the water or oil in the chamber 4 and the rubber plate 18, and the magnetic fluid moves through the small holes 6.

次に前記電磁石8に通じる電流の大きさの制御
方法について第4図のシステム図について説明す
ると、振動はエンジン19から来るものと、路面
から来るサスペンシヨン20の変位によるもの、
ブレーキ21の踏力の大きさによるもの等が考え
られる。
Next, a method of controlling the magnitude of the current flowing through the electromagnet 8 will be explained with reference to the system diagram in FIG. 4. Vibrations come from the engine 19, vibrations come from the displacement of the suspension 20 from the road surface,
Possible causes include the magnitude of the pressing force on the brake 21.

エンジン19から来る振動は回転数の大小によ
り変り、これは回転計22により分る。また速度
計23により回転数が上昇したり、ブレーキ踏力
の大小により速度が分る。この速度とブレーキ踏
力による加減速度はエンジン19にGセンサー2
4を取付けておくことにより計測できる。
The vibration coming from the engine 19 changes depending on the number of rotations, and this can be determined by the tachometer 22. Also, the speed can be determined by the increase in rotational speed from the speedometer 23 and by the magnitude of the brake pedal force. The acceleration/deceleration due to this speed and brake pedal force is determined by the engine 19 and the G sensor 2.
Measurement can be performed by attaching 4.

従つて前記エンジン19、サスペンシヨン2
0、ブレーキ21、回転計22、速度計23等か
らの振動のデータをマイクロコンピユータ25に
記憶させておき、前記各部分からの入力に応じ、
マイクロコンピユータ25から可変抵抗器26に
指令が行き、可変抵抗器26が作動し、夫々の入
力に対応した大きさの電流を電磁石8に送り、こ
の電流値に応じ小孔6部における磁性流体の見掛
けの粘性値を制御し、振動をよりこまかく吸収す
るよう制御する。
Therefore, the engine 19 and the suspension 2
0, vibration data from the brake 21, tachometer 22, speedometer 23, etc. is stored in the microcomputer 25, and according to the input from each part,
A command is sent from the microcomputer 25 to the variable resistor 26, and the variable resistor 26 operates, sending a current of a magnitude corresponding to each input to the electromagnet 8, and depending on this current value, the magnetic fluid in the small hole 6 is increased. The apparent viscosity value is controlled to absorb vibrations more precisely.

第5図は相対粘性値と、粘性と磁化の強さMH
の関係を示す線図を示す。相対粘性値とは磁性流
体の粘度を表わし、ある磁化の強さでの粘度η
と、磁化の強さOOeでの粘度ηOとの比η/ηOで示す。
Figure 5 shows the relative viscosity value and the strength of viscosity and magnetization M H
A diagram showing the relationship between is shown. The relative viscosity value represents the viscosity of the magnetic fluid, and the viscosity η at a certain magnetization strength
It is expressed as the ratio η/η O of the viscosity η O at the magnetization strength OO e .

第6図はマウントの相対変位を示す線図で、2
7はエンジンから来る振動、大きな波28は路面
から来る振動を示している。
Figure 6 is a diagram showing the relative displacement of the mount, 2
7 indicates vibrations coming from the engine, and large waves 28 indicate vibrations coming from the road surface.

以上詳細に説明した如く本発明は構成されてお
り、各振動の変化の状態に応じた電流の大きさに
ともなつて、電磁石の鉄心の両端部のオリフイス
に発生する磁束により、該オリフイスと一致する
小孔における磁性流体の見掛けの粘性値が変化す
る。従つて該小孔の流動抵抗が制御され、各振動
に適応したバネ定数を得ることができ、振動の吸
収をよりこまかく制御できる。
As explained in detail above, the present invention is configured, and the magnetic flux generated in the orifices at both ends of the iron core of the electromagnet is aligned with the orifices according to the magnitude of the current according to the state of each vibration change. The apparent viscosity of the magnetic fluid in the pores changes. Therefore, the flow resistance of the small hole is controlled, a spring constant adapted to each vibration can be obtained, and vibration absorption can be controlled more precisely.

