JPS63288023A - Plasma device - Google Patents

Plasma device

Info

Publication number
JPS63288023A
JPS63288023A JP12451387A JP12451387A JPS63288023A JP S63288023 A JPS63288023 A JP S63288023A JP 12451387 A JP12451387 A JP 12451387A JP 12451387 A JP12451387 A JP 12451387A JP S63288023 A JPS63288023 A JP S63288023A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
substrate
ecr
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12451387A
Other languages
Japanese (ja)
Inventor
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12451387A priority Critical patent/JPS63288023A/en
Publication of JPS63288023A publication Critical patent/JPS63288023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an excellent film to be formed preventing a substrate from being directly exposed to a plasma meeting the ECR requirements by a method wherein a region in which magnetic field intensity is smaller than one meeting the electron cyclotron resonance (ECR) requirements is formed in the central axis direction in a vacuum vessel to arrange a substrate in the region. CONSTITUTION:A region D in which the magnetic filed intensity is smaller than a magnetic field intensity Bo meeting the ECR requirements is formed into almost cylindrical shape along the central axis of a vacuum vessel 11 while a substrate 12 is arranged in the region D in the opposite side to the side wherein microwave 15 is led in the direction of the central axis so that the microwave 15 may be notably absorbed into plasma meeting the ECR requirements to transit any ion and free radical produced in the plasma through the region D in which the magnetic field intensity is smaller than Bo meeting the ECR requirements, preventing the substrate 12 from being directly exposed to the plasma. Furthermore, an excellent film can be formed by the ion and radical transmitted to the substrate 12 without fail at the etching rate of 2-10Angstrom /min using buffer fluoric acid representing the fineness improved by one figure compared with any conventional processor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプラズマ装置に関し、特にマイクロ波プラズマ
を用い次プラズマ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a plasma device, and more particularly to a plasma device using microwave plasma.

従来の技術 従来、例えば「電子材料」編集部編「超LS1時代のプ
ラズマ化学」工業調査会、昭和58年出版のP、117
〜119jCE戦のように電子サイクロトロン共% (
ECR’)をおこせば、非常に活性なプラズマが得られ
、効率的なエツチングやプラズマCVDが可能となる。
Conventional technology Conventional examples include "Electronic Materials" Editorial Department "Plasma Chemistry in the Super LS1 Era" Industrial Research Group, published in 1981, P. 117
~119j Like the CE match, electronic cyclotron% (
If ECR') is performed, a very active plasma can be obtained, making efficient etching and plasma CVD possible.

以下、従来のプラズマCVDについて説明する。Conventional plasma CVD will be explained below.

真空槽内rcECR条佇のプラズマを発生させると、そ
のプラズマは真空槽内全体に充満し、マイクロ波電界2
00 W程度の入力で約10〜20 eV程度の電子温
度にも達し、従来イオン比率が低い気体でも活性化でき
、プラズマCVDに非常に好都合なものであるが、−万
非常に活性なのでプラズマ中のイオンかに空槽の壁面と
衝突する頭皮も高くなり、真空槽を加熱してしまう。0
.02d程度の真空槽でマイクロ波電界300 W程度
、真空0.02 paで壁面が200〜300℃ぐらい
まで加熱されてしまう。このような真空槽内に基板を配
置しても基板が加熱されてしまつ之り、真空槽内の空間
中で反応がおこったりして、良質な膜を得ることは不可
能であった。
When plasma is generated in the rcECR column inside the vacuum chamber, the plasma fills the entire vacuum chamber and the microwave electric field 2
It reaches an electron temperature of about 10 to 20 eV with an input of about 00 W, and can be activated even in gases with conventionally low ion ratios, making it very convenient for plasma CVD. The ions of the crab's scalp collide with the wall of the empty tank, and the scalp also becomes high, heating up the vacuum tank. 0
.. In a vacuum chamber of about 0.02d, the wall surface is heated to about 200 to 300°C with a microwave electric field of about 300 W and a vacuum of 0.02 pa. Even if a substrate is placed in such a vacuum chamber, the substrate is heated and reactions occur in the space within the vacuum chamber, making it impossible to obtain a high-quality film.

