JPS63305114A - Molding material for optics - Google Patents

Molding material for optics

Info

Publication number
JPS63305114A
JPS63305114A JP62139819A JP13981987A JPS63305114A JP S63305114 A JPS63305114 A JP S63305114A JP 62139819 A JP62139819 A JP 62139819A JP 13981987 A JP13981987 A JP 13981987A JP S63305114 A JPS63305114 A JP S63305114A
Authority
JP
Japan
Prior art keywords
weight
molecular weight
average molecular
aromatic polycarbonate
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62139819A
Other languages
Japanese (ja)
Other versions
JPH0737498B2 (en
Inventor
Takao Kawaki
川木 隆雄
Yasuhiko Kijima
喜嶋 安彦
Takeshi Miyauchi
宮内 雄
Eiji Ukita
英治 浮田
Toru Nakajima
徹 中島
Mitsuhiko Masumoto
増本 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62139819A priority Critical patent/JPH0737498B2/en
Priority to CA000568233A priority patent/CA1304851C/en
Priority to DE3888866T priority patent/DE3888866T2/en
Priority to EP88108903A priority patent/EP0293908B1/en
Priority to US07/202,866 priority patent/US4888401A/en
Publication of JPS63305114A publication Critical patent/JPS63305114A/en
Publication of JPH0737498B2 publication Critical patent/JPH0737498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To provide a clear molding material for optics decreased in optical distortion and excellent in micro phase dispersion, comprising a resin composition containing as a main component a graft copolymer with a styrene compound which comprises an aromatic polycarbonate as backbone polymer. CONSTITUTION:A molding material for optics comprises a graft copolymer with a styrene compound having a weight-average molecular weight of 25,000-80,000 in terms of polystyrene and comprising an aromatic polycarbonate as backbone polymer and is made of a resin composition which comprises as a main component a graft polycarbonate with ratios represented by (1) and (2) described below, and which is clear and has a micro phase dispersion of 0.5mum or below. (1): the ratio of the molecular weights of respective parts is 0.2<=PCMW/PSMW<=4 (wherein PCMW is the weight-average molecular weight of the constituent units of the aromatic polycarbonate in terms of polystyrene and PSMW is a weight-average molecular weight of the constituent units of the styrene compound polymer. (2): the ratio of respective constituent units is 30/70<=PC/PS<=90/10. In the formula, PC is the weight of the constituent unit of the aromatic polycarbonate, and PS is the weight of the constituent unit of the styrene compound polymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、芳香族ポリカーボネートを幹成分とし、芳香
族ポリカーボネート構成単位とポリスチレン系化合物構
成単位とが相互に特定の分子量比と重量比を有する特定
のグラフトポリカーボネートを主成分とする樹脂組成物
からなり、ミクロ相分散が0.5uM以下である新規な
光学用成形材料であり、特に、低減された光学歪み及び
優れたミクロ相分散を有するので、光ディスク、光学用
レンズ等に好適に使用可能なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has an aromatic polycarbonate as a main component, and the aromatic polycarbonate structural unit and the polystyrene compound structural unit have a specific molecular weight ratio and weight ratio to each other. A novel optical molding material consisting of a resin composition containing a specific grafted polycarbonate as a main component and having a microphase dispersion of 0.5 uM or less. In particular, it has reduced optical distortion and excellent microphase dispersion. , optical discs, optical lenses, etc.

〔従来の方法およびその問題点〕[Conventional methods and their problems]

従来、光学用透明成形品の材料としては、アクリル樹脂
が透明性、流動性が良く複屈折が小さい等の特徴から光
学用透明成形品の材料として知られている(特開昭56
−131654号他)。しかし、アクリル樹脂は耐熱性
が約70℃と低く、耐衝撃性も低く、水分により反りを
生じ易いという欠点がある。また、上記の欠点をなくす
為、粘度平均分子量が15.000〜18.000のポ
リカーボネート樹脂をディスクやレンズ等の成形材料と
して用いること(特開昭58−180553号)が検討
されているが、重要視されている複屈折が大きい等の欠
点を有し、その使用には限界がある。
Conventionally, acrylic resin has been known as a material for optical transparent molded products because of its transparency, good fluidity, and low birefringence (Japanese Unexamined Patent Application Publication No. 1983-1993).
-131654 etc.). However, acrylic resin has drawbacks such as low heat resistance of about 70° C., low impact resistance, and easy warping due to moisture. In addition, in order to eliminate the above-mentioned drawbacks, the use of polycarbonate resin with a viscosity average molecular weight of 15.000 to 18.000 as a molding material for discs, lenses, etc. is being considered (Japanese Patent Application Laid-Open No. 180553/1983). It has drawbacks such as high birefringence, which is considered important, and its use is limited.

光学材料、主として光デイスク材料の実用化における重
要な課題の一つに基板自体のノイズレベルの低減化の課
題があり、このノイズレベルは、斜め入射光を含む複屈
折に依存することが明らかとなってきている(例えば、
光学、 vol 15. Nα5(1986年10月)
 P441〜421、光メモリーシンポジウム゛86論
文集P33〜38)。
One of the important issues in the practical application of optical materials, mainly optical disk materials, is the issue of reducing the noise level of the substrate itself, and it is clear that this noise level depends on birefringence including obliquely incident light. (for example,
Optics, vol 15. Nα5 (October 1986)
P441-421, Optical Memory Symposium '86 Proceedings P33-38).

すなわち、垂直入射光の複屈折の低減下は必ずしも斜め
入射の複屈折の変化と相関せず、特にポリカーボネート
樹脂の場合、この相違が顕著であり、光の広角域におけ
る複屈折の低減下が重要である。
In other words, the reduction in birefringence for vertically incident light does not necessarily correlate with the change in birefringence for obliquely incident light, and this difference is particularly noticeable in the case of polycarbonate resin, and it is important to reduce birefringence in a wide angle range of light. It is.

複屈折の低減下の試みとして、芳香族ポリカーボネート
の変性或いは芳香族ポリカーボネートと他の樹脂との組
成物とする方法が種々提案されている(例えば特開昭6
1−19630号、特開昭61−19656号、特開昭
62−18466号、特開昭62−20524号、特開
昭61−108617号及び機能材料1987年3月P
21〜29)。しかし、これらの提案はいずれも垂直入
射光の複屈折の低減下を対象とし、前記した斜め入射光
の複屈折については何ら言及しておらず、光の広角域に
おけるノイズレベルの低減化という実用上の観点からは
必ずしも満足すべきものではない。又、さらに重要なこ
とは単純混合による組成物或いは共重合体であってもホ
モポリマーを必然的に多量に含有する共重合体組成物系
では、組織中の成分の相分数が粗い傾向にあり、その結
果、例えばミクロ分散相が0.51.cmより大きい3
−に増大した場合、測定上の複屈折が低減化し0となっ
た系でも、ミクロンサイズの領域、即ち、個々の光線路
に屈折率差が生じること、分散粒子界面が屈折率差によ
り散乱源となるなど光学的には不均一となり、ノイズ発
生の原因となる。
As an attempt to reduce birefringence, various methods have been proposed for modifying aromatic polycarbonate or for creating a composition of aromatic polycarbonate and other resins (for example, JP-A-6
1-19630, JP 61-19656, JP 62-18466, JP 62-20524, JP 61-108617, and Functional Materials March 1987 P.
21-29). However, all of these proposals are aimed at reducing the birefringence of vertically incident light, and do not mention the above-mentioned birefringence of obliquely incident light. From the above point of view, this is not necessarily satisfactory. What is more important is that even if the composition is simply mixed or a copolymer composition system that necessarily contains a large amount of homopolymer, the phase fraction of the components in the structure tends to be coarse. , as a result, for example, the microdispersed phase is 0.51. 3 larger than cm
- If the measured birefringence is reduced to 0, there will be a refractive index difference in a micron-sized region, that is, in each optical path, and the dispersion particle interface will become a scattering source due to the refractive index difference. This results in optical non-uniformity, which causes noise generation.

