JPS633178A - Fluid heat storage device - Google Patents
Fluid heat storage deviceInfo
- Publication number
- JPS633178A JPS633178A JP61145579A JP14557986A JPS633178A JP S633178 A JPS633178 A JP S633178A JP 61145579 A JP61145579 A JP 61145579A JP 14557986 A JP14557986 A JP 14557986A JP S633178 A JPS633178 A JP S633178A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- storage tank
- storage material
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005338 heat storage Methods 0.000 title claims abstract description 92
- 239000012530 fluid Substances 0.000 title claims abstract description 7
- 239000011232 storage material Substances 0.000 claims abstract description 44
- 239000012071 phase Substances 0.000 claims abstract description 17
- 239000002612 dispersion medium Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 12
- 230000005484 gravity Effects 0.000 claims abstract description 10
- 239000007791 liquid phase Substances 0.000 claims abstract description 8
- 239000007790 solid phase Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000005192 partition Methods 0.000 abstract 5
- 239000006185 dispersion Substances 0.000 abstract 3
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 14
- 230000008014 freezing Effects 0.000 description 11
- 238000007710 freezing Methods 0.000 description 11
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 10
- 238000004378 air conditioning Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
- F28D20/025—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
り棗二塁机反分■
この発明は、物質の相変化に伴う転移熱を利用して熱を
蓄える、中でも流動潜熱M熱に関するもので、ビルの空
調等に応用することができる。[Detailed Description of the Invention] Rinatsu Nibaseki Hanbun ■ This invention relates to the storage of heat by utilizing the heat of transition associated with the phase change of substances, and in particular relates to fluid latent heat M heat, and is applied to air conditioning of buildings, etc. be able to.
盗」■(社)支逝
従来から放送局やホテルのパブリックスペースのように
間欠運転の多い場合や、デパートや店舗のように負荷変
動が激しく、部分延長運転が必要な場合に蓄熱槽が多用
されてきた。蓄熱槽は水などの蓄熱物質に計画的に効率
よく蓄熱し、熱的にも温度的にも損失のないように蓄え
、必要なときに必要な量の熱をくみ出せるようにしたも
のである。現在では熱源設備容量の減少、熱回収、排熱
利用、夜間電力の利用、電力のピークシフトなど種々の
目的に蓄熱槽が採用されている。蓄熱槽は一般的に冷水
槽として多用されていたが、最近では熱回収ヒートポン
プや太陽熱利用などに対して、温水槽としても使われて
いる。Thermal storage tanks have traditionally been used in cases where there is a lot of intermittent operation, such as in public spaces of broadcasting stations and hotels, and in cases where partial extended operation is required due to severe load fluctuations, such as in department stores and stores. It has been. A heat storage tank stores heat systematically and efficiently in a heat storage material such as water, so that there is no thermal or temperature loss, and allows the required amount of heat to be pumped out when needed. . At present, heat storage tanks are used for various purposes such as reducing the capacity of heat source equipment, recovering heat, utilizing waste heat, utilizing nighttime electricity, and shifting electricity peaks. Heat storage tanks were generally used frequently as cold water tanks, but recently they have also been used as hot water tanks for heat recovery heat pumps, solar heat utilization, etc.
