JPS63309828A - Resistance type thermometer - Google Patents

Resistance type thermometer

Info

Publication number
JPS63309828A
JPS63309828A JP62145313A JP14531387A JPS63309828A JP S63309828 A JPS63309828 A JP S63309828A JP 62145313 A JP62145313 A JP 62145313A JP 14531387 A JP14531387 A JP 14531387A JP S63309828 A JPS63309828 A JP S63309828A
Authority
JP
Japan
Prior art keywords
resistance
temperature
elements
resistance element
thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62145313A
Other languages
Japanese (ja)
Other versions
JP2540548B2 (en
Inventor
Shozo Taguchi
田口 省三
Toshiharu Oketani
尾毛谷 俊治
Hiroshi Terao
寺尾 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Okazaki Manufacturing Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Okazaki Manufacturing Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62145313A priority Critical patent/JP2540548B2/en
Priority to US07/198,495 priority patent/US4929092A/en
Priority to EP88108694A priority patent/EP0294691B1/en
Priority to DE88108694T priority patent/DE3883613T2/en
Priority to KR1019880006954A priority patent/KR910003825B1/en
Publication of JPS63309828A publication Critical patent/JPS63309828A/en
Application granted granted Critical
Publication of JP2540548B2 publication Critical patent/JP2540548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve the responsiveness and reliability on the side of a thermometer by forming a hollow and providing two resistance element bodies on the internal wall of a protection case, and connecting their lead wires to sheath cables independently. CONSTITUTION:A resistance type thermometer 11 is held in a well 12 welded to a pipe base 14 provided to piping 13 and the temperature of a fluid in the piping 13 is measured. Here, ceramic sintered type temperature-sensitive resistance elements 27 and 28 are adhered to the internal wall of the thin protection case 26 and put close to the fluid whose temperature is to be measured. It is adhered to the case 26 with an inorganic adhesive 31 which has heat resistance, radiation resistance, and high heat conductivity, heat conductivity to the object fluid of temperature measurement is high, and moisture resistance, heat resistance, and radiation resistance are excellent. Further, a temperature-sensitive resistance element assembly 15 incorporates only the elements 27 and 28 and only air fills the remaining hollow 30 to reduce its heat capacity, thereby improving the response. Further, the lead wires 38 of the elements 27 and 28 are coupled with the independent sheath cables to eliminate a shunt circuit due to high temperature between the conductors of the elements 27 and 28 and also prevent them from contacting each other.

Description

【発明の詳細な説明】 〈産業上の利用分舒〉 本発明は管内の流体温度を計測する抵抗式温度計に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to a resistance thermometer for measuring the temperature of a fluid in a pipe.

〈従来の技術〉 第8図に従来の管内流体温度計測用の抵抗温度計の断面
を示す。
<Prior Art> FIG. 8 shows a cross section of a conventional resistance thermometer for measuring the temperature of fluid in a pipe.

抵抗温度計1は、保護ケース2の中にセラミック焼結型
感温抵抗素子3が配置され、保護ケース2内の間隙には
酸化マグネシウム(MgO)からなる充填材4が充填さ
れている。第9図に示すように、セラミック焼結型感温
抵抗素子3にはダブルエレメント5が一体に組み込まれ
、ダブルエレメント5のリード線6は図示しない一体の
シースケーブルに連結されている。
In the resistance thermometer 1, a ceramic sintered temperature-sensitive resistance element 3 is arranged in a protective case 2, and a gap in the protective case 2 is filled with a filler 4 made of magnesium oxide (MgO). As shown in FIG. 9, a double element 5 is integrated into the ceramic sintered temperature-sensitive resistance element 3, and a lead wire 6 of the double element 5 is connected to an integral sheathed cable (not shown).

抵抗温度計1は流体内に配置されて流体の温度計測が行
なわれる。
The resistance thermometer 1 is placed in a fluid to measure the temperature of the fluid.