このような問題、を解決するため、第2図に示すように
真空[1を、ECR条件のプラズマを発生させるプラズ
マ室2とそのプラズマをプラズマ窓31に通して導入し
、基板4上に膜形成を行なう膜形成室5との二寥で構成
することが考えられ友。ここで6はプラズマgzvci
a場を形成する几めの電磁石である。
In order to solve this problem, as shown in FIG. It is conceivable that the film be formed in two parts, together with the film forming chamber 5 that performs the film formation. Here 6 is plasma gzvci
It is a sophisticated electromagnet that forms an a-field.

この装置では膜形成室5で基板4の上にECR条件のプ
ラズマに触れることなく膜形成でき、マイクロ波#Iv
cよって発生する前記基板4の温度上昇もなく良質な膜
形成ができるものと考えられてい友。
With this device, a film can be formed on the substrate 4 in the film forming chamber 5 without coming into contact with plasma under ECR conditions, and microwave #Iv
It is believed that a high-quality film can be formed without the temperature rise of the substrate 4 caused by c.

発明が解決しようとする問題点 しかしながら、二基で構成し九場合、蒸着速度がおそい
こと、大面積化が困難であること、プラズマの分布によ
る膜厚不均一性を有するだけでなく、膜形成室5vcプ
ラズマを導入するためにプラズマを輸送する必要があり
、その途中で再結合など、エリイオンやフリーフジ力p
が中性化してしまうことや、その中性化し友ものが膜中
にとりのこされてしまって特性を劣化させることなどの
問題点があり、良質な膜が得られなかつ友。
Problems to be Solved by the Invention However, in the case of two units, the deposition rate is slow, it is difficult to enlarge the area, and the film thickness is non-uniform due to plasma distribution. In order to introduce the 5vc plasma into the chamber, it is necessary to transport the plasma, and during the process, it is necessary to transport the plasma, and during the process, it is necessary to recombine, etc.
There are problems such as the neutralization of carbon dioxide and the deterioration of properties due to the neutralization and the retention of the neutralized substances in the membrane, making it difficult to obtain high-quality membranes.

この工うに、ECR条佇条件ラズマ装置は、プラズマ室
の一室の場合は、プラズマによる基板の加熱に問題があ
り、プラズマ室、膜形成室の二基の場合は、大面積の膜
形成が困難であるとか、イオンヤフリーラジカルの再結
合などによる中性化などの問題点を有していた。
However, in the ECR condition lasma device, if there is one plasma chamber, there is a problem in heating the substrate by plasma, and if there are two, a plasma chamber and a film forming chamber, it is difficult to form a film over a large area. However, it has had problems such as being difficult and neutralizing due to recombination of ions and free radicals.

本発明は、上記従来の問題点を解決するもので、基板と
ECR粂件のプラズマとを直接触nささず、そしてイオ
ンやフリーフジ力〃を基板まで確%に輸送して良質な膜
形成を可能にするプラズマ装置f:提供することを目的
とするものである。
The present invention solves the above-mentioned conventional problems, and forms a high-quality film by preventing direct contact between the substrate and the plasma of ECR, and by precisely transporting ions and free Fuji force to the substrate. The object of the present invention is to provide a plasma device f that enables the following.

問題点を解決する友めの手段 上記問題点を解決するために、本発明は、真空槽内にマ
イクロ波を導入するとともに磁場を印加し、前記マイク
ロ波の電界に対して垂直な磁場分布における前記マイク
ロ波電界と平行な磁場強度成分の分布を、前記マイクロ
波の周波数で決まる電子サイクロトロン共鳴(ECR)
条件の磁場未満の領域と前配電子サイクロトロン共鳴(
ECR)条件の磁場以上の領域を形成するLうに設け、
前記電子サイクロ)ロン共鳴(ECR)条件の磁場未満
の位ti1に基板を配置したものである。
Friendly Means for Solving the Problems In order to solve the above problems, the present invention introduces microwaves into a vacuum chamber and applies a magnetic field, thereby increasing the magnetic field distribution perpendicular to the electric field of the microwaves. The distribution of magnetic field intensity components parallel to the microwave electric field is determined by electron cyclotron resonance (ECR), which is determined by the frequency of the microwave.
In the region below the magnetic field of conditions and the front electron cyclotron resonance (
ECR) is provided in a region that forms a region higher than the magnetic field of the condition,
The substrate is placed at a position ti1 below the magnetic field of the electron cyclone resonance (ECR) conditions.

