JPS63310703A - Methanol reforming device - Google Patents

Methanol reforming device

Info

Publication number
JPS63310703A
JPS63310703A JP62147203A JP14720387A JPS63310703A JP S63310703 A JPS63310703 A JP S63310703A JP 62147203 A JP62147203 A JP 62147203A JP 14720387 A JP14720387 A JP 14720387A JP S63310703 A JPS63310703 A JP S63310703A
Authority
JP
Japan
Prior art keywords
catalyst
reforming
raw material
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62147203A
Other languages
Japanese (ja)
Inventor
Akitoshi Seya
瀬谷 彰利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62147203A priority Critical patent/JPS63310703A/en
Publication of JPS63310703A publication Critical patent/JPS63310703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To renew the catalyst packing density which becomes coase due to the reduction operation to be dense and to prevent the generation of particles of catalyst by providing a catalyst pressing mechanism pressing the catalyst through a pressing plate which is permeable for the reforming gas, to the end surface of reforming gas outlet side of reforming catalyst layer in a cylindrical vessel. CONSTITUTION:In the heated state of an evaporator 17 and a reactor 6, the reforming raw material consisting of methanol and water is supplied from an inlet 18 in the direction shown by an arrow 25, and evaporated at the evaporator 17, and the evaporated gas is sent through a raw material manifold 19 to a raw material gas inlet 6a of the lower end part of the reactor 6. This raw material gas is brought into contact with the catalyst 10 while ascending in the reactor 6 to be reformed. Before the reforming device is put into operation, the reduction operation for the catalyst 10 is carried out and the volume of the catalyst is reduced with the result that the packing density of the catalyst 10 becomes coase. Therefore, the upper end surface of catalyst layer is gradually pressed down by the pressing plate 22 and the packing density of the catalyst 10 is raised, and the fluidization of the catalyst 10 and the grinding of the catalyst 10 due to the movement of reforming device are restrained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、メタノールを水蒸気の存在下で触媒と接触
反応させて、燃料電池に供給するための水素を主成分と
するガスに改質するメタノール改質器に関する。
The present invention relates to a methanol reformer that catalytically reacts methanol with a catalyst in the presence of water vapor to reform it into a gas containing hydrogen as a main component to be supplied to a fuel cell.

【従来の技術】[Conventional technology]

新たな電源として、燃料電池が注目を集めている。この
燃料電池は、電解液を挟んで置かれた水素電極と空気電
極にそれぞれ水素と空気(酸素)を供給し、水の電気分
解と逆の原理で発電するシステムである。 このような燃料電池に供給する水素を得るための手段と
して、メタノールの水蒸気改質がある。 これは、水蒸気の存在下でメタノールを触媒と接触反応
させ、水素を主成分とするガスに改質するもので、この
時の反応式は次の通りである。 CH30H+H,O→Cot +3 Hzまた、この場
合に使用する改質触媒としては、Cu−Zn系、Cu−
Zn−Cr系、Cu−Zn−At系、Cu−Cr系など
が知られている。 ところで、これら改質触媒は、使用前の段階では酸化物
の状態で改質器に充填されるが、上記改質反応には還元
された状態で関与する。改質触媒を酸化物の状態にした
ままで改質器の運転を開始すると、触媒の還元反応のた
め極めて高い発熱が生じ、その結果として触媒自身がそ
の限界温度以上に加熱されて劣化したり、触媒を収容し
た反応器が損傷したりする恐れがある。 このために、通常は改質器の運転に入るまえに、前段工
程として改質触媒を還元操作し、その後に改質運転に移
行するようにしている。 さて、この還元操作の反応は、例えば銅系の触媒の場合
、次の通りである。 CuO+H2−+Cu+H2O この反応式から分かるとおり、触媒は還元操作により体
積減少を生じる。そのため、改質器の反応器に充填され
た触媒は、この還元操作により充填密度が粗になる。
Fuel cells are attracting attention as a new power source. This fuel cell is a system that supplies hydrogen and air (oxygen) to a hydrogen electrode and an air electrode placed between an electrolyte, respectively, and generates electricity using the opposite principle to water electrolysis. Steam reforming of methanol is a means for obtaining hydrogen to be supplied to such fuel cells. This is a method in which methanol is brought into contact with a catalyst in the presence of water vapor to reform it into a gas containing hydrogen as its main component, and the reaction formula at this time is as follows. CH30H+H,O→Cot +3 Hz In addition, the reforming catalyst used in this case is Cu-Zn type, Cu-
Zn-Cr type, Cu-Zn-At type, Cu-Cr type, etc. are known. By the way, these reforming catalysts are filled into a reformer in an oxide state before use, but participate in the above-mentioned reforming reaction in a reduced state. If you start operating the reformer with the reforming catalyst in an oxide state, the reduction reaction of the catalyst will generate an extremely high amount of heat, and as a result, the catalyst itself will be heated above its limit temperature and deteriorate. , the reactor containing the catalyst may be damaged. For this reason, the reforming catalyst is normally subjected to a reduction operation as a preliminary step before the reformer starts operating, and then the reforming operation is started. Now, the reaction of this reduction operation, for example in the case of a copper-based catalyst, is as follows. CuO+H2-+Cu+H2O As can be seen from this reaction formula, the volume of the catalyst decreases due to the reduction operation. Therefore, the packing density of the catalyst packed in the reactor of the reformer becomes coarse due to this reduction operation.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

