JPS63299137A - Sample holding device - Google Patents

Sample holding device

Info

Publication number
JPS63299137A
JPS63299137A JP62131076A JP13107687A JPS63299137A JP S63299137 A JPS63299137 A JP S63299137A JP 62131076 A JP62131076 A JP 62131076A JP 13107687 A JP13107687 A JP 13107687A JP S63299137 A JPS63299137 A JP S63299137A
Authority
JP
Japan
Prior art keywords
electrode
sample holding
sample
potential
holding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62131076A
Other languages
Japanese (ja)
Inventor
Koji Marumo
丸茂 光司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62131076A priority Critical patent/JPS63299137A/en
Publication of JPS63299137A publication Critical patent/JPS63299137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct a sample in a desired flatness by equalizing the potential of a part of a sample holding face composed of a conductive substance to a potential of high or low voltage side to increase an attraction force without necessity of altering an electrode area, a permittivity and an applying voltage. CONSTITUTION:An electrode 3 of high (or low) voltage side and an electrode 4 of low (or high) voltage side are disposed on the same flat face of the top of an electrostatic chuck body 6. An insulatively dielectric layer 2 covering the electrode 3, a conductive material 5 covering the electrode 4, a DC power supply 7 connected between the electrodes 3 and 4, and an insulator 8 having sufficiently low permittivity than an insulator for forming the dielectric layer are provided. With this construction, when a voltage V is applied between the electrodes 3 and 4, the potential of a semiconductor wafer 1 becomes 0V, an attraction force F becomes a function of the voltage V, the thickness (d) and the permittivity epsilon1 of the dielectric layer to generate an attraction force as large as twice. That is, it does not receive a force from a sample holding face equi-potential thereto, but the potential difference which contributes to an electrostatic attraction force by square becomes double as large as a conventional one. Thus, a sample having a large warpage can be held in a preferable flatness state by the large attraction force.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自然状態において反っていることのある導電
体または半導体の試料を平坦な保持面に接するように矯
正して保持する試料保持装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a sample holding device that straightens and holds a conductor or semiconductor sample that may be warped in its natural state so that it is in contact with a flat holding surface. Regarding.

[従来の技術] 一般に、半導体露光装置によってシリコンウェハ等の試
料に集積回路パターンを転写する際あるいはこのクエへ
を検査する際にはこれら試料を平坦な面に保持固定する
必要がある。
[Prior Art] Generally, when an integrated circuit pattern is transferred onto a sample such as a silicon wafer using a semiconductor exposure apparatus, or when the sample is inspected, it is necessary to hold and fix the sample on a flat surface.

そして従来、このような保持手段としては、機械式、真
空式および電気式のチャックが用いられている、このう
ち電気式のチャックすなわち静電チャックは、取扱いが
比較的容易で真空中においても使用できるため半導体製
造分野において宵月9であり、最近多くの研究開発がな
され、実用化されつつある。
Conventionally, mechanical, vacuum, and electric chucks have been used as such holding means. Of these, electric chucks, or electrostatic chucks, are relatively easy to handle and can be used even in a vacuum. Because of this, it is a key technology in the field of semiconductor manufacturing, and much research and development has recently been carried out and it is being put into practical use.

この静電チャックは、2つの互いに反対の極性に帯電し
たコンデンサ板の吸引力を利用するもので、電極板と強
い誘電率を有する絶縁体の層(本願ではこれを絶縁性誘
電層と呼ぶ)からなる。そして、従来考えられている静
電チャックとしては、 ■チャック自身が1つの電極を持ち、試料を他の電極と
して用いるもの ■チャック自身の同一平面上に互いに反対の極性に帯電
された電極を有するもの の2つがある。
This electrostatic chuck uses the attractive force of two capacitor plates charged with opposite polarities, consisting of an electrode plate and an insulator layer with a strong dielectric constant (referred to as an insulating dielectric layer in this application). Consisting of Conventionally considered electrostatic chucks include: ■The chuck itself has one electrode, and the sample is used as the other electrode.■The chuck itself has electrodes charged with opposite polarities on the same plane. There are two things.