作用 上記構成により、プラズマはECR条件の#ItjlI
(ECR磁場)付近でおこり、ま九マイクロ波はプラズ
マ付近で強く吸収される。そして、プラズマで発生し次
イオンやフリーフvカA/1fEcR条件の磁場未満の
磁場の領域を経て楢送される。し友がつて、基板は直接
プラズマにさらされることはないとともに、イオンやフ
リーフジ力μの再結合などに工ろ中性化は起らず、良質
な膜形成が可能となる。
Effect With the above configuration, the plasma is #ItjlI under ECR conditions.
(ECR magnetic field), and microwaves are strongly absorbed near plasma. Then, the next ions generated in the plasma and the free energy are transported through a region of a magnetic field less than the magnetic field of the A/1fEcR condition. As a result, the substrate is not directly exposed to plasma, and process neutralization due to recombination of ions and free Fuji force μ does not occur, making it possible to form a high-quality film.

さらに、ECR粂件の磁場の領域で決まるマイクロ波の
遮断H4波数を、印加したマイクロ波の周波数より高く
するようにす几ば、印加したマイクロ波は基板へ入射す
ることがなくなる。こ−nicよってマイクロ波による
基板の加熱を防ぐことができる。
Furthermore, if the microwave cutoff H4 wave number determined by the magnetic field area of the ECR is made higher than the frequency of the applied microwave, the applied microwave will no longer be incident on the substrate. This NIC can prevent the substrate from being heated by microwaves.

*施例 以下本発明の一実施例について図面を参照しながら説明
する。
*Example An example of the present invention will be described below with reference to the drawings.

第1図1a)は本発明の一実施例におけるプラズマ装置
の縦断面図である。以下の説明はプラズマCVDにLる
鼠化シリコン膜の形成について述べる。第1図(aJ 
において、11は真空槽、12は基板で基板12は真空
槽11の一方の側壁13の近傍に配置され、真空411
の他方の1lJ14の側から基板12に向かうようにマ
イクロ波15が導入される。このマイクロ波l5の周波
数としては、たとえば2.45GHzのものが使用され
る。16はマイクロ波15の導入部近傍の真空槽1工の
外周部に配置した電磁石で、マイクロ波の電界と垂直l
磁場が形成され、こfLICより真空槽110内部〆こ
、マイクロ[15の伝搬方向(第1図(alにおいてマ
イクロ波15を示した矢印の方向)の磁場分布における
マイクロ波の電界と平行な磁場gi度分布がECR磁場
強度Bo(乙45GHzのマイクロ波15の場合はBo
 = 0.0875 Tとなる)未編となる領域りとE
CRd場強度以上となる領域が形成されるように調整さ
れる。第1図fblは第1図falのA−AW[面にお
ける磁場強度の分布を示す。
FIG. 1a) is a longitudinal sectional view of a plasma device in an embodiment of the present invention. The following discussion describes the formation of a silicon nitride film by plasma CVD. Figure 1 (aJ
, 11 is a vacuum chamber; 12 is a substrate; the substrate 12 is placed near one side wall 13 of the vacuum chamber 11;
Microwave 15 is introduced toward substrate 12 from the other 11J14 side. As the frequency of this microwave 15, for example, 2.45 GHz is used. 16 is an electromagnet placed on the outer periphery of the vacuum chamber 1 near the introduction part of the microwave 15, and is perpendicular to the electric field of the microwave.
A magnetic field is formed from this fLIC inside the vacuum chamber 110, and a magnetic field parallel to the electric field of the microwave in the magnetic field distribution in the propagation direction of the micro wave 15 (the direction of the arrow indicating the microwave 15 in Fig. 1 (al)). gi degree distribution is ECR magnetic field strength Bo (in the case of microwave 15 of 45 GHz, Bo
= 0.0875 T) Unorganized area and E
Adjustment is made so that a region having a strength equal to or higher than the CRd field strength is formed. FIG. 1fbl shows the distribution of magnetic field strength in the A-AW [plane of FIG. 1fal.