反応器内の触媒充填密度が粗になると、改質器の運転時
に原料ガスによる触媒の流動が生じ易(なり、原料ガス
と触媒との接触効率が低下する。 さらに、この触媒の流動により、また移動用電源として
用いられる小形の燃料電池では移動時の振動により触媒
の粉砕が生じ、触媒微粉が大量に発生し触媒の性能が低
下してしまう。 一方、触媒還元時の触媒体積減少の対応策として、予め
触媒を還元して体積を減少させておき、その後表面のみ
を酸化させて内部の還元層の保護をしたPre−red
ucedタイプの触媒を用いることが考えられる。しか
しながら、このタイプの触媒はコストが高いという難点
がある。 この発明は、上記の状況の下になされたもので、反応器
に充填した状態で触媒を還元操作した場合の体積減少に
対応し、粗になった触媒充填密度を再び密に復して、改
質器の運転時における触媒の流動や、改質器の移動時な
どにおける触媒微粉の発生を防止することのできるメタ
ノール改質器を提供することを目的とするものである。
When the catalyst packing density in the reactor becomes coarse, the catalyst tends to flow due to the raw material gas during operation of the reformer (this reduces the contact efficiency between the raw material gas and the catalyst. Furthermore, due to this catalyst flow, In addition, in small fuel cells used as a mobile power source, vibrations during transportation cause the catalyst to shatter, producing a large amount of catalyst fine powder and reducing the performance of the catalyst. As a countermeasure, the catalyst was reduced in advance to reduce its volume, and then only the surface was oxidized to protect the internal reduction layer.
It is conceivable to use a uced type catalyst. However, this type of catalyst suffers from high cost. This invention was made under the above circumstances, and in response to the volume reduction when the catalyst is reduced while packed in a reactor, the coarse packing density of the catalyst is restored to a denser one. The object of the present invention is to provide a methanol reformer that can prevent catalyst flow during operation of the reformer and generation of catalyst fine powder during movement of the reformer.

【問題点を解決するための手段] この発明は、筒状の容器内に改質触媒が充填され前記容器の一端部が原料ガスの入口に、また他端部が改質ガスの出口となる反応器を有するメタノール改質器において、改質触媒層の改質ガス出口側端面を改質ガス透過性の押板を介して押圧する触媒押圧機構を設けるものとする。 【作 用】[Means to solve problems] This invention provides a methanol reformer having a reactor in which a cylindrical container is filled with a reforming catalyst, one end of which serves as an inlet for raw material gas, and the other end serves as an outlet for reformed gas. A catalyst pressing mechanism is provided that presses the reformed gas outlet side end face of the reformed catalyst layer via a reformed gas permeable push plate. [For use]

