JPS6329686B2 - - Google Patents

Info

Publication number
JPS6329686B2
JPS6329686B2 JP56102303A JP10230381A JPS6329686B2 JP S6329686 B2 JPS6329686 B2 JP S6329686B2 JP 56102303 A JP56102303 A JP 56102303A JP 10230381 A JP10230381 A JP 10230381A JP S6329686 B2 JPS6329686 B2 JP S6329686B2
Authority
JP
Japan
Prior art keywords
glycol
diol
isocyanate groups
diisocyanate
thermoplastic polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56102303A
Other languages
Japanese (ja)
Other versions
JPS585325A (en
Inventor
Hiroshi Suzuki
Masaaki Aoki
Seiji Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56102303A priority Critical patent/JPS585325A/en
Publication of JPS585325A publication Critical patent/JPS585325A/en
Publication of JPS6329686B2 publication Critical patent/JPS6329686B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は熱可塑性ポリりレタン暹脂の補造法に
関する。曎に詳しくは、本発明は有機溶剀に可溶
で、高い機械的物性を有し、分子䞭にペンダント
状及び又は分子末端に掻性氎玠を有する基をも
぀熱可塑性ポリりレタン暹脂の補造法に関する。 熱可塑性ポリりレタン暹脂以䞋単にTPUず
かくの甚途には、溶剀に溶解しお甚いる分野が
ある。そのような分野では、塗垃操䜜䞊の必芁性
から溶剀に溶解しおいる堎合がほずんどであり、
塗垃埌、溶剀を陀去する圢で甚いられるのが䞀般
的である。この堎合、溶剀陀去埌は、耐溶剀性、
耐氎性、耐熱性等を芁求されるこずがあり、その
為には、TPU分子䞭に掻性氎玠を導入し、塗垃
時にポリむ゜シアネヌト等を䜵甚しお架橋硬化せ
しめるのが簡䟿か぀有効であるこずがよく知られ
おいる。 䞀方、TPUの甚途には、無機材料ず混合しお
甚いる分野があるが、この分野では無機材料の分
散性が芁求されるこずがあり、その為には、スル
ホン基、カルボキシル基、リン酞基等を分子䞭に
導入するこずも有効であるが、塗料化の際、ゲル
化を起す堎合があるため、氎酞基、アミノ基等の
掻性氎玠を有する基の導入が䞀般的である。 しかも、これらの甚途においおも、TPU単独
でも充分な機械的物性を具備しおいるこずが望た
しい。 そこで、本発明者らは、有機溶剀に可溶で、高
い機械的物性をそなえ、分子䞭に掻性氎玠を有す
る基をも぀新芏なTPUの補造法を怜蚎した結果、
本発明に到達した。 すなわち本発明は平均分子量500〜5000の高分
子ゞオヌル(A)、平均分子量500以䞋の䜎分子ゞオ
ヌル(B)ず有機ゞむ゜シアネヌト(C)ずを反応させお
熱可塑性ポリりレタン゚ラストマヌを補造する方
法においお、 (1) 及びの掻性氎玠の合蚈数ずのむ゜シア
ネヌト基の数の比が1.02〜1.1の割合
で、及びを有機溶媒䞭で反応せしめお
末端にむ゜シアネヌト基を有するプレポリマヌ
(D)ずし、 (2) 続いお掻性氎玠個以䞊有する架橋剀(E)を、
及びの掻性氎玠の合蚈数に察するの
む゜シアネヌト基の数ずの比が0.85〜
0.98の割合で加え、でを鎖延長するこずに
より、埗られた熱可塑性ポリりレタン゚ラスト
マヌの分子構造が分子末端にOH基を少なくず