領域りの磁場強度Boにおける形状は、マイクロ波の戒
小遠@周波数をもつTE nモード円筒Ml波管の内径
と同じ直径6未満の円形になるように形成さ几る。ここ
で直idは次式によって求められる。
The shape of the region at magnetic field strength Bo is formed to be a circle with a diameter of less than 6, which is the same as the inner diameter of a TE n-mode cylindrical Ml wave tube with a microwave frequency. Here, the direct id is obtained by the following equation.

C=光速 f=マイクロ波の周波数 マイクロ波150周波数が2.45GHzの場合、d=
7.1Emとなる。また、第1図falのA−A断面に
おける磁場強度の最大値は第1図fblに示すように0
.lTであり、最小値rio、05Tであった。ま之、
基板12の付近の磁場強度はECR条件の磁場強度Bo
禾満の0.002以下であった。
C = speed of light f = frequency of microwave If the microwave 150 frequency is 2.45 GHz, d =
7.1Em. In addition, the maximum value of the magnetic field strength in the A-A cross section of Fig. 1 fal is 0 as shown in Fig. 1 fbl.
.. It was lT, and the minimum value rio was 05T. Man,
The magnetic field strength near the substrate 12 is the magnetic field strength Bo under ECR conditions.
It was less than 0.002 of Heman.

上l己の構成のように、ECR条件の磁場強度B。As in the previous configuration, the magnetic field strength B for ECR conditions.

未満の頼¥i、Dは真空槽11の中心軸に沿ってほぼ円
筒状に形成され、マイクロ波15がこの中・D軸方向に
向って導入さnる側とは反対側の前記領域り中に基板1
2が配置されるので、ECR条件の磁場付近でおこつ之
プラズマにより、マイクロ波15は強く吸収され、プラ
ズマで発生し九イオンやフリーラジカルはECR条件の
磁場未満の磁場の領域を辿って噌送され、基板12は直
接プラズマに晒されることはない。
The area below is formed into a substantially cylindrical shape along the central axis of the vacuum chamber 11, and is the area on the opposite side to the side where the microwave 15 is introduced toward the center/D axis direction. Board 1 inside
2 is placed, the microwave 15 is strongly absorbed by the plasma near the magnetic field under the ECR conditions, and the 9 ions and free radicals generated in the plasma follow the magnetic field region below the magnetic field under the ECR conditions. The substrate 12 is not directly exposed to plasma.

このような構成で、ガス圧k O,0g Pa VC医
ち、マイクロ波電界を、100〜300Wで印加して、
基板12の上に窒化シリコン膜を形成し友。膜形成中、
基板12はプラズマVC直接晒されなかった。このよう
にして膜形成し之結果、5〜lOλ/secで膜を堆積
でき元、、ま之、緻密さを示す緩衝フッ酸液(50憾H
F:46憾NH4F= 15 : 85 )Icよるエ
ツチングでは、2〜lOλ/minのエツチング速度を
示し、従来のプラズマCVD袋fItVc比べて1桁は
ど緻密で、良質な膜が得られ念。
With such a configuration, a gas pressure kO, 0g Pa VC and a microwave electric field of 100 to 300W are applied,
A silicon nitride film is formed on the substrate 12. During film formation,
Substrate 12 was not directly exposed to plasma VC. As a result of forming the film in this way, it was possible to deposit the film at a rate of 5 to 1Oλ/sec.
Etching with F:46NH4F=15:85) Ic showed an etching rate of 2 to 1Oλ/min, and it was possible to obtain a film that was one order of magnitude more dense and of better quality than the conventional plasma CVD bag fItVc.

なお、ここではプラズマCVD Vcついて述べ九が、
エツチング性のガスを尋人してエツチングに使用しても
、基板はプラズマに直接晒されずにエツチングができる
In addition, here we will talk about plasma CVD Vc.
Even if an etching gas is used for etching, the substrate can be etched without being directly exposed to plasma.