この発明によれば、触媒の還元操作に伴い触媒充填密度
が粗になっても、改質触媒層が押圧されることにより圧
縮され、触媒充填密度が再び高められる。 また、改質触媒層の端面を押圧する押板は、改質ガス透
過性であるため、改質ガスの通過には影響ない。
According to this invention, even if the catalyst packing density becomes coarse due to the catalyst reduction operation, the reforming catalyst layer is compressed by being pressed, and the catalyst packing density is increased again. Further, since the press plate that presses the end face of the reforming catalyst layer is permeable to the reformed gas, it does not affect the passage of the reformed gas.

【実施例】【Example】

第1図において、1は庭付円筒状の炉体で、円板状の蓋
板2によって閉塞されるようになっている。 蓋板2の内側中央部には、炉内を加熱するためのバーナ
3が取り付けられている。4はその燃料ガス供給管、5
は燃焼用空気供給管である。 炉体1内には、バーナ3を囲んで反応器6が設けられて
いる。この反応器6は、同心的に配置された円筒状の内
筒7、外筒8および環状の底板9からなる筒状の容器に
改質触媒10を充填して構成されている。 反応器6の内筒7はバーナ2の外周に接し、蓋2の下面
に吊り下げられるようにして上部で固定されている。こ
の内筒7の内側はバーナ2の燃焼室11となっている。 外筒8は炉体1との間に断面環状の燃焼ガス通路12を
形成し、上部のフランジ部で炉体1の内壁面に固定され
ている。燃焼ガス通路12の上部には燃焼ガス排出口1
3が設けられている。 反応器6の底板9は、炉体1の底板1aと間隔を置いて
対向しており、この間隔により燃焼室11と燃焼ガス通
路12とを連絡する円形の燃焼ガスマニホルド14が形
成されている。また反応器6の上方には環状の改質ガス
マニホルド15が形成されており、M2にはこの改質ガ
スマニホルド15に通ずるように改質ガス出口管16が
設けられている。 燃焼室11内には、改質原料の気化器17がバーナ2の
下方に位置するように配置されている。 気化器17はらせん状に巻かれたパイプで、改質原料入
口部17aから垂直上方に立ち上がった後らせん状に下
降し、さらに途中から垂直下方に下がって原料ガス出口
部1’7bで終わっている。 気化器17の改質原料入口部17aは改質原料供給管1
8に接続されており、また原料ガス出口部17bは原料
ガスマニホルド19に接続されている。原料ガスマニホ
ルド19は管状で、燃焼室11を横切り、反応器6内の
環状空間の第1図における右半分と左半分とを結んでい
る。 後述するように、反応器6は下端部が原料ガスの入口6
aに、また上端部が改質ガスの出口6bになる。 さて
、反応器6の改質ガス出口側には、触媒層の端面20を
押圧する触媒押圧機構21が設けられている。この触媒
押圧機構21は、触媒層端面20に接触する改質ガス透
過性の環状の押板22と、この押板22と蓋板2との間
に設けられた圧縮ばね23とからなっている。 その詳細を第3図および第4図に示す。ばね23は4本
設けられており(第4図)、それらの上端は蓋板2に、
下端は押板22に結合されている。 押板22は改質ガスを透過させ得るように、多孔性の材
料、例えば発泡金属でできている。 触媒押圧機構21が取り付けられた蓋板(第3図)を、
触媒10が充填された反応器6内に押板22を挿入して
、第1図のように炉体1に取り付けると、ばね23が圧
縮され、触媒層端面20は押板22を介して押圧される
。 さて、このように構成されたメタノール改質器は、バー
ナ2の燃焼の下で、改質原料供給管18から供給された
を次のようにして水素を主成分とするガスに改質し、こ
の改質ガスを改質ガス出口管16より図示しない燃料電
池の水素極へ供給する。 バーナ3の燃焼ガスは矢印24に示すように燃焼室11
を下降し、原料ガスマニホルド19の第1図における前
後の脇を通り抜けて燃焼ガスマニホルド14に達し、そ
こでUターンして燃焼ガス通路12を上昇した後燃焼ガ
ス排出管13から排出される。この過程で、気化器17
および反応器6は燃焼ガスと接触して熱伝達により加熱
される。 また、気化器17はバーナ3からの輻射熱により同時に
加熱される。 このように気化器17および反応器6が加熱された状態
で、メタノールと水からなる改質原料が改質原料供給管
18から矢印25に示すように供給されると、この改質
原料は気化器17で蒸発してガス化し、原料ガスマニホ
ルド19を通って反応器6の下端部の原料ガス人口6a
に達する。この原料ガスは触媒10と接触しながら反応
器6内の環状空間を上昇し、その間に前記反応式により
改質される。この改質ガスは反応器6の上部の改質ガス
出口6bから改質ガスマニホルド15に集められ、改質
ガス出口管16から燃料電池に供給される。 このような改質器の運転に先立って、既に述べたように
触媒10の還元操作が行われる。その際、体積減少が生
じ触媒の充填密度が粗になると、触媒層はその上端面に
加えられる押圧力により徐々に圧縮され、第2図に示す
ように触媒層面が下降する。その結果、触媒の充填密度
が高められ、原料ガスの上昇流による触媒の流動や改質
器移動時の振動に起因する触媒の粉砕が抑制される。ば
ね23による押圧力の大きさは、触媒層の内部摩擦を考
慮し、所望の触媒密度が得られるように適宜に選定され
る。 さらに、押板の金属発泡体はフィルタとしても作用し、
運転時に飛散する触媒微粉を捕集して燃料電池本体まで
到達させないようにする効果も発揮する。 触媒押圧機構の押圧手段としては、図示実施例のコイル
ばねあるいは板ばねなどのばね類の他、油圧、空気圧な
どを用いることもできる。また、図示実施例のように、
常時押圧力を働かせておくものの他に、触媒の還元操作
の後、一時的に押圧力を作用させるものも考えられる。
In FIG. 1, reference numeral 1 denotes a cylindrical furnace body with a garden, which is closed by a disc-shaped lid plate 2. A burner 3 for heating the inside of the furnace is attached to the inner center of the lid plate 2. 4 is its fuel gas supply pipe, 5