蓄熱物質は用途に応じて数種類あるが、安価で熱容量が
大きく、また空調設備の熱媒体として直接利用できる点
から、−般的に水が用も\られている。水はあらゆる物
質の中で、単位容積光たりの比熱が最も大きく、しかも
最も安価な物質があるので、実例でも最も多く使用され
ている。水や固体などの蓄熱は顕熱のみを利用するもの
であるが、潜熱蓄熱は液体が凝固するときに熱を放出し
、固体が融解するときに熱を吸収するのであるから、小
容量で大量の熱を替えることができる。もちろん転移点
の上下では顕熱も利用できる。問題は蓄熱温度の所期と
終期の温度レベルに対してちょうど都合よく融解、凝固
するような物質があるかということ、配管に対する腐食
性、安全性などである。ほかの重要な問題は、潜熱蓄熱
材を利用するときの蓄熱槽の構造上の問題である。伝熱
が常に効果的に行われるような構造になっていないと融
解・凝固がスムーズに行われず、見掛は上蓄熱容量は小
さくなってしまう。特に凝固の過程で結晶すると、熱伝
導率が低くなるため、温度が下がっても凝固しにくくな
る。その過冷却現象を防止する方法には、凝固しやすい
核物質を入れること、攪拌や振動を与えて凝固を促進す
る方法などがある。There are several types of heat storage materials depending on the purpose, but water is generally used because it is cheap, has a large heat capacity, and can be used directly as a heat medium in air conditioning equipment. Water has the highest specific heat per unit volume of light among all substances, and is also the cheapest substance, so it is the most commonly used substance in practical applications. Heat storage in water or solids uses only sensible heat, but latent heat storage releases heat when a liquid solidifies and absorbs heat when a solid melts, so a large amount can be stored in a small volume. The heat can be changed. Of course, sensible heat can also be used above and below the transition point. Issues include whether there is a substance that melts and solidifies just right for the desired and final heat storage temperature levels, corrosiveness to piping, and safety. Another important issue is the structure of the heat storage tank when using latent heat storage materials. If the structure is not such that heat transfer is always carried out effectively, melting and solidification will not occur smoothly, and the apparent heat storage capacity will be reduced. In particular, if it crystallizes during the solidification process, its thermal conductivity decreases, making it difficult to solidify even when the temperature drops. Methods for preventing this supercooling phenomenon include adding nuclear material that solidifies easily, and applying stirring or vibration to promote solidification.
」1L臣1jケ三島¥° ド
口 古木のような単一媒体を蓄熱材として用い、
その固相と液相との間での相変化の際の転移熱を利用し
て潜熱蓄熱をする場合、固体の状態では熱伝導率が低く
、蓄熱材全体の凝固には非常に長時間を要し、実用的で
ない。例えば冷却水を通水する蛇管を配設したタイプの
蓄熱槽では、蛇管の周囲の蓄熱材だけが凝固して、蛇管
からより遠く離れた領域の蓄熱材はなかなか凝固し難く
、そのため蓄熱材全体による効果的な蓄熱を実現するこ
とは困難であった。また、蓄熱材全体を速く凝固させて
蓄熱効果を上げるため、プレート式蓄熱器のごとく蓄熱
材を狭い空間に充填することも考案されたが、狭い空間
ではその容積が小さく、蓄熱量も限られてしまい、実用
には供し難い。”1L minister 1j ke Mishima¥° de
Mouth: Using a single medium such as old wood as a heat storage material,
When storing latent heat using the heat of transition during the phase change between the solid and liquid phases, it takes a very long time to solidify the entire heat storage material due to its low thermal conductivity in the solid state. expensive and impractical. For example, in a type of heat storage tank equipped with corrugated pipes through which cooling water flows, only the heat storage material around the corrugated tubes solidifies, while the heat storage material in areas further away from the corrugated tubes is difficult to solidify, and as a result, the entire heat storage material It has been difficult to achieve effective heat storage by In addition, in order to solidify the entire heat storage material quickly and increase the heat storage effect, it was devised to fill a narrow space with heat storage material like a plate type heat storage device, but in a narrow space, the volume is small and the amount of heat storage is limited. Therefore, it is difficult to put it into practical use.
この発明は潜熱蓄熱の分野における上述のごとき問題点
に鑑み、多量の熱を比較的小さな容量で効率良く蓄える
ことができ、かつ、必要な量の熱を随時、容易に取り出
すことのできる蓄熱システムを提供せんとするものであ
る。In view of the above-mentioned problems in the field of latent heat storage, this invention is a heat storage system that can efficiently store a large amount of heat with a relatively small capacity and that can easily take out the required amount of heat at any time. We aim to provide the following.