第2図は上記■の場合の静電チャックを示す断面図であ
る。同図において、静電チャック本体6のチャック自身
は1つの電極3のみ有し、電極3の上に絶縁性誘電層2
が被覆されている。一方、第3図は上記■の場合の静電
チャックを示す断面図である。同図の装置は、2つの電
極すなわち高電圧側の電極3および低電圧側の電極4を
同一平面上に配置したものである。これらの図において
、1は絶縁性誘電層2の上に載置されたウェハである。
FIG. 2 is a sectional view showing the electrostatic chuck in case (2) above. In the figure, the chuck itself of the electrostatic chuck main body 6 has only one electrode 3, and an insulating dielectric layer 2 is placed on the electrode 3.
is covered. On the other hand, FIG. 3 is a sectional view showing the electrostatic chuck in case (2) above. In the device shown in the figure, two electrodes, an electrode 3 on the high voltage side and an electrode 4 on the low voltage side, are arranged on the same plane. In these figures, 1 is a wafer placed on an insulating dielectric layer 2 .

第2図の静電チャックにおいて、電極3と半導体ウェハ
1との間に直流電源7によって電圧Vを印加すると、半
導体ウェハ1に働く吸引力Fは、F−(1/2)ε0ε
1’(V/d)2S    ・・−・・−(1)となる
。ただし、 F :吸引力 ε0:真空誘電率 ε、:絶縁性説電層の誘電率 ■ :印加電圧 d :絶縁層の厚さ S :電極の面積 である、また、第3図の静電チャックにおいて、高(ま
たは低)電圧側の電極3と低(または高)電圧側の電極
4の間に電圧Vを印加すると、半導体ウェハ1の電位は
V/2となり、半導体ウェハ1に働く吸引力Fは となる。
In the electrostatic chuck shown in FIG. 2, when a voltage V is applied between the electrode 3 and the semiconductor wafer 1 by the DC power supply 7, the attraction force F acting on the semiconductor wafer 1 is F-(1/2)ε0ε
1'(V/d)2S...-(1). However, F: Attractive force ε0: Vacuum permittivity ε,: Dielectric constant of the insulating electrolytic layer ■: Applied voltage d: Thickness of the insulating layer S: Area of the electrode, and the electrostatic chuck shown in Fig. 3 When a voltage V is applied between the electrode 3 on the high (or low) voltage side and the electrode 4 on the low (or high) voltage side, the potential of the semiconductor wafer 1 becomes V/2, and the attractive force acting on the semiconductor wafer 1 F becomes .

このようにして、静電チャックは、所定の電圧を印加し
、静電チャックと半導体ウェハなどの試料との間に吸引
力を発生させて試料を保持する。
In this way, the electrostatic chuck holds the sample by applying a predetermined voltage to generate an attractive force between the electrostatic chuck and the sample, such as a semiconductor wafer.

[発明が解決しようとする問題点] しかしながら、このような静電チャックは、はとんどの
半導体製造装置で使用されてきたバキュームチャックに
比べて吸引力が小さく、したがって、反りの大きな試料
を所望の平面度に矯正できないのが現状である。
[Problems to be Solved by the Invention] However, such electrostatic chucks have a lower suction force than the vacuum chucks used in most semiconductor manufacturing equipment, and therefore cannot be used for samples with large warpage. Currently, it is not possible to correct the flatness to .