以上、従来法による変性ポリカーボネートは光学用成形
材料、特に光ディスクの基板として使用するには基本的
な欠陥を有したものであった。
As described above, the modified polycarbonate produced by the conventional method has fundamental defects that make it difficult to use as an optical molding material, especially as a substrate for an optical disk.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、特に光の広角域にふける光学歪が小さく
、かつミクロ相分散が微細である透明な光学用成形材料
について鋭意検討した。その結果グラフトポリカーボネ
ートとして芳香族ポリカーボネート構成単位とポリスチ
レン系重合体構成単位との分子量比及び重量構成比とを
特定の範囲としてなるミクロ相分散が0.5ρ以下であ
る光学用−〇 成形材料を見出し、本発明を完成させた。
The present inventors have conducted intensive studies on transparent optical molding materials that have low optical distortion particularly in a wide-angle range of light and have fine microphase dispersion. As a result, we found an optical molding material that has a microphase dispersion of 0.5ρ or less when the molecular weight ratio and weight composition ratio of the aromatic polycarbonate constitutional unit and the polystyrene polymer constitutional unit are in a specific range as a graft polycarbonate. , completed the present invention.

すなわち、本発明は、ポリスチレン換算重量平均分子量
が 25.000〜80.000である芳香族ポリカー
ボネートを幹ポリマーとするスチレン系化合物とのグラ
フト共重合体であって、 ■、各々の部分分子量の比率が、 0.2≦PCMw/ PSMw≦4 ‥‥(1)(式中
のPCMwは芳香族ポリカーボネート構成単位のポリス
チレン換算重量平均分子量を示し、PSMwはスチレン
系化合物ポリマー構成単位の重量平均分子量を示す)。
That is, the present invention provides a graft copolymer with a styrene compound having an aromatic polycarbonate as a backbone polymer having a weight average molecular weight in terms of polystyrene of 25,000 to 80,000, wherein: (1) the ratio of each partial molecular weight; However, 0.2≦PCMw/PSMw≦4 (1) (in the formula, PCMw indicates the weight average molecular weight of the aromatic polycarbonate constituent unit in terms of polystyrene, and PSMw indicates the weight average molecular weight of the styrene compound polymer constituent unit. ).

2、各々の構成単位の比率が、 30/70≦PC/PS  ≦90/10  ‥‥(2
)(式中のPCは芳香族ポリカーボネート構成単位の重
量を示し、PSはスチレン系化合物ポリマー構成単位の
重量を示す)。
2. The ratio of each constituent unit is 30/70≦PC/PS ≦90/10 (2
) (in the formula, PC represents the weight of the aromatic polycarbonate structural unit, and PS represents the weight of the styrene compound polymer structural unit).

であるグラフトポリカーボネートを主成分とする樹脂組
成物よりなり、ミクロ相分散が0.5−以下である透明
な光学用成形材料であり、好ましい実施態様においては
、該芳香族ポリカーボネートが、2,2−ビス(4−ヒ
ドロキシフェニル)プロパンよりなる構成単位であるこ
と、該スチレン系化合物が、スチレンであること、更に
光線の垂直入射と斜め入射角±30°における複屈折の
差の絶対値が厚み1.2+r+mで 50nm以下であ
ることを特徴とする光学用成形材料である。
It is a transparent optical molding material consisting of a resin composition mainly composed of a grafted polycarbonate having a microphase dispersion of 0.5- or less, and in a preferred embodiment, the aromatic polycarbonate is a 2,2- - The structural unit is bis(4-hydroxyphenyl)propane, the styrene compound is styrene, and the absolute value of the difference in birefringence at normal incidence and oblique incidence angles of ±30° of light rays is the thickness. This is an optical molding material characterized by having a diameter of 50 nm or less at 1.2+r+m.

本発明の光学用成形材料の幹ポリマーとする芳香族ポリ
カーボネート構成単位は、ポリスチレン換算重量平均分
子量(=PCMw、後記注1に記載するポリスチレンを
基準にしたGPC法による測定値である。)として 2
5.000〜go、 oooの範囲(後記注2に記載し
た方法に基づくポリカーボネート樹脂の粘度平均分子量
としては 12.000〜30.000に相当する。)
、好ましくは35.000〜70.000の範囲から選
択され、更にPCMwとスチレン系ポリマーグラフト部
分の重量平均分子量(=PSMw)との比率が、上記式
(1)、好ましくは、 0.3≦PCMw / PSMw≦3 ‥‥(1)’及
び、芳香族ポリカーボネート構成単位の重量(=PC)
とスチレン系ポリマー構成単位の重量(=PS)との比
率が、上記式(2)、好ましくは、 30/To≦PC/PS  ≦80/20  ‥‥(2
)′の範囲からそれぞれ選択されるものである。
The aromatic polycarbonate structural unit used as the backbone polymer of the optical molding material of the present invention has a polystyrene equivalent weight average molecular weight (=PCMw, which is a value measured by the GPC method based on polystyrene described in Note 1 below) of 2.
Range of 5.000 to go, ooo (corresponds to 12.000 to 30.000 as the viscosity average molecular weight of polycarbonate resin based on the method described in Note 2 below).
, preferably from the range of 35.000 to 70.000, and furthermore, the ratio of PCMw to the weight average molecular weight (=PSMw) of the styrenic polymer graft portion satisfies the above formula (1), preferably 0.3≦ PCMw / PSMw≦3 ‥‥(1)' and weight of aromatic polycarbonate structural unit (=PC)
and the weight of the styrenic polymer constituent unit (=PS) is expressed by the above formula (2), preferably 30/To≦PC/PS≦80/20 (2
)′.