口 占ヰ ゛ るための
この発明の流動蓄熱装置は、蓄熱タンクと、管路を介し
て蓄熱タンクと接続した熱交換器と、蓄熱材循環用のポ
ンプとを包含する。蓄熱材は液相と面相との間で相変化
を行う互いに混和しない2以上の物質からなる。蓄熱タ
ンクには蓄熱材を構成する物質の比重差に応じて下部又
は上部に、分散媒のための画室を設けてあり、ポンプの
吸込配管はこの画室から取り出しである。The fluidized heat storage device of the present invention for use in a heat storage system includes a heat storage tank, a heat exchanger connected to the heat storage tank via a pipe, and a pump for circulating heat storage material. The heat storage material is composed of two or more immiscible substances that undergo a phase change between a liquid phase and a surface phase. The heat storage tank is provided with a compartment for the dispersion medium at the lower or upper part depending on the difference in specific gravity of the substances constituting the heat storage material, and the suction pipe of the pump is taken out from this compartment.
庄且
蓄熱材はポンプにより循環している間は、振動を受けて
スラリーもしくはシャーベット状を呈する。言い換えれ
ば、不完全凝固状態で流動性を保持する。While the heat storage material is being circulated by the pump, it is subjected to vibrations and becomes slurry or sherbet-like. In other words, fluidity is maintained in an incompletely solidified state.
一旦ボンブが停止したときなど、蓄熱タンク内の蓄熱材
が、分散相が分散媒を取り込んでゾル化する結果、全体
として固化するおそがあるが、比重の差によりある程度
の分散媒が画室に収容されているため、ポンプの再起動
を防げるに至るようなことはない。しかして流動蓄熱装
置の正常な稼働が常に保証される。Once the bomb has stopped, the heat storage material in the heat storage tank may solidify as a whole as the dispersed phase takes in the dispersion medium and becomes a sol, but due to the difference in specific gravity, a certain amount of the dispersion medium is accommodated in the compartment. There is nothing that can prevent the pump from restarting. In this way, normal operation of the fluidized heat storage device is always guaranteed.
災見遡
以下、図面を参照してこの発明の実施例について述べる
。第1図に示す蓄熱装置は、蓄熱材を収容する蓄熱タン
ク(2)と、この蓄熱タンクに管路を介して接続した熱
交換器(4)と、その管路の途中に介在する蓄熱材循環
用のポンプ(6)とを含んでいる。熱交換器(4)には
、蓄熱材との間で間接的に熱の授受を行う、冷暖房など
の負荷に利用される流体が供給される。Embodiments of the present invention will now be described with reference to the drawings. The heat storage device shown in Fig. 1 includes a heat storage tank (2) containing a heat storage material, a heat exchanger (4) connected to the heat storage tank via a pipe, and a heat storage material interposed in the middle of the pipe. It also includes a circulation pump (6). The heat exchanger (4) is supplied with a fluid used for loads such as air conditioning and heating, which indirectly exchanges heat with the heat storage material.
蓄熱材はこのように循環させる必要があるため、流動性
を有しておらなければならない。かかる蓄熱材の流動性
は温度コントロールによって、つまり蓄熱性を不完全凝
固状態に保つことによって達成することもできるが、蓄
熱材自体に次に述べるような特性を付与することによっ
ても可能である。すなわち、凝固点を異にし、それぞれ
液相と面相との間で相変化を行う互いに混和しない少な
くとも2つの物質の混合物は、−の物質の凝固点以下で
他の物質の凝固点より高い温度領域においては、液相中
に固相の懸濁したいわゆるスラリー又はゾルとなる。Since the heat storage material needs to be circulated in this way, it must have fluidity. Such fluidity of the heat storage material can be achieved by temperature control, that is, by keeping the heat storage property in an incompletely solidified state, but it is also possible by imparting the following characteristics to the heat storage material itself. That is, a mixture of at least two mutually immiscible substances that have different freezing points and undergo a phase change between a liquid phase and a surface phase, in a temperature range below the freezing point of one substance and higher than the freezing point of another substance, This results in a so-called slurry or sol in which a solid phase is suspended in a liquid phase.