〈発明が解決しようとする問題点〉 従来の抵抗温度計1では次の問題点が生じていた。第一
に分離されていないダブルエレメント5を使用していた
ため、常用の抵抗温度計1に故障が生じた場合に同じ流
体場所の計測を予備の抵抗温度計で引続き行なうことが
不可能であった。第二に従来の抵抗温度計1は保護ケー
ス2の中に充填材4を充填し、その内部にセラミック焼
結型感温抵抗素子3を埋め込んだものであるため、保護
ケース2内が中空状態でなく、充填材4の存在により保
護ケース2部分の熱容量が増加し、またセラミック焼結
型感温抵抗素子3が保護ケース2の内壁に密着していな
かったため外部からの熱の伝達に遅れが生じていた。従
ってこれらの要因が抵抗温度計1の応答性を制約してい
た。また、充填材4が酸化マグネシウムからなっている
ため、吸湿性が高かった。第三にシースケーブルが一体
形であるため、例えば常用と予備用と二つの抵抗温度計
1を使用した場合、リード線6同士に高温による絶縁劣
化が生じに時、リード線6間に分路が生じ、重要な温度
計側システムでは大きな問題を引き起こす可能性があっ
た。
<Problems to be Solved by the Invention> The conventional resistance thermometer 1 has the following problems. First, because a non-separated double element 5 was used, it was impossible to continue measuring the same fluid location with a spare resistance thermometer in the event that the normally used resistance thermometer 1 failed. . Second, the conventional resistance thermometer 1 has a protective case 2 filled with a filler 4 and a ceramic sintered temperature-sensitive resistance element 3 embedded therein, so the inside of the protective case 2 is hollow. However, the heat capacity of the protective case 2 increases due to the presence of the filler 4, and since the ceramic sintered temperature-sensitive resistance element 3 is not in close contact with the inner wall of the protective case 2, there is a delay in heat transfer from the outside. was occurring. Therefore, these factors restrict the responsiveness of the resistance thermometer 1. Furthermore, since the filler 4 was made of magnesium oxide, it had high hygroscopicity. Thirdly, since the sheathed cable is integrated, for example, if two resistance thermometers 1 are used, one for regular use and one for backup, if the insulation deteriorates between the lead wires 6 due to high temperature, a shunt cable will be connected between the lead wires 6. This could cause major problems in the critical thermometer system.

本発明は上記問題点に鑑みてなされたもので、空所を形
成して保護ケース内壁に常用及び予備(冗長)用の抵抗
素子体を設け、抵抗素子体のリード線が独立したシース
ケーブルに接続される抵抗式温度計を提供し、もって温
度計側の応答性及び信頼性向上を図ることを目的とする
The present invention has been made in view of the above-mentioned problems, and a space is formed and a resistance element body for regular use and a spare (redundant) use is provided on the inner wall of the protective case, and the lead wire of the resistance element body is connected to an independent sheathed cable. The purpose of this invention is to provide a resistance thermometer that can be connected, thereby improving the responsiveness and reliability of the thermometer.

〈問題点を解決するための手段〉 上記目的を達成するための本発明の構成は、先端部が閉
状態となった筒状の保護ケースと、該保護ケース内に空
所を形成して互いに離れた位置の該保護ケース内壁に接
着される二個の抵抗素子体と、該各抵抗素子体から延び
るリード線にそれぞれ接続される二つのシースケーブル
とを備えたことを特徴とする。
<Means for Solving the Problems> To achieve the above object, the present invention includes a cylindrical protective case with a closed end, and a hollow space formed in the protective case so that the ends of the protective case are closed. It is characterized by comprising two resistance element bodies adhered to the inner wall of the protective case at separate locations, and two sheathed cables respectively connected to lead wires extending from the respective resistance element bodies.