本発明は芳香族ポリカーボネート構成単位のポリスチレ
ン換算重量平均分子量、式<1) [(1)’ ]及び
式(2) ((2)’ ]が全体として満足された場合
に良好な光学用成形材料とされるものであり、相互に依
存するものである。これらを好適な組み合わせとした場
合には、複屈折を垂直入射及び斜め入射(後記注3参照
)共に±10nm100範囲とし、且つ、射出成形条件
、例えば射出成形樹脂温度を280〜340℃に変化さ
せた場合にも複屈折の絶対値が3Qnm以下の範囲しか
変化しない材料とすることも可能なものである。したが
って、個々の規定の単独での意味は、あくまで副次的な
ものであるがそれらを説明すれば、芳香族ポリカーボネ
ート構成単位のポリスチレン換算重量平均分子量(=P
CMw)が、25.000未満では、成形材料としての
機械的物性などが劣り、go、 oooを超えると成形
加工性等の点で問題が生じる。式(1) ((1)’ 
)は主に、複屈折の絶対値に相関するものであり、この
範囲外では、複屈折の成形温度依存性などが大きくなり
好ましくない。又、式(2)〔(2)′〕は、主に光の
広角域における光学歪に相関するものであり、この範囲
外では、垂直入射と斜め入射±30°に於ける複屈折と
の差を小さくすることが出来ない。
The present invention provides a good optical molding material when the polystyrene equivalent weight average molecular weight of the aromatic polycarbonate structural unit, formula <1) [(1)'] and formula (2) ((2)') are satisfied as a whole. They are mutually dependent.If these are used in a suitable combination, the birefringence should be in the ±10 nm 100 range for both normal incidence and oblique incidence (see note 3 below), and injection molding. It is also possible to create a material in which the absolute value of birefringence changes only within a range of 3Q nm or less even when the conditions, for example, the injection molding resin temperature are changed from 280 to 340°C. The meaning of these is only secondary, but to explain them, the weight average molecular weight (=P) of the aromatic polycarbonate structural unit is
If CMw) is less than 25,000, the mechanical properties as a molding material will be poor, and if it exceeds go, ooo, problems will arise in terms of moldability and the like. Formula (1) ((1)'
) is mainly correlated to the absolute value of birefringence, and outside this range, the dependence of birefringence on molding temperature becomes undesirable. In addition, Equation (2) [(2)'] mainly correlates with optical distortion in a wide angle range of light, and outside this range, the birefringence at normal incidence and oblique incidence ±30° is correlated. It is not possible to reduce the difference.

また、本発明の成形材料中のグラフトポリカーボネート
体の量は、その主要部である。本発明においては、グラ
フトポリカーボネート中の少量構成成分がPCの場合と
PSの場合とがあり、少量構成成分と同種のホモポリマ
ーを配合した場合には、島と戊っている少量成分の分散
粒子径が増大する傾向が大きくなり、逆に主要構成成分
の場合はこの傾向が小さいものである。従って、主要部
の量は一律には規定されないが、通常、30重量%以上
、好ましくは、50重量%以上であり、特に、80重重
量以上が好適である。上記の好適な範囲は塩化メチレン
溶液とした場合に相分離しないことで明瞭に把握出来る
コトから容易に理解される。グラフトポリカーボネート
体の量が30重量%未満では、ミクロ相分散が粗くなり
0.5pを超え、結果としてノイズレベルの増大をもた
らすので好ましくない。
Moreover, the amount of grafted polycarbonate bodies in the molding material of the present invention is the main part. In the present invention, the minor component in the grafted polycarbonate may be PC or PS, and when a homopolymer of the same type as the minor component is blended, dispersed particles of the minor component, which are islands and holes. There is a strong tendency for the diameter to increase; conversely, this tendency is small in the case of major constituent components. Therefore, although the amount of the main portion is not uniformly defined, it is usually 30% by weight or more, preferably 50% by weight or more, and particularly preferably 80% by weight or more. The above preferred range can be easily understood from the fact that there is no phase separation when it is made into a methylene chloride solution. If the amount of the grafted polycarbonate body is less than 30% by weight, the microphase dispersion becomes coarse and exceeds 0.5p, resulting in an increase in the noise level, which is not preferable.

次に、本発明の光学用成形材料の製造法について説明す
る。
Next, a method for manufacturing the optical molding material of the present invention will be explained.

本発明の透明な光学用成形材料に用いるグラフトポリカ
ーボネート樹脂組成物は、芳香族ポリカーボネートを幹
ポリマーとしてなるスチレン系化合物とのグラフト共重
合体を主成分とする。その合成法は種々あるが、代表的
な方法は、平均一分子当たり少なくとも一つの不飽和二
重結合に代表されるグラフト重合開始点を末端に有する
芳香族ポリカーボネートとスチレン系モノマーとを共重
合させる方法(特公昭48−25078号、特公昭61
−33849号及び特願昭62−28194号等)であ
る。
The graft polycarbonate resin composition used in the transparent optical molding material of the present invention has as a main component a graft copolymer with a styrene compound having an aromatic polycarbonate as a backbone polymer. There are various synthesis methods, but a typical method is to copolymerize an aromatic polycarbonate having at least one graft polymerization initiation site at the end, represented by an unsaturated double bond per molecule, and a styrene monomer. Method (Special Publication No. 48-25078, Special Publication No. 61
-33849 and Japanese Patent Application No. 62-28194, etc.).

平均一分子当たり少なくとも一つの不飽和二重結合に代
表されるグラフト重合開始点を末端に有する芳香族ポリ
カーボネートの製法は、分子量調節剤若しくは末端停止
剤として、例えば不飽和二重結合を有する一官能性化合
物を、又はこれと従来の末端停止剤とを併用して用いる
他は従来の芳香族ポリカーボネート樹脂と同様の製法、
界面重合法、ピリジン法、クロロホーメート法等の溶液
法で製造されるものである。
The method for producing an aromatic polycarbonate having at least one graft polymerization initiation site at the end, represented by an unsaturated double bond per molecule on average, uses a monofunctional polycarbonate having an unsaturated double bond as a molecular weight regulator or terminal capping agent. The manufacturing method is the same as that for conventional aromatic polycarbonate resins, except that a compound containing a compound or a conventional terminal capping agent is used in combination.
It is manufactured by a solution method such as an interfacial polymerization method, a pyridine method, or a chloroformate method.

本発明の芳香族ポリカーボネート構成単位の製造に使用
する二価フェノール系化合物として好ましいものは、具
体的には、ビス(4−ヒドロキシフェニル)メタン、ビ
ス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒ
ドロキシフェニル)スルホン、ビス(4−ヒドロキシフ
ェニル)スルホキシド、ビス(4−ヒドロキシフェニル
)スルフィド、ビス(4−ヒドロキシフェニル)ケトン
、1,1−ビス(4−ヒドロキシフェニル)エタン、2
.2−ビス(4−ヒドロキシフェニル)プロパン、2.
2−ビス(4−ヒドロキシフェニル)ブタン、1,1−
ビス(4−ヒドロキシフェニル)シクロヘキサン、2.
2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル
)プロパン、2.2−ビス(4−ヒドロキシ−3,5−
ジクロロフェニル)プロパン、2,2−ビス(4−ヒド
ロキシ−3−ブロモフェニル)プロパン、2.2−ビス
(4−ヒドロキシ−3−クロロフェニル)プロパン、2
.2−ビス(4−ヒドロキシ−3,5−ジメチルフェニ
ル)プロパン、1.1−ビス(4−ヒドロキシフェニル
)−1−フェニルエタン、ビス(4−ヒドロキシフェニ
ル)ジフェニルメタンが例示され、特に2.2−ビス(
4−ヒドロキシフェニル)フロパンが好適に使用される
Specifically, preferred dihydric phenol compounds used in the production of the aromatic polycarbonate structural unit of the present invention include bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)ether, and bis(4-hydroxyphenyl)ether. hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl)ketone, 1,1-bis(4-hydroxyphenyl)ethane, 2
.. 2-bis(4-hydroxyphenyl)propane, 2.
2-bis(4-hydroxyphenyl)butane, 1,1-
Bis(4-hydroxyphenyl)cyclohexane, 2.
2-bis(4-hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxy-3,5-
dichlorophenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3-chlorophenyl)propane, 2
.. Examples include 2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 1.1-bis(4-hydroxyphenyl)-1-phenylethane, and bis(4-hydroxyphenyl)diphenylmethane, particularly 2.2 −Bis(
4-hydroxyphenyl)furopane is preferably used.