また本発明は、各室の軸心に対し直交し該軸心
を取囲む状態で円形の電磁石の鉄心を配設し、該
鉄心の一部を切欠いてオリフイスを形成し、該オ
リフイス以外の部分の鉄心にコイルを巻付けると
共に、該オリフイスを前記小孔と一致させるよう
にしたので、ダンパーの高さ方向のスペースを小
さくとることができると共に、コイルの巻き数を
より短い長さでより多くとることができる。更に
以上の構成によりコイルによつて生ずる磁束の全
てをオリフイスに伝えることができ、一層効率を
良くすることができる。
Further, the present invention provides a circular electromagnetic iron core that is perpendicular to the axis of each chamber and surrounds the axis, and that a part of the iron core is cut out to form an orifice, and a portion other than the orifice is disposed. Since the coil is wound around the iron core and the orifice is aligned with the small hole, the space in the height direction of the damper can be reduced, and the number of turns of the coil can be increased with a shorter length. You can take it. Furthermore, with the above configuration, all of the magnetic flux generated by the coil can be transmitted to the orifice, making it possible to further improve efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例を示すダン
パーの縦断面図、第3図は第1図及び第2図のA
〜A断面図、第4図は本発明の実施例を示すダン
パーが吸収する振動を発生する振動発生源とマイ
クロコンピユータとを接続してなるシステム図、
第5図は磁性流体の相対粘性値と、粘性と磁化の
強さMHの関係を示す線図、第6図はマウントの
相対変位を示す線図、第7図及び第8図は第3図
と異なる鉄心を示す平面図である。 図の主要部分の説明、2……エンジンマウント
(ダンパー)、4,14……室、5……ゴム板、6
……小孔、7……ゴム部材、8……電磁石、9…
…鉄心、10……コイル、13……オリフイス、
19……エンジン(振動体)、20……サスペン
シヨン(振動源)、21……ブレーキ(振動源)、
25……マイクロコンピユータ(データがインプ
ツトされている機構)、26……可変抵抗器(そ
の状態に応じた大きさの電流を送る機構)。
1 and 2 are vertical cross-sectional views of a damper showing an embodiment of the present invention, and FIG. 3 is an A of FIG. 1 and FIG. 2.
~ A sectional view, FIG. 4 is a system diagram in which a microcomputer is connected to a vibration generation source that generates vibrations that are absorbed by a damper, showing an embodiment of the present invention;
Figure 5 is a diagram showing the relative viscosity of the magnetic fluid and the relationship between viscosity and magnetization strength M H. Figure 6 is a diagram showing the relative displacement of the mount. It is a top view showing an iron core different from the figure. Explanation of the main parts of the diagram, 2... Engine mount (damper), 4, 14... Chamber, 5... Rubber plate, 6
...Small hole, 7...Rubber member, 8...Electromagnet, 9...
...Iron core, 10...Coil, 13...Orifice,
19... Engine (vibration body), 20... Suspension (vibration source), 21... Brake (vibration source),
25... Microcomputer (mechanism into which data is input), 26... Variable resistor (mechanism that sends a current of a magnitude depending on its state).

Claims (1)

【特許請求の範囲】[Claims] 1 フレームと、該フレーム上に配置された振動
体との間に介設され、周壁が筒状のゴム部材によ
り形成された室と、上面がゴム板により形成され
た室とを小孔を介して対峙させると共に、該各室
に液体を充填し、振動により前記ゴム部材が変形
した際前記小孔を液体が移動することにより振動
を吸収するようにしたダンパーにおいて、前記各
室の軸心に対し直交し該軸心を取囲む状態で円形
の電磁石の鉄心を配設し、該鉄心の一部を切欠い
てオリフイスを形成し、該オリフイス以外の部分
の鉄心にコイルを巻付けると共に、該オリフイス
が前記小孔と一致するようになし、かつ該小孔を
移動する液体に磁性流体を用い、別に前記振動体
及び他の振動源による振動のデータがインプツト
されるマイクロコンピユータを備えると共に、前
記各振動の変化の状態がインプツトされた時、そ
の状態に応じた大きさの電流を前記電磁石に送る
ようにした機構を設けてなることを特徴とする磁
性流体式ダンパー。
1. A chamber interposed between a frame and a vibrating body disposed on the frame, the peripheral wall of which is formed of a cylindrical rubber member, and the chamber whose upper surface is formed of a rubber plate are connected through small holes. In the damper, each chamber is filled with a liquid so that when the rubber member is deformed due to vibration, the liquid moves through the small hole to absorb the vibration. A circular electromagnet's iron core is arranged perpendicularly to the core and surrounds the axis, a part of the iron core is cut out to form an orifice, a coil is wound around the iron core in a part other than the orifice, and a coil is wound around the iron core in a part other than the orifice. are made to coincide with the small holes, and a magnetic fluid is used as the liquid moving through the small holes, and a microcomputer is separately provided into which vibration data from the vibrating body and other vibration sources is input, and each of the above A magnetic fluid type damper, characterized in that it is provided with a mechanism configured to send a current of a magnitude corresponding to the state to the electromagnet when a state of vibration change is input.
JP1633081A 1981-02-06 1981-02-06 Magnetic fluid damper Granted JPS57129944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1633081A JPS57129944A (en) 1981-02-06 1981-02-06 Magnetic fluid damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1633081A JPS57129944A (en) 1981-02-06 1981-02-06 Magnetic fluid damper