も個持぀こずを特城ずする熱可塑性ポリりレ
タン暹脂の補造法、である。 本発明で甚いる溶剀は、アミド系、スルホキサ
むド系、環状゚ヌテル系、環状ケトン系ならびに
アセトン、メチル゚チルケトン、メチルむ゜ブチ
ルケトン等の非環状ケトン系溶剀の皮又は皮
以䞊、曎には䞊蚘溶剀ず酢酞゚チル、酢酞ブチル
等の゚ステル系、ベンれン、トル゚ン、キシレン
等の芳銙族炭化氎玠系溶剀、メチレンクロラむ
ド、パヌクロル゚チレン、等の塩玠系溶剀ずの混
合溶剀である。 本発明で甚いる高分子ゞオヌル(A)は平均分子量
500〜5000のものであり、公知のポリ゚ヌテルゞ
オヌル、ポリ゚ステルゞオヌル、ポリカヌボネヌ
トゞオヌル等である。 ポリ゚ヌテルゞオヌルは䟋えば、氎、゚チレン
グリコヌル、ゞ゚チレングリコヌル、プロピレン
グリコヌル、ゞプロピレングリコヌル、―
又は―ブチレングリコヌル、―ヘキ
サメチレングリコヌル等にアルキレンオキサむド
たずえば゚チレンオキサむド、プロピレンオキサ
むド、ブチレンオキサむド、テトラヒドロフラ
ン、スチレンオキサむド等を皮又は皮以䞊
以䞋単にアルキレンオキサむドず略蚘する。付
加せしめお埗られるものである。ポリ゚ステルゞ
オヌルは䟋えば、゚チレングリコヌル、ゞ゚チレ
ングリコヌル、トリ゚チレングリコヌル、プロピ
レングリコヌル、ゞプロピレングリコヌル、トリ
メチレングリコヌル、―又は―ブチ
レングリコヌル、ネオペンチルグリコヌル、
―ヘキサメチレングリコヌル、デカメチレング
リコヌル等の皮又は皮以䞊ず、マロン酞、マ
レむン酞、コハク酞、アゞピン酞、グルタル酞、
ピメリン酞、セバシン酞、シナり酞、フタル酞、
む゜フタル酞、テレフタル酞、ヘキサヒドロフタ
ル酞等の皮又は皮以䞊ずからのポリ゚ステル
ゞオヌル又はプロピオラクトン、ブチロラクト
ン、カプロラクトン等の環状゚ステルを開環重合
したゞオヌル、曎に䞊蚘グリコヌルず環状゚ステ
ルずから又は䞊蚘グリコヌル、二塩基酞、環状゚
ステルの皮からのポリ゚ステルゞオヌルであ
る。 ポリカヌボネヌトゞオヌルは、䞀般匏〔――
―OCO〕―oROH≧で衚わされる化合物
でずしおはグリコヌル又は䟡のプノヌルの
残基であり、グリコヌル又は䟡のプノヌルは
䟋えばトリメチレングリコヌル、ゞ゚チレングリ
コヌル、―又は―ブチレングリコヌ
ル、―ヘキサメチレングリコヌル、デカメ
チレングリコヌル、―キシリレングリコヌル、
ビスプノヌル〔―ビス4′―ヒドロキ
シプニルプロパン〕、ビスプノヌル
4′―ゞヒドロキシゞプニルメタン等である。 本発明の高分子ゞオヌルずしお、―ポリ
ブタゞ゚ングリコヌル、―ポリブタゞ゚ン
グリコヌル、ポリクロロプレンゞオヌル、プタゞ
゚ン―アクリロニトリル共重合䜓ゞオヌル等も䜿
甚される。 これら各皮の高分子ゞオヌルは単独又は皮以
䞊混合しお甚いられる。 本発明で甚いる平均分子量500以䞋の䜎分子ゞ
オヌル(B)は公知の脂肪族ゞオヌル類、芳銙族ゞオ
ヌル類、―アルキル又は―アリヌルゞアルカ
ノヌルアミン類等である。脂肪族ゞオヌル類は䟋
えば゚チレングリコヌル、プロピレングリコヌ
ル、―又は―ブチレングリコヌル、
―ペンタンゞオヌル、―ヘキサメチ
レングリコヌル、ネオペンチルグリコヌル、―
゚チル――ヘキサンゞオヌル、
―トリメチル――ペンタンゞオヌル、
―又は―トリメチル――
ヘキサンゞオヌル、デカメチレングリコヌル、
―シクロヘキサンゞオヌル等である。芳銙
族ゞオヌル類は、䟋えば、ハむドロキノン、ビス
プノヌル、ビスプノヌル、―キシリレ
ングリコヌル等である。―アルキル又は―ア
リヌルゞアルカノヌルアミン類は、䟋えば、メチ
ルゞ゚タノヌルアミン、メチルゞむ゜プロパノヌ
ルアミン、゚チルゞ゚タノヌルアミン、プニル
ゞ゚タノヌルアミン、―トリルゞ゚タノヌルア
ミン等である。䞊蚘は前蚘脂肪族ゞオヌル類、
芳銙族ゞオヌル類、―アルキル又は―アリヌ
ルゞアルカノヌルアミン類にアルキレンオキサむ
ドを付加せしめお埗られるものも甚いられる。 これら各皮の平均分子量500以䞋の䜎分子ゞオ
ヌル(B)は単独又は皮以䞊混合しお甚いられる。 本発明で甚いる掻性氎玠を個以䞊有する架橋