又、不飽和末端基を導入するための不飽和二重結合を有
する一官能性化合物としては、アクリル酸、メタクリル
酸、ソルビン酸、アクリル酸クロライド、メタクリル酸
クロライド、ソルビン酸クロライド、アリルアルコール
クロロホルメート、イソプロペニルフェノールクロロホ
ルメート及びヒドロキシスチレンクロロホルメートなど
のカルボン酸、酸クロライド及びクロロホルメート;イ
ソプロペニルフェノール、ヒドロキシスチレン、ヒドロ
キシフェニルマレイミド、ヒドロキシ安息香酸アリルエ
ステル及び安息香酸メチルアリルエステルなどの不飽和
基を有するフェノール類等が挙げらる。これらの化合物
の他に、第三級炭素或いはメルカプト基を有する化合物
があり、P−イソプロピルフェノール、m−イソプロピ
ルフェノール、チオグリコール酸クロライド、P−メル
カプトフェノール、m−メルカプトフェノール等が例示
される。これら化合物は従来の末端停止剤と併用しても
よいものであり、上記した二価フェノール系化合物1モ
ルに対して、1〜25モル%、好ましくは1.5〜10
モル%の範囲で使用され、特に、メタクリル酸クロライ
ド、イソプロペニルフェノール、ヒドロキシスチレンが
好ましいものとして挙げられる。
In addition, monofunctional compounds having an unsaturated double bond for introducing an unsaturated terminal group include acrylic acid, methacrylic acid, sorbic acid, acrylic acid chloride, methacrylic acid chloride, sorbic acid chloride, and allyl alcohol chloroform. carboxylic acids, acid chlorides and chloroformates such as isopropenylphenol chloroformate and hydroxystyrene chloroformate; isopropenylphenol, hydroxystyrene, hydroxyphenylmaleimide, hydroxybenzoic acid allyl ester and benzoic acid methyl allyl ester Examples include phenols having unsaturated groups. In addition to these compounds, there are compounds having a tertiary carbon or mercapto group, such as P-isopropylphenol, m-isopropylphenol, thioglycolic acid chloride, P-mercaptophenol, m-mercaptophenol, and the like. These compounds may be used in combination with conventional terminal capping agents, and are present in an amount of 1 to 25 mol %, preferably 1.5 to 10 mol %, based on 1 mol of the dihydric phenol compound described above.
It is used within the range of mol%, and methacrylic acid chloride, isopropenylphenol, and hydroxystyrene are particularly preferred.

本発明のスチレン系モノマーとは、具体的にはスチレン
、0−メチルスチレン、P−メチルスチレン、α−メチ
ルスチレン、ロープチルスチレン、P−ブチルスチレン
、クロロスチレン、ブロモスチレン、2.4−ジメチル
スチレンなどが挙げられ、特にスチレンが好ましい。
The styrenic monomers of the present invention specifically include styrene, 0-methylstyrene, P-methylstyrene, α-methylstyrene, rope styrene, P-butylstyrene, chlorostyrene, bromostyrene, 2,4-dimethyl Examples include styrene, and styrene is particularly preferred.

なお、本発明においては、上記のスチレン系モノマーに
その他のビニル系モノマー、例えばメチルメタクリレー
ト、エチルメタクリレート、ブチルアクリレート、n−
へキシルアクリレート、ブチルアクリレート及びシクロ
ヘキシルメタクリレートなどのアクリレート類;グリシ
ジルメタクリレート、アクリル酸、アクリルアミド、メ
タクリルアミド、N−メトキシメタクリルアミド、アク
リロニトリル、メタクリロニトリル、無水マレイン酸、
マレイミドなどを一部併用することも出来る。
In addition, in the present invention, other vinyl monomers such as methyl methacrylate, ethyl methacrylate, butyl acrylate, n-
Acrylates such as hexyl acrylate, butyl acrylate and cyclohexyl methacrylate; glycidyl methacrylate, acrylic acid, acrylamide, methacrylamide, N-methoxymethacrylamide, acrylonitrile, methacrylonitrile, maleic anhydride,
It is also possible to partially use maleimide etc.

前記のスチレン系モノマーをグラフト重合し、その分子
量を調節する手段として反応温度或いは後記する重合開
始剤量で制御する手段の他に有機イオウ化合物を分子量
調節剤として用いることができる。好ましい有機イオウ
化合物としては、炭素数1〜30の脂肪族又は芳香族化
合物であり、具体的にはn−ブチルメルカプタン、イメ
ブチルメル力ブタン、n−オクチルメルカプタン、n−
ドデシルメルカプタン、5ec−ブチルメルカプタン、
5ec−ドデシルメルカプタン、tert−ブチルメル
カプタンなどの第一、二、三級のメルカプタン;フェニ
ルメルカプタン、チオクレゾール、4−tert−ブチ
ルチオクレゾールなどの芳香族メルカプタン;チオグリ
コール酸とそのエステル;エチレンチオグリコール等の
如き炭素数3〜180メルカプタンを挙げることができ
、これら化合物の中でn −ブチルメルカプタン、te
rt−ブチルメルカプタン及びn−オクチルメルカプタ
ンが最も好ましく、その使用量は、用いる末端不飽和基
を有する芳香族ポリカーボネート樹脂とスチレン系モノ
マーとの合計量の5重量以下、好ましくは 0.000
4〜1重量%の範囲であり、5重量%を超えて使用した
場合、重合度が低くなり、機緘的物性などが低下するの
で好ましくない。
In addition to controlling the molecular weight of the graft polymerized styrene monomer by controlling the reaction temperature or the amount of a polymerization initiator described later, an organic sulfur compound can be used as a molecular weight regulator. Preferred organic sulfur compounds are aliphatic or aromatic compounds having 1 to 30 carbon atoms, specifically n-butyl mercaptan, imbutyl mercaptan, n-octyl mercaptan, n-
dodecyl mercaptan, 5ec-butyl mercaptan,
Primary, secondary, and tertiary mercaptans such as 5ec-dodecylmercaptan and tert-butylmercaptan; Aromatic mercaptans such as phenylmercaptan, thiocresol, and 4-tert-butylthiocresol; Thioglycolic acid and its esters; Ethylene thioglycol Among these compounds, n-butyl mercaptan, te
rt-butyl mercaptan and n-octyl mercaptan are most preferred, and the amount used is not more than 5 weight of the total amount of the aromatic polycarbonate resin having a terminal unsaturated group and the styrene monomer, preferably 0.000.
It is in the range of 4 to 1% by weight, and if it is used in excess of 5% by weight, the degree of polymerization will decrease and mechanical properties will deteriorate, which is not preferable.