Publications (2)

Publication Number Publication Date
JPS57129944A JPS57129944A (en) 1982-08-12
JPS6334333B2 true JPS6334333B2 (en) 1988-07-08

Family

ID=11913427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1633081A Granted JPS57129944A (en) 1981-02-06 1981-02-06 Magnetic fluid damper

Country Status (1)

Country Link
JP (1) JPS57129944A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583723A (en) * 1983-06-10 1986-04-22 Toyoda Gosei Co., Ltd. Elastically damping device for suspension of engine
JPS60234144A (en) * 1984-05-03 1985-11-20 Toyoda Gosei Co Ltd Liquid encapsulated vibro-preventive device
JPS61136032A (en) * 1984-12-05 1986-06-23 Tokai Rubber Ind Ltd Power unit mounting device
US4742998A (en) * 1985-03-26 1988-05-10 Barry Wright Corporation Active vibration isolation system employing an electro-rheological fluid
JP2681772B2 (en) * 1985-11-07 1997-11-26 株式会社豊田中央研究所 Vibration control device
DE3540298A1 (en) * 1985-11-13 1987-05-14 Metzeler Kautschuk SPRING ELEMENT WITH HYDRAULIC DAMPING
DE3540300A1 (en) * 1985-11-13 1987-05-21 Metzeler Kautschuk AIR SPRING ELEMENT
JPS62180130A (en) * 1986-02-03 1987-08-07 Honda Motor Co Ltd Compound engine mount with variable orifice
US4733758A (en) * 1986-08-18 1988-03-29 Lord Corporation Tunable electrorheological fluid mount
US4720087A (en) * 1986-09-05 1988-01-19 Lord Corporation Inertia type fluid mount using electrorheological and other fluid
JPS63176844A (en) * 1986-09-16 1988-07-21 Bridgestone Corp Vibration-proof bush
US4861006A (en) * 1986-09-16 1989-08-29 Bridgestone Corporation Anti-vibration apparatus
DE3642953A1 (en) * 1986-12-16 1988-08-04 Metzeler Gmbh ACTIVE, HYDRAULIC DAMPING ENGINE MOUNT
JPS63231031A (en) * 1987-03-19 1988-09-27 Nkk Corp Damper with variable damping force
US5176368A (en) * 1992-01-13 1993-01-05 Trw Inc. Vehicle engine mount
DE69333172T2 (en) * 1992-06-18 2004-06-17 Lord Corp. Magnetorheolodic fluid devices
US5284330A (en) * 1992-06-18 1994-02-08 Lord Corporation Magnetorheological fluid devices
US5956951A (en) * 1996-09-20 1999-09-28 Mr Technologies Adjustable magneto-rheological fluid device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116518A (en) * 1980-02-19 1981-09-12 Nissan Motor Co Ltd Engine mount of car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116518A (en) * 1980-02-19 1981-09-12 Nissan Motor Co Ltd Engine mount of car

Also Published As

Publication number Publication date
JPS57129944A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
JPS6334333B2 (en)
CN102297235B (en) Active dynamic vibration absorber apparatus for vehicle
JP3055939B2 (en) Vehicle engine mount
DE3809886C2 (en) Automotive sensor
JP2619967B2 (en) Rotary shock absorber
US5573088A (en) Controllable resistance device and force dampener, and vehicle utilizing the same
US8672105B2 (en) Damping control device filled with magnetorheological fluid and engine mount having the same
US20020125084A1 (en) Device for damping vibrations in a steering wheel
US6412761B1 (en) Hybrid hydraulic mount with magnetorheological fluid chamber
JP2617715B2 (en) Damping coefficient control device for vibration isolator
JPS6410697B2 (en)
JP5770442B2 (en) Electric active dynamic vibration absorber for vehicles
JP6058527B2 (en) Torque rod vibration reduction device
JPS6281971A (en) Magnetic actuator
JP2020139546A (en) Variable rigidity vibration control device
US11215260B2 (en) Variable stiffness vibration damping device
JP2020139548A (en) Variable rigidity vibration control device
JP3658874B2 (en) Vibration absorber
JPS63210432A (en) Magnetic fluid damper
JPS58113644A (en) Magnetic fluid type damper
JPH0225061B2 (en)
JPH05340441A (en) Rubber mount
JPH028528A (en) Vibration damper device
JPS5857536A (en) Vibration proof supporter
JPH0613895B2 (en) Magnetic fluid damper