is the combustion air supply pipe. Inside the furnace body 1, a reactor 6 is provided surrounding the burner 3. This reactor 6 is constructed by filling a reforming catalyst 10 into a cylindrical container consisting of a cylindrical inner tube 7, an outer tube 8, and an annular bottom plate 9 that are arranged concentrically. The inner cylinder 7 of the reactor 6 is in contact with the outer periphery of the burner 2 and is fixed at the upper part so as to be suspended from the lower surface of the lid 2. The inside of this inner cylinder 7 serves as a combustion chamber 11 of the burner 2. The outer cylinder 8 forms a combustion gas passage 12 with an annular cross section between it and the furnace body 1, and is fixed to the inner wall surface of the furnace body 1 at an upper flange portion. A combustion gas outlet 1 is provided at the upper part of the combustion gas passage 12.
3 is provided. The bottom plate 9 of the reactor 6 faces the bottom plate 1a of the furnace body 1 with a gap therebetween, and this gap forms a circular combustion gas manifold 14 that communicates the combustion chamber 11 and the combustion gas passage 12. . Further, an annular reformed gas manifold 15 is formed above the reactor 6, and a reformed gas outlet pipe 16 is provided in M2 so as to communicate with this reformed gas manifold 15. A reforming material vaporizer 17 is arranged in the combustion chamber 11 so as to be located below the burner 2 . The vaporizer 17 is a spirally wound pipe that rises vertically upward from the reformed raw material inlet 17a, then descends in a spiral fashion, and further descends vertically from the middle to end at the raw material gas outlet 1'7b. There is. The reformed raw material inlet 17a of the vaporizer 17 is connected to the reformed raw material supply pipe 1.
8, and the source gas outlet section 17b is connected to the source gas manifold 19. The raw material gas manifold 19 is tubular and crosses the combustion chamber 11, connecting the right half and the left half of the annular space in the reactor 6 in FIG. As will be described later, the lower end of the reactor 6 is the inlet 6 for the raw material gas.
a, and the upper end becomes the reformed gas outlet 6b. Now, on the reformed gas outlet side of the reactor 6, a catalyst pressing mechanism 21 for pressing the end surface 20 of the catalyst layer is provided. This catalyst pressing mechanism 21 consists of a reformed gas permeable annular pressing plate 22 that contacts the end face 20 of the catalyst layer, and a compression spring 23 provided between this pressing plate 22 and the cover plate 2. . The details are shown in FIGS. 3 and 4. Four springs 23 are provided (Fig. 4), and their upper ends are attached to the cover plate 2.
The lower end is connected to a push plate 22. The push plate 22 is made of a porous material, such as foamed metal, so as to allow the reformed gas to pass therethrough. The cover plate (Fig. 3) to which the catalyst pressing mechanism 21 is attached is