スチレン系モノマーを芳香族ポリカーボネートへグラフ
ト重合する手段としては熱重合による方法の他に、重合
開始剤を使用することができ、このような重合開始剤と
しては、例えばジーtert−ブチルパーオキサイド、
ジクミルパーオキサイド、メチルエチルケトンパーオキ
サイド、ジーtert−ブチルパーフタレート、ラウロ
イルパーオキサイド、オキシ)ヘキサン、t−ブチルパ
ーオキシラウレート、ジーtert−アミルパーオキサ
イド、ジクミルパーオキサイド、tert−ブチルクミ
ルパーオキサイド、ベンゾイルパーオキサイドなどの有
機過酸化物;2.2−アゾビスイソブチロニトリル、1
,1−アゾビスシクロヘキサンカルボニトリル、2−シ
アノ−2−プロピルアゾホルムアミドなどのアゾ化合物
を挙げることができ、使用量は、一般的には1重量%以
下の範囲である。
In addition to thermal polymerization, a polymerization initiator can be used as a means for graft polymerizing a styrenic monomer to an aromatic polycarbonate. Examples of such a polymerization initiator include di-tert-butyl peroxide,
Dicumyl peroxide, methyl ethyl ketone peroxide, di-tert-butyl perphthalate, lauroyl peroxide, oxy)hexane, t-butyl peroxylaurate, di-tert-amyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide , organic peroxides such as benzoyl peroxide; 2.2-azobisisobutyronitrile, 1
, 1-azobiscyclohexanecarbonitrile, and 2-cyano-2-propylazoformamide, and the amount used is generally 1% by weight or less.

本発明のグラフトポリカーボネートは、上記に説明した
平均一分子当たり少なくとも一つの不飽和二重結合に代
表されるグラフト開始点を末端に有する芳香族ポリカー
ボネートの存在下、必要に応じてこれと有機イオウ系重
合調節剤及び/又は重合し開始剤を併用して用いる他は
、従来のポリスチレン樹脂と同様の製法−塊状重合、溶
液重合、懸濁重合及び乳化重合などの重合法で製造する
ものである。
The grafted polycarbonate of the present invention is produced in the presence of an aromatic polycarbonate having at its end a graft initiation point represented by at least one unsaturated double bond per molecule on average as explained above, and if necessary, an organic sulfur-based polycarbonate. Except for the use of a polymerization regulator and/or a polymerization initiator, it is manufactured by the same manufacturing methods as conventional polystyrene resins, such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.

〔実施例〕〔Example〕

以下、実施例等によって具体的に説明する。 Hereinafter, this will be explained in detail using examples and the like.

なお、本発明におけるスチレン換算重量平均分子量、粘
度平均分子量、複屈折及びミクロ相分散は、下記方法に
より求めたものである。
The styrene equivalent weight average molecular weight, viscosity average molecular weight, birefringence, and microphase dispersion in the present invention were determined by the following methods.

注1:スチレン換算重量平均分子量。Note 1: Weight average molecular weight in terms of styrene.

G、 P、C0により、ポリスチレン標準サンプルを使
用して得た重量平均分子量である。
G, P, and C0 are the weight average molecular weights obtained using polystyrene standard samples.

また、グラフトポリカーボネート組成物中のポリスチレ
ン構成単位の重量平均分子量は、グラフトポリカーボネ
ート中のポリカーボネート構成部分をアミンにより分解
し残留するポリスチレンを測定する方法によった。
The weight average molecular weight of the polystyrene constituent units in the grafted polycarbonate composition was determined by a method in which the polycarbonate constituent parts in the grafted polycarbonate were decomposed with an amine and the remaining polystyrene was measured.

注2:粘度平均分子量。Note 2: Viscosity average molecular weight.

粘度平均分子量は、下記の方法により求めた。The viscosity average molecular weight was determined by the following method.

(1)、溶液粘度の測定 試料溶液:濃度Q、 5g/d1の塩化メチレン溶液。(1) Measurement of solution viscosity Sample solution: Methylene chloride solution with concentration Q, 5 g/d1.

粘度計 :塩化メチレンのみのフロータイム72、36
秒の毛細管式改良ウベローデ型粘度計。
Viscometer: Flow time of methylene chloride only 72, 36
Second capillary type improved Ubbelohde viscometer.

測定温度:20℃±0.01℃ この測定により、試料溶液のフロータイムを測定し、η
rsLを求める。
Measurement temperature: 20℃±0.01℃ Through this measurement, the flow time of the sample solution is measured, and η
Find rsL.

(2)、計算 上記で測定したη4、から式■、■より、圀を算出し、
■(Schnellの式)よりMyを求める。
(2), Calculation From η4 measured above, calculate the area from formulas ■ and ■,
(2) Find My from (Schnell's formula).

??、P = T/To −1、ηrsL=  T/T
o  −−−■η、、/C=(3)+に′(3)2C・
・・■(3)=に、M、         ・・・■注
3=複屈折、  下記の方法によった。
? ? , P = T/To −1, ηrsL= T/T
o −−−■η,, /C=(3)+′(3)2C・
...■(3) = M, ...■Note 3 = Birefringence, according to the following method.

(1)、サンプル、装置等 対象サンプル:厚み1.2mm、直径130Mの射出成
形ディスク 測定波長  : 632.8 nm 測定装置  :@情況光学工業所製、自動エリプソメー
ター (2)、垂直入射及び斜め入射複屈折 ■、垂直入射複屈折(Re0); サンプル面に対して光の入射角 水平角 H=O°、垂直角 V=0゜ の複屈折を表す。
(1), Sample, equipment, etc.Target sample: Injection molded disk with a thickness of 1.2 mm and a diameter of 130M Measurement wavelength: 632.8 nm Measurement equipment: @Manufactured by Shotoku Kogaku Kogyo Co., Ltd., automatic ellipsometer (2), normal incidence and oblique Incident birefringence (■), vertical incidence birefringence (Re0); Represents the birefringence when the incident angle of light is horizontal angle H=0° and vertical angle V=0° with respect to the sample surface.

尚、水平角とはディスクの半径方向の角度、垂直角とは
ディスクの半径方向に垂直の角度をそれぞれ意味する。
Note that the horizontal angle means an angle in the radial direction of the disk, and the vertical angle means an angle perpendicular to the radial direction of the disk.

2、斜め入射複屈折(Re’″11M3G) ;サンプ
ル面に対して光の入射角 水平角 H=±30°、垂直角 V=±30゜の4つの
複屈折と垂直入射複屈折(Re’)との差の絶対値の最
大値を示す。
2. Oblique incidence birefringence (Re'''11M3G); Four types of birefringence and normal incidence birefringence (Re''' ) indicates the maximum absolute value of the difference.

注4:ミクロ相分散。Note 4: Microphase dispersion.

電子顕微鏡により測定した。  、 参考例1〜4 水酸化ナトリウム 22kgを水2651に溶解し、2
0℃に保ちながら、2,2−ビス(4−ヒドロキシフェ
ニル)プロパン(= B P A ) 45.6kg、
ハイドロサルファイ)  50gを溶解した。
Measured using an electron microscope. , Reference Examples 1 to 4 Dissolve 22 kg of sodium hydroxide in 2651 of water,
While keeping at 0°C, 45.6 kg of 2,2-bis(4-hydroxyphenyl)propane (=BPA),
Hydrosulfide) 50g was dissolved.

これにメチレンクロライド150 Ilを加えて撹拌し
つつホスゲンを吹き込み、30分後にP−イソプロペニ
ルフェノール 1.95kgを含ムメチレンクロライド
125kgを加え、ホスゲンを更に30分間吹き込んだ
150 Il of methylene chloride was added thereto, and phosgene was blown into the mixture while stirring. After 30 minutes, 125 kg of methylene chloride containing 1.95 kg of P-isopropenylphenol was added, and phosgene was blown into the mixture for another 30 minutes.