例えば暖房用の温熱源として利用する蓄熱材は、水とス
テアリルアルコールを混合して得ることができる。清水
の凝固点は0℃であり、ステアリルアルコールの凝固点
は57.95℃である。ステアリルアルコールは水に不
溶であるから、両者を混合して、攪拌もしくは振動を与
えると、ステアリルアルコールの凝固点より高い温度の
もとでは、液相のステアリルアルコールが同じく液相の
水中に微細粒子として分散しているコロイド分散系の混
合物すなわちエマルジョンとなる。温度を57.95℃
以下に下げると、ステアリルアルコールが凝固するわけ
であるが、その際ステアリルアルコールの微細粒子が水
で相互に橋絡されているので、この蓄熱材は熱伝導性に
優れ、各部のステアリルアルコール粒子が均一に、かつ
、速やかに凝固する。しかしてステアリルアルコールの
凝固点以下で水の凝固点よりも高い温度領域においては
、この蓄熱材は、液相(水)中に固相(凝固ステアリル
アルコール)の懸濁したゾルとなり、スラリーもしくは
シャーベット状を呈する。For example, a heat storage material used as a heat source for heating can be obtained by mixing water and stearyl alcohol. The freezing point of fresh water is 0°C, and the freezing point of stearyl alcohol is 57.95°C. Stearyl alcohol is insoluble in water, so when the two are mixed and stirred or vibrated, at a temperature higher than the freezing point of stearyl alcohol, the liquid stearyl alcohol will form fine particles in the liquid water. The result is a mixture of dispersed colloidal dispersions, or an emulsion. Temperature 57.95℃
When the temperature is lowered to below, the stearyl alcohol coagulates, but at this time, the fine particles of stearyl alcohol are bridged with each other by water, so this heat storage material has excellent thermal conductivity, and the stearyl alcohol particles in each part are Solidifies uniformly and quickly. However, in a temperature range below the freezing point of stearyl alcohol and higher than the freezing point of water, this heat storage material becomes a sol with a solid phase (solidified stearyl alcohol) suspended in a liquid phase (water), forming a slurry or sherbet-like sol. present.
また、冷房用の冷熱源として利用するfop(冷)材は
、水とデシルアルコールをin合して得ることができる
。デシルアルコールは水に不溶で、凝固点は7℃である
。両者を混合して、攪拌もしくは振動を与えると、デシ
ルアルコールが同じく液相の水中に微細粒子として分散
してエマルジョンとなる。温度を7℃以下に下げるとデ
シルアルコールが凝固するわけであるが、その際、デシ
ルアルコールの微細粒子が水で相互に橋絡されているの
でこの蓄熱材は熱伝導性に優れ、各部のデシルアルコー
ル粒子が均一に、かつ、速やかに凝固する。このように
、デシルアルコールの凝固点以下で水の凝固点より高い
温度領域においては、この蓄熱材はゾル化してスラリー
もしくはシャーベット状を呈する。Further, FOP (cold) material used as a cold source for air conditioning can be obtained by mixing water and decyl alcohol. Decyl alcohol is insoluble in water and has a freezing point of 7°C. When the two are mixed and stirred or vibrated, the decyl alcohol is dispersed as fine particles in the liquid water, forming an emulsion. Decyl alcohol solidifies when the temperature is lowered to 7°C or less, but at this time, the fine particles of decyl alcohol are bridged with each other by water, so this heat storage material has excellent thermal conductivity, and the decyl alcohol in each part Alcohol particles coagulate uniformly and quickly. Thus, in a temperature range below the freezing point of decyl alcohol and higher than the freezing point of water, this heat storage material becomes a sol and takes on the form of a slurry or sherbet.
かくしてこれらの蓄熱材はいずれも熱伝導性に優れるの
みならず、所望のいわゆる不完全凝固状態に維持するこ
とが容易である。Thus, all of these heat storage materials not only have excellent thermal conductivity, but also can be easily maintained in a desired so-called incompletely solidified state.