When the push plate 22 is inserted into the reactor 6 filled with the catalyst 10 and attached to the furnace body 1 as shown in FIG. be done. Now, the methanol reformer configured as described above reformes the gas supplied from the reforming raw material supply pipe 18 under combustion in the burner 2 into a gas mainly composed of hydrogen as follows. This reformed gas is supplied from the reformed gas outlet pipe 16 to a hydrogen electrode of a fuel cell (not shown). The combustion gas of the burner 3 flows into the combustion chamber 11 as shown by the arrow 24.
The raw material gas passes through the front and rear sides of the raw material gas manifold 19 in FIG. In this process, the vaporizer 17
And the reactor 6 is heated by heat transfer in contact with the combustion gas. Further, the vaporizer 17 is simultaneously heated by the radiant heat from the burner 3. With the vaporizer 17 and the reactor 6 heated in this manner, when a reforming raw material consisting of methanol and water is supplied from the reforming raw material supply pipe 18 as shown by the arrow 25, this reforming raw material is vaporized. The raw material gas population 6a is evaporated and gasified in the reactor 17, and passes through the raw material gas manifold 19 to the lower end of the reactor 6.
reach. This raw material gas rises through the annular space in the reactor 6 while contacting the catalyst 10, and is reformed according to the reaction formula described above. This reformed gas is collected into a reformed gas manifold 15 from a reformed gas outlet 6b in the upper part of the reactor 6, and is supplied to the fuel cell from a reformed gas outlet pipe 16. Prior to such operation of the reformer, the catalyst 10 is reduced as described above. At this time, when the volume decreases and the packing density of the catalyst becomes coarse, the catalyst layer is gradually compressed by the pressing force applied to its upper end surface, and the surface of the catalyst layer descends as shown in FIG. As a result, the packing density of the catalyst is increased, and pulverization of the catalyst due to the flow of the catalyst due to the upward flow of the raw material gas and vibrations during movement of the reformer is suppressed. The magnitude of the pressing force by the spring 23 is appropriately selected in consideration of internal friction of the catalyst layer so as to obtain a desired catalyst density. In addition, the metal foam in the push plate also acts as a filter,
It also has the effect of collecting catalyst fine powder that scatters during operation and preventing it from reaching the fuel cell itself. As the pressing means of the catalyst pressing mechanism, in addition to springs such as coil springs or leaf springs in the illustrated embodiment, hydraulic pressure, pneumatic pressure, etc. can also be used. Also, as in the illustrated embodiment,
In addition to a method in which the pressing force is applied constantly, a method in which the pressing force is applied temporarily after the reduction operation of the catalyst is also conceivable.