ホスゲン吹き込み終了後、激しく撹拌して反応液を乳化
させ、乳化後、1%トリエチルアミンのメチレンクロラ
イド溶液31を加え約1時間撹拌を続は重合させた。
After the phosgene injection was completed, the reaction solution was vigorously stirred to emulsify it, and after emulsification, a 1% triethylamine methylene chloride solution 31 was added, and the mixture was stirred for about 1 hour to allow polymerization.

重合液を、水相と有機相に分離し、有機相をリン酸で中
和した後、数回水洗を繰り返した後、メタノールへ滴下
して共重合体を沈澱させ、濾過し、乾燈して白色粉末を
得た。
The polymerization solution was separated into an aqueous phase and an organic phase, and the organic phase was neutralized with phosphoric acid, washed with water several times, and then dropped into methanol to precipitate the copolymer, filtered, and dry-lit. A white powder was obtained.

この粉末のポリスチレン換算重量平均分子量は32、0
00であり、粘度平均分子量は16.000であった。
The weight average molecular weight of this powder in terms of polystyrene is 32.0
00, and the viscosity average molecular weight was 16.000.

同様に、末端停止剤の使用量等を変化させる他は同様に
して、ポリスチレン換算重量平均分子量(粘度平均分子
量)が45.000(20,000) 、49.500
(22,000)及び54.000 (24,000)
の末端不飽和ポリカーボネートを得た。
Similarly, the weight average molecular weight (viscosity average molecular weight) in terms of polystyrene was 45.000 (20,000), 49.500 in the same manner except that the amount of terminal stopper used etc. was changed.
(22,000) and 54,000 (24,000)
A terminally unsaturated polycarbonate was obtained.

以下、これらを粘度平均分子量の低いものから順に、P
CI 、PC2、PC3、PC4と呼ぶ。
These are listed below in descending order of viscosity average molecular weight.
They are called CI, PC2, PC3, and PC4.

参考例5 参考例1において、P−イソプロペニルフェノールに代
えて、アクリル酸クロライドを用い、参考例1に準拠し
てポリスチレン換算重量平均分子量(粘度平均分子量)
が49.500 (22,000)の末端不飽和ポリカ
ーボネートを得た(以下、これをPC5と呼ぶ)。
Reference Example 5 In Reference Example 1, acrylic acid chloride was used instead of P-isopropenylphenol, and the weight average molecular weight (viscosity average molecular weight) in terms of polystyrene was determined according to Reference Example 1.
A terminally unsaturated polycarbonate having a polycarbonate of 49.500 (22,000) was obtained (hereinafter referred to as PC5).

実施例1.2 参考例1で合成したPCI  2.5kg及びスチレン
モノマー(以下、Stと記す>11kgを重合反応器に
入れ、窒素置換を行った後、撹拌下に120℃まで昇温
し、n−ドデシルメルカプタン(以下、NOSと記t)
 10.8gを含むスチレンモノマー270gを添加し
つつ、1.5時間反応した。
Example 1.2 2.5 kg of PCI synthesized in Reference Example 1 and 11 kg of styrene monomer (hereinafter referred to as St) were placed in a polymerization reactor, and after purging with nitrogen, the temperature was raised to 120 ° C. with stirring, n-dodecyl mercaptan (hereinafter referred to as NOS)
The reaction was continued for 1.5 hours while adding 270 g of styrene monomer containing 10.8 g.

反応終了後、冷却して生成物をメタノールへ加え沈澱化
し、PC:PS=70:30のポリマー 3.57kg
を得た。
After the reaction was completed, the product was cooled and precipitated by adding it to methanol to obtain 3.57 kg of polymer with PC:PS=70:30.
I got it.

このポリマー(以下、G1と記す)中のポリスチレン部
分の重量平均分子量は40.000であった。
The weight average molecular weight of the polystyrene portion in this polymer (hereinafter referred to as G1) was 40.000.

同様に分子量調節剤NOSの使用量、反応時間を変化さ
せる他は同様にして、PC: PS=60 : 40の
ポリマー(以下、G2と記す)を得た。G2中のポリス
チレン部分の重量平均分子量(PSMw)はgo、 o
ooであった。
A polymer (hereinafter referred to as G2) having PC:PS=60:40 was obtained in the same manner except that the amount of the molecular weight regulator NOS used and the reaction time were changed. The weight average molecular weight (PSMw) of the polystyrene part in G2 is go, o
It was oo.

実施例3.4 参考例2で合成したPC22,5kg及びSt  l1
kgを重合反応器に入れ、窒素置換を行った後、撹拌下
に120℃まで昇温し、NDS 5.4gを含むSt 
135gを添加しつつ、1.1時間反応した。
Example 3.4 PC22.5kg and St l1 synthesized in Reference Example 2
kg was placed in a polymerization reactor, the atmosphere was replaced with nitrogen, the temperature was raised to 120°C with stirring, and St containing 5.4 g of NDS was
The reaction was continued for 1.1 hours while adding 135 g.

反応終了後、冷却して生成物をメタノールへ加え沈澱化
し、PC:PS=75:25のポリマー 3.33kg
を得た。このポリマー(以下、G3と記す)のPSMw
は60、000であった。
After the reaction was completed, the product was cooled and precipitated by adding it to methanol to obtain 3.33 kg of polymer with PC:PS=75:25.
I got it. PSMw of this polymer (hereinafter referred to as G3)
was 60,000.

同様に分子量調節剤NDSの使用量、反応時間を変化さ
せる他は同様にして、PC: PS=65 : 35の
ポリマー(以下、G4と記す)を得た。G4のPSMw
は30゜000であった。
A polymer (hereinafter referred to as G4) having a ratio of PC:PS=65:35 was obtained in the same manner except that the amount of the molecular weight regulator NDS used and the reaction time were changed. G4 PSMw
was 30°000.

実施例5.6 参考例3で合成したPC32,5kg及びSt  11
kgを重合反応器に入れ、窒素置換を行った後、撹拌下
に120℃まで昇温し、NDS 11.4gを含むSt
 285gを添加しつつ、2.3時間反応した。
Example 5.6 PC32.5kg and St 11 synthesized in Reference Example 3
kg into a polymerization reactor, and after purging with nitrogen, the temperature was raised to 120°C with stirring, and St containing 11.4 g of NDS was
The reaction was continued for 2.3 hours while adding 285 g.

反応終了後、冷却して生成物をメタノールへ加え沈澱化
し、PC:PS=60:40のポリマー 4.17kg
を得た。このポリマー(以下、G5と記す)のPSMw
は60、000であった。
After the reaction was completed, the product was cooled and precipitated by adding it to methanol to obtain 4.17 kg of polymer with PC:PS=60:40.
I got it. PSMw of this polymer (hereinafter referred to as G5)
was 60,000.

同様に分子量調節剤NDSの使用量、反応時間を変化さ
せる他は同様にして、PC:PS=55:45のポリマ
ー(以下、G4と記す)を得た。G6のPSMwは80
゜000であった。
A polymer having PC:PS=55:45 (hereinafter referred to as G4) was obtained in the same manner except that the amount of the molecular weight regulator NDS used and the reaction time were changed. G6's PSMw is 80
It was ゜000.

実施例7 参考例3で合成したPC32,5kgをStに懸濁しP
C3の濃度10重量%とした。
Example 7 32.5 kg of PC synthesized in Reference Example 3 was suspended in St and P
The concentration of C3 was 10% by weight.