この吸引力すなわち(1) 、 (2)式におけるFの
値を増すためには、絶縁層の誘電率を上げること、印加
電圧を高くすること、絶縁層を薄くすることなどが考え
られる。しかし、絶縁層の誘電率を上げるために誘電率
の高い材料を選ぶ場合には、摩耗しないこと、加工性の
良いことなどの条件により、多くの制約を受ける。また
、印加電圧を高くする方法においても、放電の問題、ざ
らに誘電層の絶縁破壊の問題がある。また、絶縁層を薄
くする方法にも限度がある。
In order to increase this attractive force, that is, the value of F in equations (1) and (2), it is possible to increase the dielectric constant of the insulating layer, increase the applied voltage, and make the insulating layer thinner. However, when selecting a material with a high dielectric constant in order to increase the dielectric constant of the insulating layer, there are many restrictions, such as the need for no wear and good workability. Further, even in the method of increasing the applied voltage, there are problems of discharge and dielectric breakdown of the dielectric layer. Furthermore, there are limits to the methods for making the insulating layer thinner.

本発明の目的は、このような問題点に鑑み、第3図に示
したように試料保持装置本体側から電位差を与えて静電
引力により試料を吸着保持する試料保持装置において、
電極面積、誘電率および印加電圧を変える必要なく吸引
力を増大させ、試料を所望の平面度に矯正して保持でき
るようにすることにある。
In view of these problems, an object of the present invention is to provide a sample holding device that attracts and holds a sample by electrostatic attraction by applying a potential difference from the sample holding device main body side as shown in FIG.
The object of the present invention is to increase suction force without changing the electrode area, dielectric constant, and applied voltage, and to make it possible to straighten and hold a sample to a desired flatness.

[問題点を解決するための手段および作用]上記目的を
達成するため本発明では、高電圧側および低電圧側の2
種類の電極を試料保持装置本体に備え、絶縁性誘電体を
介して導電体または半導体の試料を静電引力によって吸
着して保持する試料保持装置において、試料保持面の一
部を導電性物質によって構成し該一部の保持面を上記高
電圧側または低電圧側の電位に等しくなるようにしてい
る。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides two high voltage side and low voltage side
In a sample holder, which is equipped with various types of electrodes on the main body of the sample holder, and which attracts and holds a conductive or semiconductor sample through an insulating dielectric by electrostatic attraction, a part of the sample holding surface is made of a conductive material. The part of the holding surface is made to have a potential equal to the potential of the high voltage side or the low voltage side.

この構成によれば、試料を保持面上に載置したとき、上
記導電性物質との接触により試料は高電圧側または低電
圧側の電位に等しくなる。すなわち、これと等電位な試
料保持面からは力を受けなくなるが、静電引力に2乗で
寄与する電位差は従来の倍になる。
According to this configuration, when the sample is placed on the holding surface, the potential of the sample becomes equal to the high voltage side or the low voltage side due to contact with the conductive substance. That is, although no force is applied from the sample holding surface which has the same potential as this, the potential difference that contributes squarely to the electrostatic attraction is twice as large as in the conventional case.

したがって、例えば従来に比べ、静電引力に1乗で寄与
する電極の面積が半分になったとしても他の条件が同じ
なら、倍の静電力が試料に働く。
Therefore, for example, even if the area of the electrode that contributes to the first power of electrostatic attraction is halved compared to the conventional method, twice as much electrostatic force will act on the sample if other conditions remain the same.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係る静電チャック(試料保
持装置)の構成を示す断面図である。同図において、6
は高(または低)電圧側の電極3と低(または高)電圧
側の電極4とが上部の同一平面上に配置しである静電チ
ャック本体である。
FIG. 1 is a sectional view showing the structure of an electrostatic chuck (sample holding device) according to an embodiment of the present invention. In the same figure, 6
is an electrostatic chuck main body in which an electrode 3 on the high (or low) voltage side and an electrode 4 on the low (or high) voltage side are arranged on the same plane at the top.