剀は公知のポリオヌル類、アルカノヌルアミン
類、ポリアミン類等である。ポリオヌル類は䟋え
ばトリメチロヌルプロパン、グリセリン、―メ
チルペンタン――トリオヌル、ペンタ
゚リスリトヌル、゜ルビトヌル、シナヌクロヌ
ス、ポリグリセリン、トリスβ―ヒドロキシ゚
チルむ゜シアヌレヌト等又はこれらのアルキレ
ンオキサむド付加物もしくはε―カプロラクトン
付加物、ポリ゚ステルポリオヌル等である。アル
カノヌルアミン類は、䟋えばモノ゚タノヌルアミ
ン、ゞ゚タノヌルアミン、トリ゚タノヌルアミ
ン、モノむ゜プロパノヌルアミン、ゞむ゜プロパ
ノヌルアミン、トリむ゜プロパノヌルアミン等で
ある。ポリアミン類は、䟋えば゚チレンゞアミ
ン、ゞ゚チレントリアミン、トリレンゞアミン、
ゞプニルメタンゞアミン、む゜ホロンゞアミ
ン、4′―メチレンビス―クロルアニリ
ン等である。 これら各皮の掻性氎玠を個以䞊有する架橋剀
は単独又は皮以䞊混合しお甚いられる。 本発明で甚いる有機ゞむ゜シアネヌト(C)は、䟋
えばトリレンゞむ゜シアネヌト各皮異性䜓比の
もの、ゞプニルメタン―4′―ゞむ゜シア
ネヌト以䞋MDIずもかく。、ナフチレン―
―ゞむ゜シアネヌト、3′―ゞメチル―
4′―ビプニレンゞむ゜シアネヌト、キシリレン
ゞむ゜シアネヌト、ゞシクロヘキシルメタン―
4′―ゞむ゜シアネヌト氎玠化MDI、む゜
ホロンゞむ゜シアネヌト、ヘキサメチレンゞむ゜
シアネヌト、氎玠化キシリレンゞむ゜シアネヌト
等である。 これら各皮の有機ゞむ゜シアネヌトは単独又は
皮以䞊混合しお甚いられおも良い。 本発明の高分子ゞオヌル(A)、䜎分子ゞオヌル
(B)、架橋剀(E)、有機ゞむ゜シアネヌト(C)は、 (1) 及びからNCO末端のプレポリマヌ
(D)を補造するに際しお、及びの掻性氎玠の
合蚈数に察しおのむ゜シアネヌト基の数が
1.02〜1.1であるこず、 (2) ずからTPUを補造するに際しおは、
及びの掻性氎玠の合蚈数に察しおのむ
゜シアネヌト基の数が0.85〜0.98である。 ような量的関係で甚いられる。 (1)の条件で、溶剀ぞの溶解性の良奜なTPUを
埗るためには、む゜シアネヌト基が過剰で鎖延長
を行い、NCO末端プレポリマヌ(F)を埗るのが奜
たしい。しかし、1.1を超えおむ゜シアネヌト基
が倚いず鎖延長が䞍十分でポリマヌの分子量が䞊
昇せず、物性が䜎䞋する。䞀方む゜シアネヌト基
が1.02未満の堎合、分子䞭に導入し埗る掻性氎玠
の数が少くなるので奜たしくない。 (2)の条件で、む゜シアネヌト基の数が0.85未満
の堎合は未反応のの量が過倚ずなり、硬化生成
物のブルヌミングやブリヌドの原因ずなる。逆に
む゜シアネヌト基の数が0.98を超えるず、反応液
のゲル化の危険があり奜たしくない。 なお(2)の条件で、反応埌のむ゜シアネヌト基の
数が0.85未満の堎合、或いは補品の粘床の調敎等
必芁に応じお、有機ポリむ゜シアネヌトを远加す
るこずもできる。䜆しこの堎合、远加される有機
ポリむ゜シアネヌトずずは合蚈む゜シアネヌト
基数で0.85〜0.98の範囲内であり、远加される有
機ポリむ゜シアネヌトはず同皮であ぀おも異皮
であ぀おもよい。 本発明においおは反応の任意の段階で必芁に応
じお埓来公知のりレタン化觊媒が甚いられる。 又、本発明では必芁に応じ酞化防止剀、玫倖線
吞収剀、カルボゞむミド等の各皮添加剀が甚いら
れる。 本発明のTPUの補造の抂芁を瀺すず、高分子
ゞオヌル(A)ず有機ゞむ゜シアネヌト(C)、必芁によ
りりレタン化觊媒を溶剀䞭20〜80重量以䞋
は重量を衚わす。の固圢分含有量で50〜90℃、
〜時間反応させる。さらに50〜90℃で䜎分子
ゞオヌル(B)を䞀括又は分割装入により反応させ
る。反応液の増粘に䌎ない、必芁に応じ溶剀、觊
媒を添加し反応させ、NCO末端プレポリマヌ溶
液(D)を埗る。(D)に〜90℃で架橋剀(E)、必芁によ
り溶剀を䞀括装入により反応させる。〜時間
反応させた埌、必芁により〜90℃で有機ゞむ゜
シアネヌトを䞀括又は分割装入により反応させ
る。䞊蚘の条件は通垞の条件を瀺したもので必
ずしもこれに限定されるものではない。 埗られたTPU溶液は、10〜40の固圢分含有