く作   用〉 抵抗素子は保護ケースの内壁に接着されるため外部流体
と抵抗素子間の距離が短かくなり熱伝導性が高まると共
に、保護ケース内には空所が形成されるため熱容量が小
さくなる。
Function> Since the resistance element is bonded to the inner wall of the protective case, the distance between the external fluid and the resistance element is shortened, increasing thermal conductivity, and a void is formed inside the protective case, resulting in a small heat capacity. Become.

各抵抗素子のリード線は独立したシースケーブルにそれ
ぞれ接続され、各抵抗素子の配線に絶縁劣化は生じない
The lead wires of each resistance element are connected to independent sheathed cables, and insulation deterioration does not occur in the wiring of each resistance element.

く実 施 例〉 第1図には本発明の一実施例に係る抵抗式温度計を備え
た温度計測装置の一部破断側面、第2図にはその抵抗式
温度計の断面側面、第3図には第2図のI−1線矢視、
第4図にはセラミック焼結型感温抵抗素子の断面側面、
第5図には感温抵抗素子の結線状態、第6図には第1図
中の■−■線矢視を示しである。
Embodiment FIG. 1 shows a partially broken side view of a temperature measuring device equipped with a resistance thermometer according to an embodiment of the present invention, FIG. 2 shows a cross-sectional side view of the resistance thermometer, and FIG. The figure shows the view from the I-1 line in Fig. 2,
Figure 4 shows a cross-sectional side view of a ceramic sintered temperature-sensitive resistance element.
FIG. 5 shows the connection state of the temperature-sensitive resistance element, and FIG. 6 shows a view taken along the line ■--■ in FIG. 1.

第1図に示すように、抵抗式温度計11を保持するウェ
ル12は、配管13に設けられた管台14に溶接により
取付けられている。
As shown in FIG. 1, a well 12 holding a resistance thermometer 11 is attached to a nozzle 14 provided in a pipe 13 by welding.

抵抗式温度計11は、感温抵抗素子アセンブリ15とこ
れに接続される第一シースケーブル16とからなね、抵
抗式温度計11はウェル12に挿入されて袋ナツト17
で固定され、配管13内の流体温度を測定する。第一シ
ースケーブル16から延長したリードi118゜19は
端子20,21を通過した後、外部ケーブルコネクタ2
2.23で対応する外部ケーブル24.25と銀ろうに
より接続されている。
The resistance type thermometer 11 consists of a temperature sensitive resistance element assembly 15 and a first sheathed cable 16 connected thereto.
The temperature of the fluid inside the pipe 13 is measured. The lead i118°19 extended from the first sheathed cable 16 passes through the terminals 20 and 21, and then connects to the external cable connector 2.
2.23 is connected to the corresponding external cable 24.25 using silver solder.

第2図、第3図に示すように、感温抵抗素子アセンブリ
15は、保護ケース26と抵抗素子体としての二個のセ
ラミック焼結型感温抵抗素子27.28とで構成されて
いる。保護ケース26は径6.5+am、長さ40+m
程度の筒状をなし、保護ケース26の内壁にスペーサ2
9を介して径1.2胴、長さ18m程度のセラミック焼
結型感温抵抗素子27.28が180度の位相で接着さ
れ、保護ケース26内には空所30が形成されてい石。
As shown in FIGS. 2 and 3, the temperature-sensitive resistance element assembly 15 includes a protective case 26 and two ceramic sintered temperature-sensitive resistance elements 27 and 28 as resistance element bodies. The protective case 26 has a diameter of 6.5+am and a length of 40+m.
It has a cylindrical shape with a spacer 2 on the inner wall of the protective case 26.
Ceramic sintered temperature sensitive resistance elements 27 and 28, each having a diameter of 1.2 mm and a length of about 18 m, are bonded to each other with a phase of 180 degrees through the protective case 26, and a cavity 30 is formed in the protective case 26.