【発明の効果】【Effect of the invention】

この発明によれば、改質触媒層の改質ガス出口側端面を
改質ガス透過性の押板を介して押圧する押圧機構を設け
たので、触媒の還元操作による触媒の体積減少ににより
触媒充填密度が粗になった場合にも触媒層を圧縮して充
填密度を高めることができ、触媒充填密度の低下に起因
する改質器運転時の触媒の流動や、改質器運搬時などに
おける触媒微粉の生成などの不都合を回避することがで
きる。
According to this invention, since a pressing mechanism is provided that presses the end face of the reformed gas outlet side of the reformed catalyst layer through the reformed gas permeable push plate, the volume of the catalyst is reduced due to the reduction operation of the catalyst. Even when the packing density becomes coarse, the catalyst bed can be compressed to increase the packing density, and this can prevent catalyst flow during reformer operation caused by a decrease in catalyst packing density, or during transportation of the reformer. Inconveniences such as generation of catalyst fines can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の改質器の実施例を示す縦断面図、第
2図は第1図において触媒層面が下降した状態を示す改
質器の縦断面図、第3図はこの発明における触媒押圧機
構を示す側面図、第4図は第3図の底面図である。 6:反応器、6a:反応器の原料ガス入口、6b:反応
器の改質ガス出口部、10:改質触媒、21:触媒押圧
機構、22:押板。 第1図 第2図 入 22Jマ拷 第3図 2311″ね 第4図
FIG. 1 is a longitudinal sectional view showing an embodiment of the reformer of the present invention, FIG. 2 is a longitudinal sectional view of the reformer showing a state in which the catalyst layer surface is lowered in FIG. FIG. 4 is a side view showing the catalyst pressing mechanism, and FIG. 4 is a bottom view of FIG. 3. 6: Reactor, 6a: Raw material gas inlet of the reactor, 6b: Reformed gas outlet of the reactor, 10: Reforming catalyst, 21: Catalyst pressing mechanism, 22: Push plate. Figure 1 Figure 2 22J Machine Torture Figure 3 2311'' Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)筒状の容器内に改質触媒が充填され前記容器の一端
部が原料ガスの入口に、また他端部が改質ガスの出口と
なる反応器を有するメタノール改質器において、改質触
媒層の改質ガス出口側端面を改質ガス透過性の押板を介
して押圧する触媒押圧機構を設けたことを特徴とするメ
タノール改質器。
1) In a methanol reformer having a reactor in which a cylindrical container is filled with a reforming catalyst and one end of the container serves as an inlet for raw material gas and the other end serves as an outlet for reformed gas, reforming is carried out in a methanol reformer. A methanol reformer comprising a catalyst pressing mechanism that presses the end face of the catalyst layer on the reformed gas outlet side via a reformed gas permeable push plate.
JP62147203A 1987-06-13 1987-06-13 Methanol reforming device Pending JPS63310703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147203A JPS63310703A (en) 1987-06-13 1987-06-13 Methanol reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147203A JPS63310703A (en) 1987-06-13 1987-06-13 Methanol reforming device

Publications (1)

Publication Number Publication Date
JPS63310703A true JPS63310703A (en) 1988-12-19

Family

ID=15424893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147203A Pending JPS63310703A (en) 1987-06-13 1987-06-13 Methanol reforming device

Country Status (1)