この懸濁液を150〜165℃に保たれている静止ミキ
サーを具備したパイプリアクターに連続的に、反応液の
平均滞留時間10分間で導入した。
This suspension was continuously introduced into a pipe reactor equipped with a static mixer maintained at 150-165° C. with an average residence time of 10 minutes.

留出反応液をメタノールへ流下し、沈澱化し、PC: 
PS=50 :50のポリマー(以下、G7と記す)を
得た。 GVのPSMwは80.000であった。
The distilled reaction solution was poured into methanol, precipitated, and PC:
A polymer (hereinafter referred to as G7) with PS=50:50 was obtained. The PSMw of GV was 80.000.

実施例8 参考例5で合成したPC52,5kg及びSt  l1
kgを重合反応器に入れ、窒素置換を行った後、撹拌下
に120℃まで昇温し、NDS 8.6gを含むSt 
215gを添加しつつ、2.3時間反応した。
Example 8 PC52.5kg and St l1 synthesized in Reference Example 5
kg was placed in a polymerization reactor, the atmosphere was replaced with nitrogen, the temperature was raised to 120°C with stirring, and St containing 8.6 g of NDS was
The reaction was continued for 2.3 hours while adding 215 g.

反応終了後、冷却して生成物をメタノールへ加え沈澱化
し、PC:PS=60:40のポリマー 4.17kg
を得た。このポリマー(以下、G8と記す)のPSMw
はgo、 oooであった。
After the reaction was completed, the product was cooled and precipitated by adding it to methanol to obtain 4.17 kg of polymer with PC:PS=60:40.
I got it. PSMw of this polymer (hereinafter referred to as G8)
was go, ooo.

実施例9.10 参考例4で合成したPC42,5kg及びSt  11
kgを重合反応器に入れ、窒素置換を行った後、撹拌下
に120℃まで昇温し、NDS 8,6gを含むSt 
215gを添加しつつ、2.2時間反応した。
Example 9.10 PC42.5kg and St 11 synthesized in Reference Example 4
kg into a polymerization reactor, and after purging with nitrogen, the temperature was raised to 120°C with stirring, and St containing 8.6 g of NDS was
The reaction was continued for 2.2 hours while adding 215 g.

反応終了後、冷却して生成物をメタノールへ加え沈澱化
し、PC: PS=60 :40のポリマー 4.17
kgを得た。このポリマー(以下、G9と記す)のPS
Mwはgo、 oooであった。
After the reaction was completed, the product was cooled and added to methanol to precipitate it, resulting in a polymer with PC: PS = 60:40 4.17
I got kg. PS of this polymer (hereinafter referred to as G9)
Mw was go, ooo.

同様に分子量調節剤NDSの使用量、反応時間を変化さ
せる他は同様にして、PC:PS=50:50のポリマ
ー(以下、GIOと記す)を得た。GIOのPSMwは
120、000であった。
A polymer having PC:PS=50:50 (hereinafter referred to as GIO) was obtained in the same manner except that the amount of the molecular weight regulator NDS used and the reaction time were changed. The PSMw of GIO was 120,000.

実施例11 実施例1〜10で得た61〜GIOのグラフトポリカー
ボネート樹脂組成物を20mmベント付き押出機に供給
し、240〜260℃のシリンダ一温度でそれぞれペレ
ット化した。
Example 11 The grafted polycarbonate resin compositions of 61 to GIO obtained in Examples 1 to 10 were fed to a 20 mm vented extruder and pelletized at a cylinder temperature of 240 to 260°C.

このペレットを110℃で5時間以上乾燥した後、シリ
ンダ一温度290〜340℃、金型温度90℃で射出成
形して各試験片ディスクを作成し、ディスク中心より4
2mmの同心円上の任意の点の複屈折、ミクロ相分散を
測定した。
After drying the pellets at 110°C for more than 5 hours, each specimen disk was prepared by injection molding at a cylinder temperature of 290 to 340°C and a mold temperature of 90°C.
Birefringence and microphase dispersion at any point on a 2 mm concentric circle were measured.

測定結果を第1表に示した。The measurement results are shown in Table 1.

また、第2表に、G6のグラフトポリカーボネート樹脂
組成物の乾燥ペレットを用い、シリンダ一温度を第2表
に記載の範囲で変化させた時の複屈折の測定結果を示し
た。
Furthermore, Table 2 shows the measurement results of birefringence when dry pellets of the G6 grafted polycarbonate resin composition were used and the cylinder temperature was varied within the range shown in Table 2.

比較例1.2 ポリカーボネート樹脂(三菱瓦斯化学■製、商品名;ニ
ーピロンH−4000、ポリスチレン換算重量平均分子
量28,000 、以下、PCO2と記す)単独(比較
例1)並びにこのPCO2とカルボン酸誘導体を含むポ
リスチレン樹脂(アーコ社製、商品名;ダイラーク#2
32、重量平均分子量250.000) =80=20
にて配合、乾燥し250℃のシリンダ一温度でそれぞれ
ペレット化した。
Comparative Example 1.2 Polycarbonate resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: Nipiron H-4000, polystyrene equivalent weight average molecular weight 28,000, hereinafter referred to as PCO2) alone (Comparative Example 1) and this PCO2 and carboxylic acid derivative Polystyrene resin containing
32, weight average molecular weight 250.000) =80=20
The mixture was blended and dried, and pelletized at a cylinder temperature of 250°C.

これらについて実施例と同様にした結果も第1表に示し
た。
Table 1 also shows the results of these tests in the same manner as in the Examples.

尚、比較例2のディスクは青白い曇りが認められ、透明
光学用材料としては不適当であることが目視によっても
明白であった。
Incidentally, the disk of Comparative Example 2 had bluish cloudiness, and it was clear from visual inspection that it was unsuitable as a transparent optical material.

比較例3 ポリカーボネート樹脂(三菱瓦斯化学■製、商品名;ニ
ーピロンB−2000、ポリスチレン換算重量平均分子
量63,000 、主分極率差:110x 10−”d
、以下、PCE2と記す)とポリスチレン樹脂(三洋化
成工業■製、商品名;ハイマー5T−95、重量平均分
子量10.000主分極率差: −120X10−” 
crl) =50:50にて配合、乾燥し250℃のシ
リンダ一温度でそれぞれペレット化し、PCMw/PS
14w=6.3の成形用樹脂を得た。
Comparative Example 3 Polycarbonate resin (manufactured by Mitsubishi Gas Chemical ■, trade name: Nipiron B-2000, polystyrene equivalent weight average molecular weight 63,000, principal polarizability difference: 110x 10-"d
, hereinafter referred to as PCE2) and polystyrene resin (manufactured by Sanyo Chemical Industries, Ltd., trade name: Hymer 5T-95, weight average molecular weight 10.000, principal polarizability difference: -120X10-"
crl) = 50:50, dried, pelletized at a cylinder temperature of 250°C,
A molding resin of 14w=6.3 was obtained.

実施例5と同様にした結果を第1表に示した。The results obtained in the same manner as in Example 5 are shown in Table 1.

この比較例3より、複屈折は樹脂の主分極率差の正と負
の相減作用に必ずしも依存しないことが容易に理解され
るものである。
From Comparative Example 3, it is easily understood that birefringence does not necessarily depend on the positive and negative phase reduction effect of the difference in principal polarizability of the resin.