蓄熱材の循環はこのようにして得られる流動性に基づく
が、何らかの理由で、−旦ボンブが停止すると、蓄熱材
中の分散相が相互間に液相の分散媒をも封じ込めた状態
で凝固し、その結果蓄熱タンク(2)内の蓄熱材が全体
として固化(ゲル化)してしまう可能骨がある。そうな
ればポンプ(6)の再起動が不可能となる。こうした事
態を考慮して、蓄熱タンク(2)には循環に必要な量の
分散媒を積極的に確保しておくための手段を講じである
。第1図の実施例は分散媒の方が分散相よりも比重が大
きい場合である。すなわち、蓄熱タンク(2)の下部に
、タンク本体より断面積を十分に小さくした画室(12
)を突設しである。逆に分散媒の方が分散相より比重が
小さい場合は第2図に示すように、蓄熱タンク(2)の
上部に画室(22)を附設し、オーバーフローした分散
相を収容する。いずれの場合もポンプ(6)の吸込配管
はこれらの画室(12) (22)から取り出し、蓄
熱タンク(2)本体中の分散相が分散媒を取り込んでゲ
ル化し蓄熱材全体として固化したようなときでも画室(
12) (22)に自由な分散媒を確保し、ポンプ(
6)の稼働を常に保証する。The circulation of the heat storage material is based on the fluidity obtained in this way, but for some reason, once the bomb is stopped, the dispersed phase in the heat storage material solidifies while also trapping the liquid phase dispersion medium between them. However, as a result, there is a possibility that the entire heat storage material in the heat storage tank (2) solidifies (gels). If this happens, it will be impossible to restart the pump (6). In consideration of this situation, measures have been taken to proactively secure the amount of dispersion medium necessary for circulation in the heat storage tank (2). The embodiment shown in FIG. 1 is a case where the dispersion medium has a higher specific gravity than the dispersed phase. That is, at the bottom of the heat storage tank (2) there is a compartment (12
) is installed protrudingly. On the other hand, if the dispersion medium has a lower specific gravity than the dispersed phase, as shown in FIG. 2, a compartment (22) is attached to the upper part of the heat storage tank (2) to accommodate the overflowed dispersed phase. In either case, the suction piping of the pump (6) is taken out from these compartments (12) (22), and the dispersed phase in the main body of the heat storage tank (2) takes in the dispersion medium and becomes a gel, solidifying the heat storage material as a whole. Even at the time, the painting room (
12) Ensure a free dispersion medium in (22) and pump (
6) to ensure the operation of the system at all times.
血里Ω立l
この発明によれば、蓄熱材をいわゆる不完全凝固状態に
て循環させるから、従来の固体状態における蓄熱に比較
して装置全体の占める容積が小さくて済み、効率が良い
。加えて、蓄熱材は不完全凝固状態では流動性に冨むか
ら取り扱いが容易となり、自動制御にもなじむ。さらに
、蓄熱タンク内の蓄熱材が全体として固化するようなこ
とがあっても、常に、循環に要するだけの流体が確保さ
れるから、装置の連続した稼動が保証される。According to the present invention, since the heat storage material is circulated in a so-called incompletely solidified state, the volume occupied by the entire device is small compared to conventional heat storage in a solid state, and efficiency is high. In addition, the heat storage material has high fluidity in an incompletely solidified state, making it easy to handle and suitable for automatic control. Furthermore, even if the heat storage material in the heat storage tank solidifies as a whole, there is always enough fluid required for circulation, so continuous operation of the device is guaranteed.
図面はこの発明の実施例を示すフローシートであって、
第1図は蓄熱材の分散媒の比重が大きい場合の実施例、
第2図は蓄熱材の分散媒の比重が小さい場合の実施例を
示す。
(2) −蓄熱タンク、
(4) −熱交換器、
(6)−・ポンプ、
(12) (22)−・・画室。
特 許 出 願 人 株式会社 日阪製作所代
理 人 江 原 省 吾r7.−一
つ
色!The drawing is a flow sheet showing an embodiment of the invention,
Figure 1 shows an example in which the specific gravity of the dispersion medium of the heat storage material is large.
FIG. 2 shows an example in which the specific gravity of the dispersion medium of the heat storage material is small. (2) - Heat storage tank, (4) - Heat exchanger, (6) - Pump, (12) (22) - Compartment. Patent applicant: Hisaka Seisakusho Co., Ltd.
Rihito Gangwon Shogo r7. -One color!