Country Link
JP (1) JPS63310703A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011076A1 (en) * 1992-11-17 1994-05-26 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Load-following vaporizer apparatus and method
EP0812802A3 (en) * 1996-06-15 1998-03-25 Daimler-Benz Aktiengesellschaft Reformer, especially for the steam reformation of methanol
EP0875487A1 (en) * 1997-03-29 1998-11-04 dbb fuel cell engines GmbH Reformer with catalyst packing
EP0884270A1 (en) * 1997-06-13 1998-12-16 dbb fuel cell engines GmbH Process for the treatment of a methanol reforming catalyst
EP0884272A1 (en) * 1997-06-13 1998-12-16 dbb fuel cell engines GmbH Reactor for methanol reforming and method for treating a catalyst for such a reactor
WO1999036350A1 (en) * 1998-01-16 1999-07-22 Basf Aktiengesellschaft Method for pretreating a catalyst material
US6316134B1 (en) 1999-09-13 2001-11-13 Ballard Generation Systems, Inc. Fuel cell electric power generation system
EP1198020A3 (en) * 2000-10-12 2009-06-03 Nissan Motor Co., Ltd. Fuel cell drive system
KR101039929B1 (en) 2009-10-06 2011-06-09 인하대학교 산학협력단 Double-jacket type reactor
CN111375351A (en) * 2018-12-30 2020-07-07 中国石油化工股份有限公司 Up-flow hydrogenation reactor and application thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011076A1 (en) * 1992-11-17 1994-05-26 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Load-following vaporizer apparatus and method
EP0812802A3 (en) * 1996-06-15 1998-03-25 Daimler-Benz Aktiengesellschaft Reformer, especially for the steam reformation of methanol
EP0875487A1 (en) * 1997-03-29 1998-11-04 dbb fuel cell engines GmbH Reformer with catalyst packing
EP0884270A1 (en) * 1997-06-13 1998-12-16 dbb fuel cell engines GmbH Process for the treatment of a methanol reforming catalyst
EP0884272A1 (en) * 1997-06-13 1998-12-16 dbb fuel cell engines GmbH Reactor for methanol reforming and method for treating a catalyst for such a reactor
US6355589B1 (en) * 1998-01-16 2002-03-12 Xcellsis Gmbh Method for pretreating a catalyst material
WO1999036350A1 (en) * 1998-01-16 1999-07-22 Basf Aktiengesellschaft Method for pretreating a catalyst material
US6316134B1 (en) 1999-09-13 2001-11-13 Ballard Generation Systems, Inc. Fuel cell electric power generation system
US6645652B2 (en) 1999-09-13 2003-11-11 Ballard Generation Systems Inc. Fuel cell electric power generation system
EP1198020A3 (en) * 2000-10-12 2009-06-03 Nissan Motor Co., Ltd. Fuel cell drive system
KR101039929B1 (en) 2009-10-06 2011-06-09 인하대학교 산학협력단 Double-jacket type reactor
CN111375351A (en) * 2018-12-30 2020-07-07 中国石油化工股份有限公司 Up-flow hydrogenation reactor and application thereof
WO2020140872A1 (en) * 2018-12-30 2020-07-09 中国石油化工股份有限公司 Upflow reactor
CN111375351B (en) * 2018-12-30 2021-07-09 中国石油化工股份有限公司 Up-flow hydrogenation reactor and application thereof
US11731096B2 (en) 2018-12-30 2023-08-22 China Petroleum & Chemical Corporation Upflow reactor

Similar Documents

Publication Publication Date Title
JP3556638B2 (en) Fuel cell device
JP2001518390A (en) Apparatus for performing heterogeneous catalytic reaction and method for producing catalyst
CN106082127B (en) Selective oxidation purifies the methanol steam reforming device of CO
JPS63310703A (en) Methanol reforming device
US3459510A (en) Hydrogen generator
CA2428548C (en) Methanol-steam reformer
JPH07506327A (en) Improved hydrogen generation system
US20220168687A1 (en) Membrane-based hydrogen purifiers
JPH0812301A (en) Methanol reformer
CN111483978B (en) Reforming hydrogen production device and reforming hydrogen production method
CN106145036A (en) Methanation reaction purifies the methanol steam reforming device of CO
CN205933214U (en) Methanation reaction purifies CO's methanol reforming reactor
JP2004263118A (en) Desulfurizer and desulfurizing method
CN205944261U (en) Methanol reforming reactor and small -size fuel cell power generation system
CN210528462U (en) High-performance reforming reactor
CN110329993B (en) High-performance reforming reactor
JP3643729B2 (en) Fuel reformer and fuel cell system including the same
JPS6249703B2 (en)
JPH05303972A (en) Fuel reformer
JP3777122B2 (en) Gas generation system
JP2000327304A (en) Hydrogen generation apparatus
JPH0523541Y2 (en)
CN205933211U (en) Selective oxidation purifies CO's methanol reforming reactor
JP4278984B2 (en) Membrane reactor for gas extraction
JP2998217B2 (en) Fuel reformer