量ずするこずが奜たしく、玄30溶液で25℃にお
ける粘床が1000センチポむズ以䞊であるこずが奜
たしい。これより粘床が䜎いず良奜な物性のもの
が埗られない。 本発明では、有機溶剀に可溶で、高い機械的物
性をそなえ、少くずも分子末端個圓り個以䞊
の掻性氎玠及び又は分子䞭にペンダント状に掻性
氎玠を有するTPUが埗られる。又本発明の高分
子ゞオヌル(A)、䜎分子ゞオヌル(B)、有機ゞむ゜シ
アネヌト(C)は、の合蚈重量に察する
の重量割合を倉化させるこずにより、䜎モゞナラ
ス品から高ダング率品たで所望の物性を有する
TPUを埗るこずができる。曎に本発明のTPU
は、トリメチロヌルプロパンずモルのトリレン
ゞむ゜シアネヌトの反応物、トリメチロヌルプロ
パンずモルのヘキサメチレンゞむ゜シアネヌト
の反応物、ビナヌレツト基を導入しお倉性したヘ
キサメチレンゞむ゜シアネヌト等のポリむ゜シア
ネヌト、NCO基含有プレポリマヌ、ブロツクポ
リむ゜シアネヌト等ず組合せるこずにより、硬化
生成物を埗るこずができる。 本発明におけるTPUは、溶液の圢又は垞法に
より溶剀を陀去した圢で、暹脂、フむルム、各皮
の被芆剀、含浞剀、接着剀、塗料、バむンダヌ、
磁性塗料甚バむンダヌ、むンキビヒクル等に甚い
られる。 次に実斜䟋を挙げお、本発明を具䜓的に説明す
る。 実斜䟋  撹拌機および還流冷华噚付反応噚を窒玠ガスで
眮換埌、メチル゚チルケトン以䞋単にMEKず
かく。500郚を仕蟌み、曎にポリ゚ステルゞオヌ
ル゚チレングリコヌル及び―ブチレング
リコヌルずアゞピン酞からのポリ゚ステルゞオヌ
ル、平均分子量1600。以䞋単にPEBAずかく。
100郚、MDI前出291.3郚、ゞブチル錫ゞラり
レヌト以䞋単にDBTDLずかく。0.05郚を加
え、80℃で時間反応させた。䞊蚘溶液にネオペ
ンチルグリコヌル以䞋単にNPGずかく。
107.3郚を加え、80℃で時間反応させ、NCO末
端プレポリマヌ溶液を埗た。このプレポリマヌ溶
液にNEK700郚、トリメチロヌルプロパン以䞋
単にTMPずかく。 16.7郚を加え、80℃で時間反応せ、氎酞基
すなわち掻性氎玠含有のプレポリマヌ溶液を
埗た。この氎酞基含有プレポリマヌ溶液に80℃で
MDI前出10.9郚を加え、80℃で時間反応さ
せた。埗られたTPU溶液は、固圢分32.0、粘
床、1900センチポむズ25℃であり、この溶液
から埗られた暹脂はYs降䌏時応力650Kgcm2、
降䌏時䌞び4.3、ダング率23800Kgcm2であ぀
た。 Ys、降䌏時䌞び、ダング率は巟mmの短冊型
詊料を暙線間距離50mm、匕匵速床mmminで枬
定した。 実斜䟋 〜 MDIを䞀床に添加した以倖は実斜䟋ず同様
の方法により、実斜䟋〜の暹脂の補造を行぀
た。その組成、暹脂の性質を第衚に瀺した。
The present invention relates to a method for producing thermoplastic polyurethane resin. More specifically, the present invention relates to a method for producing a thermoplastic polyurethane resin that is soluble in organic solvents, has high mechanical properties, and has groups having active hydrogen pendantly and/or at the end of the molecule. Thermoplastic polyurethane resin (hereinafter simply referred to as TPU) is used in some fields by being dissolved in a solvent. In such fields, it is often dissolved in a solvent due to the necessity of coating operations.