セラミック焼結型感温抵抗素子27.28の接着は、耐
熱性耐放射線性高熱伝導性の無機接着剤31が使用され
ている。
A heat-resistant, radiation-resistant, and highly thermally conductive inorganic adhesive 31 is used to bond the ceramic sintered temperature-sensitive resistance elements 27 and 28.

第4図に示すように、セラミック焼結型感温抵抗素子2
7.28は、セラミックボビン32上に白金の感温抵抗
素子33がコイル状に巻着されたコイル状抵抗素子体3
4とセラミック外殻35とで構成され、セラミック外殻
35は胴体36及び端部蓋37からなっている。セラミ
ック焼結型感温抵抗素子27゜28からはリード線38
が引き出されている。
As shown in FIG.
7.28 is a coiled resistance element body 3 in which a platinum temperature-sensitive resistance element 33 is wound in a coil shape on a ceramic bobbin 32.
4 and a ceramic outer shell 35, which consists of a body 36 and an end cap 37. Lead wire 38 from ceramic sintered temperature sensitive resistance element 27°28
is being brought out.

尚、第2図において、保護ケース26の下端は端部板4
1が溶接固定されて密閉されている。
In addition, in FIG. 2, the lower end of the protective case 26 is connected to the end plate 4.
1 is welded and sealed.

第6図に示すように、第一シースケーブル16内には二
つの半円状断面のシースケーブルとしての第ニジ−スケ
−プル39.40が包み込まれて設けられている。第ニ
ジ−スケ−プル39.40では絶縁物として酸化マグネ
シウム(MgO)、心線としてNi線が使用される。セ
ラミック焼結型感温抵抗素子27゜28のリード4s3
8は第ニジ−スケ−プル39゜40にそれぞれ結合され
ている。
As shown in FIG. 6, two second geyscales 39 and 40 as sheath cables each having a semicircular cross section are enclosed within the first sheath cable 16. In the second scale 39.40, magnesium oxide (MgO) is used as the insulator and Ni wire is used as the core wire. Ceramic sintered temperature sensitive resistance element 27°28 lead 4s3
8 are connected to the second scale 39 and 40, respectively.

上述した抵抗式温度計11はウェル12に取付けられ、
配管13内の流体の温度計測を行なう。
The resistance thermometer 11 described above is attached to the well 12,
The temperature of the fluid in the pipe 13 is measured.

この抵抗式温度計11では、セラミック焼結型感温抵抗
素子27.28が薄肉の保護ケース26の内壁に接着さ
れているのでセラミック焼結型感温抵抗素子27.28
が被2’QI温外部流体に近接することになる。また、
セラミック焼結型感温抵抗素子27,28は耐熱性耐放
射線性高熱伝導性の無機接着剤31により保護ケース2
6に接着されているので、被測温外部流体とセラミック
焼結型感温抵抗素子27.28との間の熱伝導性が高く
、耐湿性、耐熱性、耐放射線性も極めて良好である。更
に、感温抵抗素子アセンブリ15はセラミック焼結型感
温抵抗素子27.28のみを内蔵し残りの空所30は全
て空気であるため、感温抵抗素子アセンブリ15の熱容
量を小さくすることができる。この結果、第7図に示す
ように、従来(第7図中点線で示す)約10.3秒で応
答していたものが本案の抵抗式温度計11では(第7図
中実線で示す)約1.1秒で応答するよう暫こなり、応
答性が改善される。
In this resistance thermometer 11, the ceramic sintered temperature sensitive resistance elements 27, 28 are bonded to the inner wall of the thin protective case 26.
will be in close proximity to the 2'QI warm external fluid. Also,
The ceramic sintered temperature-sensitive resistance elements 27 and 28 are attached to the protective case 2 using a heat-resistant, radiation-resistant, and highly thermally conductive inorganic adhesive 31.
6, the thermal conductivity between the temperature-measuring external fluid and the ceramic sintered temperature-sensitive resistance elements 27 and 28 is high, and the moisture resistance, heat resistance, and radiation resistance are also extremely good. Further, the temperature-sensitive resistance element assembly 15 incorporates only the ceramic sintered temperature-sensitive resistance elements 27 and 28, and the remaining spaces 30 are all filled with air, so that the heat capacity of the temperature-sensitive resistance element assembly 15 can be reduced. . As a result, as shown in FIG. 7, the response time of the conventional resistance thermometer 11 (indicated by the solid line in FIG. 7) was approximately 10.3 seconds, whereas the response time was approximately 10.3 seconds (indicated by the solid line in FIG. 7). It takes a while to respond in about 1.1 seconds, improving responsiveness.