2は電極3上を被覆している絶縁性誘電層、5は電極4
上を被覆している導電性材料、7は電極3.4間に接続
された直流電源、8は絶縁性誘電層を成す絶縁体より誘
電率の充分低い絶縁体である。
2 is an insulating dielectric layer covering the electrode 3; 5 is the electrode 4;
The electrically conductive material covering the top, 7 is a DC power supply connected between the electrodes 3 and 4, and 8 is an insulator having a sufficiently lower dielectric constant than the insulator forming the insulating dielectric layer.

この構成において、電極3.4間に電圧Vをかけると、
半導体ウェハ1の電位はOvとなり、吸引力Fは F=  (1/2)e:。a、2 (V/ D)2(S
/ 2)−(1/4)ε。ε 2 (y 2/D2) 
5    ・・・・(3)となる。したがって、本実施
例によれば、式(2)で表わされる第3図の従来例に比
べ、同一の印加電圧v1絶縁性銹電層の厚さdおよび誘
電率ε1において、2倍の吸引力が生ずる。
In this configuration, if a voltage V is applied between the electrodes 3.4,
The potential of the semiconductor wafer 1 is Ov, and the attractive force F is F=(1/2)e:. a, 2 (V/D) 2(S
/2)-(1/4)ε. ε 2 (y 2/D2)
5...(3). Therefore, according to this embodiment, compared to the conventional example shown in FIG. occurs.

ただしこの場合、吸引力は2倍大きくなっているが、負
極の上では吸引力が発生しないため、場所による吸引力
の差が生じる。そこで、できるだけ全面均一な力で吸引
させるためには、正負両電極のパターンを細分して全面
に均一に分布させると好都合である。第4図は、この例
として、正負両電極を格子サイズをできるだけ細かくし
た格子パターン状に配設したものを示す、また、第5図
は、第4図の一部を拡大した斜視図である。
However, in this case, although the suction force is twice as large, since no suction force is generated above the negative electrode, differences in suction force occur depending on the location. Therefore, in order to make the attraction as uniform as possible over the entire surface, it is convenient to subdivide the patterns of both the positive and negative electrodes and distribute them uniformly over the entire surface. FIG. 4 shows an example of this in which both the positive and negative electrodes are arranged in a grid pattern with the grid size as small as possible, and FIG. 5 is an enlarged perspective view of a part of FIG. 4. .

[他の実施例] 第6図は本発明の他の実施例に係る静電チャックの構成
を示す部分断面図である。
[Other Embodiments] FIG. 6 is a partial sectional view showing the structure of an electrostatic chuck according to another embodiment of the present invention.

この装置では、第4.5図の応用例として、試料、保持
装置本体に熱伝導率の良い金属を用いている。同図にお
いて、8はエポキシ、アルミナセラミクスなどの誘電率
の低い絶縁物、9は熱伝導率の良い金属である。金属9
はいわば一方の電極であると同時に試料保持面を形成し
ている。このような構造にすると、露光時に試料に入っ
てくる熱を熱伝導率の良い金属本体9に伝えて逃がすこ
とができる。したがって、温調の目的でも好適に使用す
ることができる。
In this apparatus, as an application example shown in FIG. 4.5, metal with good thermal conductivity is used for the sample and the main body of the holding device. In the figure, 8 is an insulator with a low dielectric constant such as epoxy or alumina ceramics, and 9 is a metal with good thermal conductivity. metal 9
The electrode serves as one electrode and at the same time forms a sample holding surface. With this structure, the heat that enters the sample during exposure can be transferred to the metal body 9 with good thermal conductivity and released. Therefore, it can also be suitably used for the purpose of temperature control.