Generally, the solvent is removed after application. In this case, after removing the solvent, the solvent resistance,
Water resistance, heat resistance, etc. may be required, and for this purpose, it is simple and effective to introduce active hydrogen into the TPU molecule and crosslink and harden it using polyisocyanate etc. at the time of application. well known. On the other hand, TPU is used in some fields where it is mixed with inorganic materials, but in this field, the dispersibility of inorganic materials is sometimes required, and for this purpose TPU has sulfonic, carboxyl, and phosphoric acid groups. It is also effective to introduce a group such as a hydroxyl group or an amino group into the molecule, but this may cause gelation when forming a paint, so it is common to introduce a group having active hydrogen such as a hydroxyl group or an amino group. Furthermore, even in these applications, it is desirable that TPU alone has sufficient mechanical properties. Therefore, the present inventors investigated a new method for manufacturing TPU that is soluble in organic solvents, has high mechanical properties, and has a group containing active hydrogen in its molecule.
We have arrived at the present invention. That is, the present invention provides a method for producing a thermoplastic polyurethane elastomer by reacting a high molecular diol (A) with an average molecular weight of 500 to 5000, a low molecular diol (B) with an average molecular weight of 500 or less, and an organic diisocyanate (C). 1) A, B, and C are reacted in an organic solvent at a ratio of the total number of active hydrogens of A and B to the number of isocyanate groups of C in a ratio of 1:1.02 to 1:1.1 to form isocyanate groups at the terminals. prepolymer with
(D), (2) followed by a crosslinking agent (E) having three or more active hydrogen atoms,
The ratio of the number of isocyanate groups in C to the total number of active hydrogens in A, B and E is 1:0.85 to 1:
A method for producing a thermoplastic polyurethane resin, characterized in that the molecular structure of the thermoplastic polyurethane elastomer obtained by adding at a ratio of 0.98 and chain-extending D with E has at least two OH groups at the molecular terminal. It is. The solvents used in the present invention include one or more of amide, sulfoxide, cyclic ether, cyclic ketone, and acyclic ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, as well as the above solvents and ethyl acetate. , ester-based solvents such as butyl acetate, aromatic hydrocarbon-based solvents such as benzene, toluene, and xylene, and mixed solvents with chlorinated solvents such as methylene chloride and perchlorethylene. The polymer diol (A) used in the present invention has an average molecular weight of
500 to 5000, and include known polyether diols, polyester diols, polycarbonate diols, etc. Examples of polyether diols include water, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-
Alternatively, one or more alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide, etc. are added to 1,4-butylene glycol, 1,6-hexamethylene glycol, etc. (hereinafter simply referred to as alkylene oxide). ) is obtained by adding Polyester diols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,3- or 1,4-butylene glycol, neopentyl glycol, 1,
One or more of 6-hexamethylene glycol, decamethylene glycol, etc., and malonic acid, maleic acid, succinic acid, adipic acid, glutaric acid,
pimelic acid, sebacic acid, oxalic acid, phthalic acid,
Polyester diols from one or more of isophthalic acid, terephthalic acid, hexahydrophthalic acid, etc. or diols obtained by ring-opening polymerization of cyclic esters such as propiolactone, butyrolactone, caprolactone, etc., and further from the above glycols and cyclic esters. Alternatively, it is a polyester diol selected from the above three types of glycols, dibasic acids, and cyclic esters. Polycarbonate diol has the general formula H[-O-
R-OCO]- o In the compound represented by ROH (n≧1), R is a residue of glycol or divalent phenol, and glycol or divalent phenol is, for example, trimethylene glycol, diethylene glycol, 1,3- or 1,4-butylene glycol, 1,6-hexamethylene glycol, decamethylene glycol, p-xylylene glycol,
Bisphenol A [2,2-bis(4'-hydroxyphenyl)propane], bisphenol F (4,
4′-dihydroxydiphenylmethane), etc. As the polymer diol of the present invention, 1,2-polybutadiene glycol, 1,4-polybutadiene glycol, polychloroprene diol, putadiene-acrylonitrile copolymer diol, etc. can also be used. These various polymeric diols may be used alone or in combination of two or more. The low molecular weight diol (B) having an average molecular weight of 500 or less used in the present invention includes known aliphatic diols, aromatic diols, N-alkyl or N-aryldialkanolamines, and the like. Aliphatic diols include, for example, ethylene glycol, propylene glycol, 1,3- or 1,4-butylene glycol,
1,5-pentanediol, 1,6-hexamethylene glycol, neopentyl glycol, 2-
Ethyl-1,3-hexanediol, 2,2,4
-trimethyl-1,3-pentanediol, 2,
2,4- or 2,4,4-trimethyl-1,6-
hexanediol, decamethylene glycol,
1,4-cyclohexanediol and the like. Examples of aromatic diols include hydroquinone, bisphenol A, bisphenol F, and p-xylylene glycol. Examples of N-alkyl or N-aryl dialkanolamines include methyldiethanolamine, methyldiisopropanolamine, ethyldiethanolamine, phenyldiethanolamine, m-tolyldiethanolamine, and the like. The above B is the aliphatic diol,