第2表 〔発明の作用および効果〕 本発明のグラフトポリカーボネートを主成分とする光学
用成形材料は、上記の発明の詳細な説明及び実施例、比
較例から明らかな如く、垂直入射と斜め入射との複屈折
差が大幅に低減され、且つその絶対値も±10nm以内
に容易に設定可能であると共に、ミクロ相分散において
も極めて微細な粒子分散である。ゆえに、複屈折に基づ
くノイズレベルの低減のみならず、光学的不均一性に基
づくノイズの発生も大幅に低減されるものである。
Table 2 [Operations and Effects of the Invention] As is clear from the detailed description of the invention, Examples, and Comparative Examples, the optical molding material containing the grafted polycarbonate of the present invention as a main component can withstand normal incidence and oblique incidence. The birefringence difference is significantly reduced, and its absolute value can be easily set within ±10 nm, and the microphase dispersion is also extremely fine particle dispersion. Therefore, not only the noise level due to birefringence is reduced, but also the generation of noise due to optical non-uniformity is significantly reduced.

しかも、この複屈折の射出成形温度依存性も大幅に低減
されたものであることから、光ディスク、光学用レンズ
材料等として極めて好適に使用可能であることがわかる
Furthermore, since the dependence of the birefringence on the injection molding temperature is also significantly reduced, it can be seen that it can be extremely suitably used as an optical disk, an optical lens material, etc.

Claims (1)

【特許請求の範囲】 1、ポリスチレン換算重量平均分子量が25,000〜
80,000である芳香族ポリカーボネートを幹ポリマ
ーとするスチレン系化合物とのグラフト共重合体であっ
て、 1、各々の部分分子量の比率が、 0.2≦PCMw/PSMw≦4‥‥(1)(式中のP
CMwは芳香族ポリカーボネート構成単位のポリスチレ
ン換算重量平均分子量を 示し、PSMwはスチレン系化合物ポリマー構成単位の
重量平均分子量を示す)。 2、各々の構成単位の比率が、 30/70≦PC/PS≦90/10‥‥(2)(式中
のPCは芳香族ポリカーボネート構成単位の重量を示し
、PSはスチレン系化合物ポリマー構成単位の重量を示
す)。 であるグラフトポリカーボネートを主成分とする樹脂組
成物よりなり、ミクロ相分散が0.5μm以下である透
明な光学用成形材料。 2、該芳香族ポリカーボネートが、2、2−ビス(4−
ヒドロキシフェニル)プロパンよりなる構成単位である
特許請求の範囲第1項記載の光学用成形材料。 3、該スチレン系化合物が、スチレンである特許請求の
範囲第1又は2項記載の光学用成形材料。 4、光線の垂直入射と斜め入射角±30°における複屈
折の差の絶対値が厚み1.2mmで50nm以下である
特許請求の範囲第1、2又は3項記載の光学用成形材料
[Scope of Claims] 1. Weight average molecular weight in terms of polystyrene is 25,000 or more
A graft copolymer with a styrene compound having an aromatic polycarbonate having a molecular weight of 80,000 as a backbone polymer, 1. The ratio of each partial molecular weight is 0.2≦PCMw/PSMw≦4 (1) (P in the formula
CMw indicates the weight average molecular weight of the aromatic polycarbonate structural unit in terms of polystyrene, and PSMw indicates the weight average molecular weight of the styrene compound polymer structural unit). 2. The ratio of each structural unit is 30/70≦PC/PS≦90/10 (2) (in the formula, PC represents the weight of the aromatic polycarbonate structural unit, and PS represents the styrene compound polymer structural unit. weight). A transparent optical molding material comprising a resin composition containing grafted polycarbonate as a main component, and having a microphase dispersion of 0.5 μm or less. 2. The aromatic polycarbonate is 2,2-bis(4-
The optical molding material according to claim 1, which is a structural unit consisting of (hydroxyphenyl)propane. 3. The optical molding material according to claim 1 or 2, wherein the styrenic compound is styrene. 4. The optical molding material according to claim 1, 2 or 3, wherein the absolute value of the difference in birefringence between normal incidence and oblique incidence angles of light rays of ±30° is 50 nm or less at a thickness of 1.2 mm.
JP62139819A 1987-06-05 1987-06-05 Optical molding material Expired - Lifetime JPH0737498B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62139819A JPH0737498B2 (en) 1987-06-05 1987-06-05 Optical molding material
CA000568233A CA1304851C (en) 1987-06-05 1988-05-31 Molding material for optics
DE3888866T DE3888866T2 (en) 1987-06-05 1988-06-03 Optical molding compound.
EP88108903A EP0293908B1 (en) 1987-06-05 1988-06-03 Molding material for optics
US07/202,866 US4888401A (en) 1987-06-05 1988-06-06 Molding material for optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139819A JPH0737498B2 (en) 1987-06-05 1987-06-05 Optical molding material

Publications (2)

Publication Number Publication Date
JPS63305114A true JPS63305114A (en) 1988-12-13
JPH0737498B2 JPH0737498B2 (en) 1995-04-26

Family

ID=15254198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139819A Expired - Lifetime JPH0737498B2 (en) 1987-06-05 1987-06-05 Optical molding material

Country Status (1)

Country Link
JP (1) JPH0737498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093146A (en) * 2007-09-19 2009-04-30 Mitsubishi Gas Chem Co Inc Optical lens and its manufacturing method
JP2011043556A (en) * 2009-08-19 2011-03-03 Sumitomo Dow Ltd Optical lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093146A (en) * 2007-09-19 2009-04-30 Mitsubishi Gas Chem Co Inc Optical lens and its manufacturing method
JP2011043556A (en) * 2009-08-19 2011-03-03 Sumitomo Dow Ltd Optical lens

Also Published As

Publication number Publication date
JPH0737498B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US5200492A (en) Polymer blends
US4205140A (en) Thermoplastic moulding compositions
TW200835701A (en) Fluidity improver, aromatic polycarbonate resin composition, and molded article thereof
JP6202805B2 (en) Film containing methacrylic resin
JPH06313089A (en) Polymer composition
JP6231646B2 (en) Visor containing methacrylic resin
TWI609907B (en) Light diffusing resin composition and molded article thereof
US4888401A (en) Molding material for optics
JP6049059B2 (en) Visor containing methacrylic resin
JPS63305114A (en) Molding material for optics
JP7509750B2 (en) Thermoplastic resin composition and molded article
JPH01120501A (en) Molding material for optical service
JP6724545B2 (en) Aromatic polycarbonate resin composition, method for producing the same, and molded article
JP6326530B2 (en) Film containing methacrylic resin
JP2021017545A (en) Fluidity improver, thermoplastic resin composition and molding thereof
JP2650265B2 (en) Optical molding materials
JPH0229412A (en) Molding material for optics
JPH07233296A (en) Optical resin composition
JP7434947B2 (en) Flowability improver for aromatic polycarbonate resin, aromatic polycarbonate resin composition, and molded products thereof
JP3305007B2 (en) Method for producing grafted polycarbonate resin
JPH0324107A (en) Optical molding
JPH0317112A (en) Block copolymer and resin composition
JP2658199B2 (en) Method for producing thermoplastic graft copolymer
JPS63295662A (en) Transparent resin composition
JP6954119B2 (en) Polycarbonate resin composition and its molded article