[発明の効果] 以上説明したように、本発明によれば、保持される試料
の電位が低電圧側または高電圧側の電位と等しくなり、
静電引力に係る電位差が従来の倍になるため、例えば従
来のものに比べて静電引力に係る電極の面積が半分にな
ったとしても印加電圧、絶縁性誘電層の厚さおよび誘電
率が同じなら2倍大きな吸引力を発生させることができ
る。すなわちより大きな吸引力によって大きな反りを持
つ試料を平面度の良好な状態で保持することができる。
[Effects of the Invention] As explained above, according to the present invention, the potential of the sample to be held becomes equal to the potential on the low voltage side or the high voltage side,
Since the potential difference related to electrostatic attraction is twice that of the conventional one, for example, even if the area of the electrode related to electrostatic attraction is halved compared to the conventional one, the applied voltage, the thickness of the insulating dielectric layer, and the dielectric constant will be reduced. If they are the same, twice as much suction force can be generated. In other words, a larger suction force makes it possible to hold a highly curved sample in a state of good flatness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る試料保持装置を示す
断面図、 第2図および第3図は、従来例に係る試料保持装置の断
面図、 第4図は、第1図の装置に用いられる電極パターンを格
子状にしたときの電極の表面に被覆した導電性材料と絶
縁物の格子パターンを示す断面図、 第5図は、第4図の一部を拡大して示した斜視図、そし
て 第6図は、本発明の他の実施例に係る試料保持装置の部
分断面図である。 1:試料、 2:絶縁性誘電層、 3:高(または低)電圧側の電極、 4:低(または高)電圧側の電極、 5:導電性材料、 6:試料保持装置本体、 7:電源、 8:絶縁物、 9:熱伝導率の良い金属。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 哲 也 代理人 弁理士   伊 東 辰 雄 第1図 第2図 第3図
FIG. 1 is a sectional view showing a sample holding device according to an embodiment of the present invention, FIGS. 2 and 3 are sectional views of a conventional sample holding device, and FIG. 4 is a sectional view of a sample holding device according to an embodiment of the present invention. Figure 5 is a cross-sectional view showing a grid pattern of conductive material and insulator coated on the surface of the electrode when the electrode pattern used in the device is in the form of a grid. The perspective view and FIG. 6 are partial cross-sectional views of a sample holding device according to another embodiment of the present invention. 1: Sample, 2: Insulating dielectric layer, 3: High (or low) voltage side electrode, 4: Low (or high) voltage side electrode, 5: Conductive material, 6: Sample holding device main body, 7: Power supply, 8: Insulator, 9: Metal with good thermal conductivity. Patent Applicant Canon Co., Ltd. Representative Patent Attorney Tetsuya Ito Representative Patent Attorney Tatsuo Ito Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、絶縁性誘電体より成る第1の表面および導電性物質
より成る第2の表面を含む試料保持面と、該絶縁性誘電
体の下部または内部に設けられ該第1の表面にほぼ平行
な第1の電極とを有し、上記試料保持面に対して導電体
または半導体の試料が吸着される試料保持装置本体、な
らびに上記導電性物質と上記第1の電極間に電位差を生
じさせる電圧源を具備することを特徴とする試料保持装
置。 2、前記絶縁性誘電体は前記第1の電極上の被覆物であ
り、前記導電性物質は前記電圧源に接続された第2の電
極上の被覆物であり、かつ該第1および第2の電極がほ
ぼ同一平面上に設けられた特許請求の範囲第1項記載の
試料保持装置。 3、前記第1および第2の表面が格子パターン状に均一
に分布した特許請求の範囲第1項記載の試料保持装置。 4、前記試料保持装置本体が前記導電性物質としての熱
伝導率の良い金属を主体として形成され、該金属形成体
の試料保持面側に設けた凹部に前記絶縁性誘電体および
第1の電極を配置した特許請求の範囲第1または3項記
載の試料保持装置。
[Claims] 1. A sample holding surface including a first surface made of an insulating dielectric and a second surface made of a conductive material; a sample holding device body having a first electrode substantially parallel to the surface of the sample holding surface, on which a conductive or semiconductor sample is adsorbed, and a sample holding device body having a first electrode substantially parallel to the surface of the sample holding surface; A sample holding device comprising a voltage source that generates a potential difference. 2. The insulating dielectric material is a coating on the first electrode, and the conductive material is a coating on a second electrode connected to the voltage source, and the first and second 2. The sample holding device according to claim 1, wherein the electrodes are provided on substantially the same plane. 3. The sample holding device according to claim 1, wherein the first and second surfaces are uniformly distributed in a grid pattern. 4. The sample holding device main body is formed mainly of a metal with good thermal conductivity as the conductive substance, and the insulating dielectric and the first electrode are placed in a recess provided on the sample holding surface side of the metal forming body. 4. A sample holding device according to claim 1 or 3, wherein:
JP62131076A 1987-05-29 1987-05-29 Sample holding device Pending JPS63299137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131076A JPS63299137A (en) 1987-05-29 1987-05-29 Sample holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131076A JPS63299137A (en) 1987-05-29 1987-05-29 Sample holding device