Those obtained by adding alkylene oxide to aromatic diols, N-alkyl or N-aryl dialkanolamines are also used. These various low molecular weight diols (B) having an average molecular weight of 500 or less may be used alone or in combination of two or more. The crosslinking agent E having three or more active hydrogens used in the present invention includes known polyols, alkanolamines, polyamines, and the like. Examples of polyols include trimethylolpropane, glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, sorbitol, sucrose, polyglycerin, tris(β-hydroxyethyl)isocyanurate, and alkylene oxide adducts thereof. Or ε-caprolactone adduct, polyester polyol, etc. Examples of alkanolamines include monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, and triisopropanolamine. Examples of polyamines include ethylenediamine, diethylenetriamine, tolylenediamine,
These include diphenylmethanediamine, isophoronediamine, 4,4'-methylenebis(2-chloroaniline), and the like. These various crosslinking agents having three or more active hydrogens may be used alone or in combination of two or more. The organic diisocyanate (C) used in the present invention is, for example, tolylene diisocyanate (various isomer ratios), diphenylmethane-4,4'-diisocyanate (hereinafter also referred to as MDI), naphthylene-1,
5-diisocyanate, 3,3'-dimethyl-4,
4'-Biphenylene diisocyanate, xylylene diisocyanate, dicyclohexylmethane-
These include 4,4'-diisocyanate (hydrogenated MDI), isophorone diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and the like. These various organic diisocyanates may be used alone or in combination of two or more. High molecular diol (A) and low molecular diol of the present invention
(B), crosslinking agent (E), and organic diisocyanate (C) are (1) NCO-terminated prepolymer from A, B, and C.
When producing (D), the number of isocyanate groups in C is 1 for the total number of active hydrogens in A and B.
1.02 to 1.1; (2) When manufacturing TPU from D and E, A,
The number of isocyanate groups in C is 0.85 to 0.98 relative to the total number of active hydrogens in B and E, which is 1. Used in quantitative relationships such as Under the conditions (1), in order to obtain TPU with good solubility in a solvent, it is preferable to carry out chain extension with an excess of isocyanate groups to obtain an NCO-terminated prepolymer (F). However, if the number exceeds 1.1 and there are many isocyanate groups, chain extension will be insufficient, the molecular weight of the polymer will not increase, and the physical properties will deteriorate. On the other hand, when the number of isocyanate groups is less than 1.02, the number of active hydrogens that can be introduced into the molecule decreases, which is not preferable. Under condition (2), if the number of isocyanate groups is less than 0.85, the amount of unreacted E will be excessive, causing blooming or bleeding of the cured product. On the other hand, if the number of isocyanate groups exceeds 0.98, there is a risk of gelation of the reaction solution, which is not preferable. Note that under the conditions (2), if the number of isocyanate groups after the reaction is less than 0.85, or if necessary to adjust the viscosity of the product, an organic polyisocyanate may be added. However, in this case, the total number of isocyanate groups of the added organic polyisocyanate and C is within the range of 0.85 to 0.98, and the added organic polyisocyanate may be the same type as C or different. In the present invention, a conventionally known urethanization catalyst is used as necessary at any stage of the reaction. Further, in the present invention, various additives such as antioxidants, ultraviolet absorbers, and carbodiimides are used as necessary. To outline the production of TPU of the present invention, polymer diol (A), organic diisocyanate (C), and if necessary urethanization catalyst are mixed in a solvent at 20 to 80% by weight (hereinafter %
represents weight %. ) 50-90℃, with solids content of
Allow to react for 1 to 3 hours. Furthermore, a low molecular weight diol (B) is reacted at 50 to 90°C by charging all at once or in portions. As the viscosity of the reaction solution increases, a solvent and a catalyst are added as necessary to cause a reaction, thereby obtaining an NCO-terminated prepolymer solution (D). (D) is reacted with the crosslinking agent (E) and, if necessary, a solvent, at 5 to 90°C by charging them all at once. After reacting for 1 to 3 hours, organic diisocyanate is reacted at 5 to 90° C., either all at once or in portions, if necessary. (The above conditions indicate normal conditions and are not necessarily limited to these.) The obtained TPU solution preferably has a solids content of 10 to 40%, and is approximately 30% solution. The viscosity at 25° C. is preferably 1000 centipoise or more. If the viscosity is lower than this, good physical properties cannot be obtained. The present invention provides TPU that is soluble in organic solvents, has high mechanical properties, and has at least two or more active hydrogens per molecule end and/or active hydrogens pendant in the molecule. In addition, the polymer diol (A), low molecular diol (B), and organic diisocyanate (C) of the present invention have an amount of A based on the total weight of A, B, and D.