また、セラミック焼結型感温抵抗素子27゜28のリー
ド!1lI38はそれぞれ独立した第ニジ−スケ−プル
39.40に連結されているので、各セラミック焼結型
感温抵抗素子27゜28の導体間に高温に起因する分路
現象が発生する可能性が無くなると共に、導体間の接触
が防止される。このなめ例えば原子カー次冷却材ホット
レ グ配管内の冷却材のような管内流体に対する攪拌効
果が不十分なために管内各部の温度分布が不均一になる
流体の温度を測定する場合、抵抗式温度計11を用いる
ことにより、常用と予備(冗長)用の温度検出位置を正
確に一致させて測定することができろ。
Also, lead of ceramic sintered temperature sensitive resistance element 27°28! 1lI38 are connected to independent second scales 39 and 40, so there is a possibility that a shunt phenomenon due to high temperature will occur between the conductors of each ceramic sintered temperature sensitive resistance element 27 and 28. contact between the conductors is prevented. For example, when measuring the temperature of a fluid in which the temperature distribution in various parts of the pipe is uneven due to insufficient agitation effect on the fluid in the pipe, such as the coolant in the atomic car subcoolant hot leg pipe, the resistance-type temperature By using the total temperature detection position 11, it is possible to accurately match the temperature detection positions for regular use and backup (redundant) use for measurement.

〈発明の効果〉 本発明の抵抗式温度計は、空所を形成して保護ケース内
壁に二つの抵抗素子体を設け、抵抗素子体のリード綿が
独立してシースケーブルに接続されるので゛抵抗素子体
が被測温外部流体に近接して熱伝導が高ま ると共に保
護ケース内の熱容量を小さくすることができ、また抵抗
素子体の導体の絶縁劣化やリード線間の分路が生じる虞
 がない。その結果、温度計測の応答性が飛躍的に向上
すると共に、抵抗式温度計の信頼性が向上する。
<Effects of the Invention> In the resistance thermometer of the present invention, two resistance element bodies are provided on the inner wall of the protective case by forming a space, and the lead cotton of the resistance element bodies is independently connected to the sheath cable. When the resistance element is close to the external fluid whose temperature is to be measured, heat conduction increases and the heat capacity inside the protective case can be reduced, which also reduces insulation deterioration of the resistance element conductor and shunts between lead wires. There is no risk. As a result, the responsiveness of temperature measurement is dramatically improved, and the reliability of the resistance thermometer is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る抵抗式温度計を備えた
温度計測装置の一部破断側面図、第2図はその抵抗式温
度計の断面側面図、第3図は第2図中の■−■線矢視図
、第4図はセラミック焼結型感温抵抗素子の断面側面図
、第5図は感温抵抗素子の結線図、第6図は第1図中の
■−■線矢視図、第7図は応答性の比較説明図、第8図
は従来の抵抗式温度計の断面側面図、第9図はそのセラ
ミック焼結型感温抵抗素子の断面側面図である。 図面中、 11は抵抗式温度計、 26は保護ケース、 27.28はセラミック焼結型感温抵抗素子、30は空
所、 38はリード線、 39.40は第ニジ−スケ−プルである。 区 ぐト 第8図
FIG. 1 is a partially cutaway side view of a temperature measuring device equipped with a resistance thermometer according to an embodiment of the present invention, FIG. 2 is a cross-sectional side view of the resistance thermometer, and FIG. Figure 4 is a cross-sectional side view of the ceramic sintered temperature-sensitive resistance element, Figure 5 is a wiring diagram of the temperature-sensitive resistance element, and Figure 6 is the line ■-■ in Figure 1. ■An arrow view, Figure 7 is a comparative explanatory diagram of responsiveness, Figure 8 is a cross-sectional side view of a conventional resistance thermometer, and Figure 9 is a cross-sectional side view of the ceramic sintered temperature-sensitive resistance element. be. In the drawing, 11 is a resistance thermometer, 26 is a protective case, 27.28 is a ceramic sintered temperature-sensitive resistance element, 30 is a blank space, 38 is a lead wire, and 39.40 is a second scale. . Figure 8