Claims (1)
い2以上の物質からなる蓄熱材を収容する蓄熱タンクと
、管路を介して蓄熱タンクと接続した熱交換器と、蓄熱
材循環用のポンプとを包含してなり、蓄熱材を不完全凝
固状態で循環させるようにした流動蓄熱装置において、
比重差を利用して分散媒を分離収容するための画室を前
記蓄熱タンクに附設し、該画室から前記ポンプの吸込配
管を取り出したことを特徴とする流動蓄熱装置。(1) A heat storage tank containing a heat storage material made of two or more immiscible substances that undergo a phase change between a liquid phase and a solid phase, a heat exchanger connected to the heat storage tank via a pipe, and a heat storage In a fluidized heat storage device that includes a pump for circulating the material and circulates the heat storage material in an incompletely solidified state,
A fluid heat storage device characterized in that a compartment for separating and storing a dispersion medium by utilizing a difference in specific gravity is attached to the heat storage tank, and a suction pipe of the pump is taken out from the compartment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61145579A JPS633178A (en) | 1986-06-20 | 1986-06-20 | Fluid heat storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61145579A JPS633178A (en) | 1986-06-20 | 1986-06-20 | Fluid heat storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS633178A true JPS633178A (en) | 1988-01-08 |
JPH0414272B2 JPH0414272B2 (en) | 1992-03-12 |
Family
ID=15388359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61145579A Granted JPS633178A (en) | 1986-06-20 | 1986-06-20 | Fluid heat storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS633178A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0359335A (en) * | 1989-07-27 | 1991-03-14 | Ebara Res Co Ltd | Thermal accumulation system |
JPH06123451A (en) * | 1992-10-07 | 1994-05-06 | Daikin Ind Ltd | Air conditioner with heat storage panel |
JP2004198022A (en) * | 2002-12-18 | 2004-07-15 | Ishikawajima Harima Heavy Ind Co Ltd | Medium temperature waste heat recovery system |
CN105318743A (en) * | 2015-02-07 | 2016-02-10 | 成都奥能普科技有限公司 | Solid particle heat exchanger |
-
1986
- 1986-06-20 JP JP61145579A patent/JPS633178A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0359335A (en) * | 1989-07-27 | 1991-03-14 | Ebara Res Co Ltd | Thermal accumulation system |
JPH06123451A (en) * | 1992-10-07 | 1994-05-06 | Daikin Ind Ltd | Air conditioner with heat storage panel |
JP2004198022A (en) * | 2002-12-18 | 2004-07-15 | Ishikawajima Harima Heavy Ind Co Ltd | Medium temperature waste heat recovery system |
CN105318743A (en) * | 2015-02-07 | 2016-02-10 | 成都奥能普科技有限公司 | Solid particle heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JPH0414272B2 (en) | 1992-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4219072A (en) | Phase change material heat exchanger | |
US4104185A (en) | Latent heat accumulator | |
US4117882A (en) | Process and apparatus for heat exchange | |
US4237964A (en) | Heat exchange process with heat accumulation | |
EP0034164A1 (en) | A method and apparatus for storing heat. | |
US4180124A (en) | Process and apparatus for heat exchange | |
JPS633178A (en) | Fluid heat storage device | |
US3079087A (en) | Method and apparatus for storing and recovering heat | |
JPS61165593A (en) | Thermal accumulation system | |
JP2000130975A (en) | Heat-transferring device | |
JPS61163985A (en) | Thermal energy storage material | |
JPS58127047A (en) | Heat regenerative type hot water supply system | |
JPH0823449B2 (en) | Heat storage type electric hot water / steam generator | |
JPS5855434B2 (en) | Method and device for preventing supercooling of heat storage device | |
JPH0318869Y2 (en) | ||
JPS5836279B2 (en) | heat storage tank | |
JPH05203202A (en) | Cold storage device | |
JPH05264074A (en) | Air-conditioning system using ice-based heat storage | |
JPH07229689A (en) | Heat exchange equipment | |
JPS5847990A (en) | Heat accumulating tank | |
KR960015826B1 (en) | Natural circuit device of fluid ice | |
JPH05118568A (en) | Heat accumulation type floor heating system | |
JPS6230432Y2 (en) | ||
Kauffman et al. | Thermal energy storage by means of heat of solution | |
JPH0611285A (en) | Heat accumulating system |