By changing the weight ratio of
You can get TPU. Furthermore, the TPU of the present invention
is a reaction product of trimethylolpropane and 3 mol of tolylene diisocyanate, a reaction product of trimethylolpropane and 3 mol of hexamethylene diisocyanate, a polyisocyanate such as hexamethylene diisocyanate modified by introducing a Biuret group, and a preform containing an NCO group. By combining with polymers, blocked polyisocyanates, etc., cured products can be obtained. In the present invention, TPU can be used in resins, films, various coatings, impregnating agents, adhesives, paints, binders,
Used in binders for magnetic paints, ink vehicles, etc. Next, the present invention will be specifically explained with reference to Examples. Example 1 After purging the reactor with a stirrer and a reflux condenser with nitrogen gas, 500 parts of methyl ethyl ketone (hereinafter simply referred to as MEK) was charged, and polyester diol (produced from ethylene glycol, 1,4-butylene glycol, and adipic acid) was charged. Polyester diol, average molecular weight 1600.Hereafter simply referred to as PEBA)
100 parts of MDI (mentioned above), 291.3 parts of MDI (mentioned above), and 0.05 part of dibutyltin dilaurate (hereinafter simply referred to as DBTDL) were added, and the mixture was reacted at 80°C for 2 hours. Add neopentyl glycol (hereinafter simply referred to as NPG) to the above solution.
107.3 parts were added and reacted at 80°C for 1 hour to obtain an NCO-terminated prepolymer solution. To this prepolymer solution, 700 parts of NEK and 16.7 parts of trimethylolpropane (hereinafter simply referred to as TMP) were added and reacted at 80°C for 1 hour to obtain a prepolymer solution containing hydroxyl groups (that is, active hydrogen). Add to this hydroxyl group-containing prepolymer solution at 80℃.
10.9 parts of MDI (mentioned above) was added and reacted at 80°C for 1 hour. The obtained TPU solution has a solid content of 32.0% and a viscosity of 1900 centipoise (25°C), and the resin obtained from this solution has a Ys (stress at yield) of 650 Kg/cm 2 ,
The elongation at yield was 4.3%, and the Young's modulus was 23,800 Kg/cm 2 . Ys, elongation at yield, and Young's modulus were measured on a rectangular sample with a width of 5 mm at a distance between gauge lines of 50 mm and a tensile speed of 5 mm/min. Examples 2-3 The resins of Examples 2-3 were produced in the same manner as in Example 1 except that MDI was added all at once. The composition and properties of the resin are shown in Table 1.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  平均分子量500〜5000の高分子ゞオヌル(A)、
平均分子量500以䞋の䜎分子ゞオヌル(B)ず有機ゞ
む゜シアネヌト(C)ずを反応させお熱可塑性ポリり
レタン゚ラストマヌを補造する方法においお、 (1) 及びの掻性氎玠の合蚈数ずのむ゜シア
ネヌト基の数の比が1.02〜1.1の割合
で、及びを有機溶媒䞭で反応せしめお
末端にむ゜シアネヌト基を有するプレポリマヌ
(D)ずし、 (2) 続いお掻性氎玠個以䞊有する架橋剀(E)を、
及びの掻性氎玠の合蚈数に察するの
む゜シアネヌト基の数ずの比が0.85〜
0.98の割合で加え、でを鎖延長するこずに
より、埗られた熱可塑性ポリりレタン゚ラスト
マヌの分子構造が分子末端にOH基を少なくず
も個持぀こずを特城ずする熱可塑性ポリりレ
タン暹脂の補造法。
[Claims] 1. A polymeric diol (A) having an average molecular weight of 500 to 5000,
In a method for producing a thermoplastic polyurethane elastomer by reacting a low molecular diol (B) with an average molecular weight of 500 or less and an organic diisocyanate (C), (1) the total number of active hydrogens in A and B and the number of isocyanate groups in C; A prepolymer having isocyanate groups at the terminals by reacting A, B and C in an organic solvent in a number ratio of 1:1.02 to 1:1.1
(D), (2) followed by a crosslinking agent (E) having three or more active hydrogen atoms,
The ratio of the number of isocyanate groups in C to the total number of active hydrogens in A, B and E is 1:0.85 to 1:
A method for producing a thermoplastic polyurethane resin, characterized in that the molecular structure of the thermoplastic polyurethane elastomer obtained by adding D at a ratio of 0.98 and chain-extending D with E has at least two OH groups at the molecular terminals.