Claims (1)

【特許請求の範囲】[Claims] 先端部が閉状態となった筒状の保護ケースと、該保護ケ
ース内に空所を形成して互いに離れた位置の該保護ケー
ス内壁に接着される二個の抵抗素子体と、該各抵抗素子
体から延びるリード線にそれぞれ接続される二つのシー
スケーブルとを備えたことを特徴とする抵抗式温度計。
A cylindrical protective case with a closed tip, two resistor elements that form a space inside the protective case and are adhered to the inner wall of the protective case at positions apart from each other, and each of the resistors. A resistance thermometer characterized by comprising two sheathed cables each connected to a lead wire extending from an element body.
JP62145313A 1987-06-12 1987-06-12 Resistance thermometer Expired - Lifetime JP2540548B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62145313A JP2540548B2 (en) 1987-06-12 1987-06-12 Resistance thermometer
US07/198,495 US4929092A (en) 1987-06-12 1988-05-25 Resistance temperature detector
EP88108694A EP0294691B1 (en) 1987-06-12 1988-05-31 Resistance temperature detector
DE88108694T DE3883613T2 (en) 1987-06-12 1988-05-31 Resistance temperature sensor.
KR1019880006954A KR910003825B1 (en) 1987-06-12 1988-06-10 Resister thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145313A JP2540548B2 (en) 1987-06-12 1987-06-12 Resistance thermometer

Publications (2)

Publication Number Publication Date
JPS63309828A true JPS63309828A (en) 1988-12-16
JP2540548B2 JP2540548B2 (en) 1996-10-02

Family

ID=15382267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145313A Expired - Lifetime JP2540548B2 (en) 1987-06-12 1987-06-12 Resistance thermometer

Country Status (1)

Country Link
JP (1) JP2540548B2 (en)

Also Published As

Publication number Publication date
JP2540548B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US4453835A (en) Temperature sensor
US2818482A (en) High speed clinical thermometers
JP3583368B2 (en) Surface temperature sensor
ES2784520T3 (en) Resistive heater with temperature sensing power pins
US5864282A (en) Unique strain relief junction
KR910003825B1 (en) Resister thermometer
US4971452A (en) RTD assembly
KR20080008996A (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
US20200049571A1 (en) Temperature sensor
JP4776762B2 (en) Thermocouple device
JP2002168702A (en) Temperature sensor
JPS63309828A (en) Resistance type thermometer
US4162175A (en) Temperature sensors
US2948872A (en) Sensing means
JP3118621B2 (en) Capsule type strain gauge with temperature measurement function
JP3108015U (en) Sheath thermocouple tip pad
EP0327252A2 (en) RTD assembly
CN209961357U (en) High-temperature sensor for motor
US20230194357A1 (en) Temperature probe and method for manufacturing a temperature probe
JPS6234270Y2 (en)
JPS58151532A (en) Detecting sensor of temperature distribution
JPS6110188Y2 (en)
JPH0328353Y2 (en)
JPH03273122A (en) Temperature sensor for ferromagnetic field
JPS59210333A (en) Temperature detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term