Publications (1)

Publication Number Publication Date
JPS63299137A true JPS63299137A (en) 1988-12-06

Family

ID=15049427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131076A Pending JPS63299137A (en) 1987-05-29 1987-05-29 Sample holding device

Country Status (1)

Country Link
JP (1) JPS63299137A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274938A (en) * 1988-04-26 1989-11-02 Toto Ltd Electrostatic chuck base plate
JPH0349841A (en) * 1989-07-12 1991-03-04 Omron Corp Chucking device
US7394640B2 (en) * 2004-03-26 2008-07-01 Advantest Corp. Electrostatic chuck and substrate fixing method using the same
WO2010004915A1 (en) * 2008-07-08 2010-01-14 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
JP2010199177A (en) * 2009-02-24 2010-09-09 Tokyo Electron Ltd Electrostatic chuck and plasma processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274938A (en) * 1988-04-26 1989-11-02 Toto Ltd Electrostatic chuck base plate
JPH0349841A (en) * 1989-07-12 1991-03-04 Omron Corp Chucking device
US7394640B2 (en) * 2004-03-26 2008-07-01 Advantest Corp. Electrostatic chuck and substrate fixing method using the same
WO2010004915A1 (en) * 2008-07-08 2010-01-14 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
JP5283699B2 (en) * 2008-07-08 2013-09-04 株式会社クリエイティブ テクノロジー Bipolar electrostatic chuck
US8730644B2 (en) 2008-07-08 2014-05-20 Creative Technology Corporation Bipolar electrostatic chuck
JP2010199177A (en) * 2009-02-24 2010-09-09 Tokyo Electron Ltd Electrostatic chuck and plasma processing apparatus

Similar Documents

Publication Publication Date Title
CA1313428C (en) Electrostatic chuck
JP3238925B2 (en) Electrostatic chuck
TW527264B (en) Ceramic electrostatic chuck assembly and method of making
JP2001035907A (en) Chuck device
JPH0746437Y2 (en) Electrostatic chuck
JPH0652758B2 (en) Electrostatic check
JP2521471B2 (en) Electrostatic suction device
JPH0719831B2 (en) Electrostatic check
JP2767282B2 (en) Substrate holding device
JPS63299137A (en) Sample holding device
JP3287996B2 (en) Electrostatic chuck device
JPH0473950A (en) Electrostatic chuck
JPH0152899B2 (en)
JPH10223742A (en) Electrostatic chuck
GB2293689A (en) Electrostatic chuck
JPH07263527A (en) Electrostatic attraction device
JPS6114660B2 (en)
JPH09260472A (en) Electrostatic chuck
JP2000340640A (en) Non-contacting electrostatically attracting apparatus
JPH074718B2 (en) Electrostatic adsorption device
JP2003188247A (en) Electrostatic chuck and manufacturing method thereof
JP2574407B2 (en) Wafer holder for electron beam exposure equipment
JP2000012666A (en) Electrostatic chuck
JPS59132139A (en) Electrostatic chuck plate
JPH04367246A (en) Electrostatic attraction apparatus