JP56102303A 1981-07-02 1981-07-02 Production of thermoplastic polyurethane resin Granted JPS585325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102303A JPS585325A (en) 1981-07-02 1981-07-02 Production of thermoplastic polyurethane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102303A JPS585325A (en) 1981-07-02 1981-07-02 Production of thermoplastic polyurethane resin

Publications (2)

Publication Number Publication Date
JPS585325A JPS585325A (en) 1983-01-12
JPS6329686B2 true JPS6329686B2 (en) 1988-06-15

Family

ID=14323831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102303A Granted JPS585325A (en) 1981-07-02 1981-07-02 Production of thermoplastic polyurethane resin

Country Status (1)

Country Link
JP (1) JPS585325A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329775A1 (en) * 1983-08-18 1985-02-28 Bayer Ag, 5090 Leverkusen THERMOPLASTIC POLYURETHANES OF HIGH HEAT RESISTANCE BASED ON NAPHTHYLENE DIISOCYANATE, METHOD FOR THEIR PRODUCTION AND THEIR USE
JP6932025B2 (en) * 2017-05-11 2021-09-08 日本パヌカラむゞング株匏䌚瀟 Water-based metal surface treatment agent and metal material having a film and its manufacturing method
JP6932026B2 (en) * 2017-05-11 2021-09-08 日本パヌカラむゞング株匏䌚瀟 A water-based metal surface treatment agent, a metal material having a base treatment layer, and a method for manufacturing the same.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064387A (en) * 1973-10-08 1975-05-31
JPS5151307A (en) * 1974-09-06 1976-05-06 Basf Ag
JPS55110114A (en) * 1979-02-17 1980-08-25 Freudenberg Carl Manufacture of low melting point polyurethane having improved strength property
JPS5610551A (en) * 1979-07-06 1981-02-03 Dainichi Seika Kogyo Kk Pigment-colored polyurethane resin solution
JPS57111311A (en) * 1980-12-29 1982-07-10 Nippon Polyurethan Kogyo Kk Thermoplastic polyurethane resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5064387A (en) * 1973-10-08 1975-05-31
JPS5151307A (en) * 1974-09-06 1976-05-06 Basf Ag
JPS55110114A (en) * 1979-02-17 1980-08-25 Freudenberg Carl Manufacture of low melting point polyurethane having improved strength property
JPS5610551A (en) * 1979-07-06 1981-02-03 Dainichi Seika Kogyo Kk Pigment-colored polyurethane resin solution
JPS57111311A (en) * 1980-12-29 1982-07-10 Nippon Polyurethan Kogyo Kk Thermoplastic polyurethane resin

Also Published As

Publication number Publication date
JPS585325A (en) 1983-01-12

Similar Documents

Publication Publication Date Title
US3723372A (en) Blocked polyurethanes soluble or compatible in water organic solventsand polyols
EP1558659B1 (en) Polyurethane dispersion and articles prepared therefrom
US5077371A (en) Low free toluene diisocyanate polyurethanes
US4992507A (en) Aqueous dispersion of a nonionic, water-dispersible polyurethane
US4870142A (en) Novel urethane polymer alloys with reactive epoxy functional groups
KR100262246B1 (en) Process for producing polyurethane elastomers
US6632913B2 (en) Method for producing liquid urethane prepolymer and resin composition
JPH0598211A (en) High-performance polyurethane coating composition and its production
JPS5982352A (en) Alcohol substituted amide, manufacture, chain elongating agent for polyurethane, rubberic composition and curing method
US3349049A (en) Urethane coatings from hydroxyl terminated polyesters prepared from dimer acids
JPS6090284A (en) Sealant composition
US3471445A (en) Curable urethane compositions
EP0369389A1 (en) Water dispersible poly(urethaneureas) prepared with diisocyanate blends
US3718624A (en) Method of curing polyurethane prepolymers with liquid extender comprising 4,4{40 -methylenebis (2-chloroaniline) and low molecular weight polytetramethylene ether glycol
US3503934A (en) Manufacture of polyurethane solutions
JPS6329686B2 (en)
JPH0120165B2 (en)
JP3296371B2 (en) Polyurethane elastomer and production method thereof
CA1338718C (en) Solvent-based urethane coating compositions
EP1157055B1 (en) Thermosetting poly urethane/urea-forming compositions
JP3028430B2 (en) Method for producing urethane resin powder composition
US4403084A (en) Crystalline, grindable polyurethane prepolymers
JP3298132B2 (en) Isocyanurate ring-containing polyisocyanate, method for producing the same, and isocyanurate ring-containing blocked polyisocyanate
US20030212236A1 (en) Process for producing polyurethane elastomer
JP2976881B2 (en) Polyurethane resin containing hydroxyl group-containing poly (ethylene-butylene) copolymer