また本爽施例において、電磁石5を用いて、磁場g1度
分布を形成し友が、上記のような磁場強度分布を形成で
きる方法であれば、どのような方法であってもよい。マ
イクロ波の周波数や導入方法も、本実施が1に束縛され
るものでなく、プラズマを作ることができる周波数、導
入方法でおればどのような方法であってもよい。
Further, in this embodiment, any method may be used as long as the electromagnet 5 is used to form a magnetic field g1 degree distribution and the magnetic field intensity distribution as described above can be formed. The frequency and introduction method of the microwave are not limited to 1 in this embodiment, and any method may be used as long as the frequency and introduction method are capable of creating plasma.

発明の効果 以上本発明によれば、真窒檀内の中心軸方向にECR条
件の磁場未満の領域を形成し、このf!!L域に底板を
配置するので、基板がプラズマに直接晒されることなく
、また基板まで確実に輸送されtイオンやラジカルに工
って、緻賢さを表わす緩衝フッ酸1’cjるエツチング
速度は2〜10^/minのように、従来の装置に比べ
1桁も向上した良質な膜形成をすることができ、さらに
は、ECR条件の磁場未満の領域で決まるマイクロ波の
遮断周波数を印加し定マイクロ波の周波数エリ高くする
ようにすれば、マイクロtLによる基板加熱を防ぐこと
ができるものであり、効率的にマイクロ波を使用できる
優れ次プラズマ装置ft提供でき、その工業的価値はき
わめて高い。
Effects of the Invention According to the present invention, a region where the magnetic field is less than that of the ECR condition is formed in the direction of the center axis inside the true nitridan, and this f! ! Since the bottom plate is placed in the L region, the substrate is not directly exposed to the plasma, and the buffered hydrofluoric acid, which represents precision, is transported to the substrate reliably and etched into t ions and radicals. 2 to 10^/min, which is an order of magnitude better than conventional equipment, can form a high-quality film.Furthermore, it is possible to apply a microwave cutoff frequency determined by the region below the magnetic field of ECR conditions. By increasing the frequency of the constant microwave, it is possible to prevent the substrate from being heated by the micro tL, and it is possible to provide an excellent plasma device that can efficiently use microwaves, and its industrial value is extremely high. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fat (b)は本発明の一実施例を示すプラズ
マ装置の縦断面図およびA−A111面における磁場強
度の分布図、第2図は従来のプラズマ装置の縦断面図で
ある。 11・・・真空槽、12・・・基板、15・・・マイク
ロi、16・・・電磁石。 代理人   森  本  義  弘 磁4確度(7”)
FIG. 1 (b) is a longitudinal cross-sectional view of a plasma apparatus according to an embodiment of the present invention and a distribution diagram of magnetic field strength on the A-A111 plane, and FIG. 2 is a longitudinal cross-sectional view of a conventional plasma apparatus. 11... Vacuum chamber, 12... Substrate, 15... Micro i, 16... Electromagnet. Agent Yoshi Morimoto Koji 4 accuracy (7”)

Claims (1)

【特許請求の範囲】 1、真空槽内にマイクロ波を導入するとともに、磁場を
印加し、前記マイクロ波の電界に対して垂直な磁場分布
における前記マイクロ波電界と平行な磁場強度成分の分
布を、前記マイクロ波の周波数で決まる電子サイクロト
ロン共鳴(ECR)条件の磁場未満の領域と前記電子サ
イクロトロン共鳴(ECR)条件の磁場以上の領域を形
成するように設け、前記電子サイクロトロン共鳴(EC
R)条件の磁場未満の位置に基板を配置したプラズマ装
置。 2、ECR条件の磁場未満の領域で決まるマイクロ波の
遮断周波数を、マイクロ波の周波数より高くした特許請
求の範囲第1項記載のプラズマ装置。 3、エッチング性のガスを真空槽内に導入し、基板表面
をエッチングする特許請求の範囲第1項または第2項記
載のプラズマ装置。 4、CVD用のガスを真空槽内に導入し、基板表面に膜
形成する特許請求の範囲第1項または第2項記載のプラ
ズマ装置。
[Claims] 1. Introducing microwaves into a vacuum chamber and applying a magnetic field to determine the distribution of magnetic field intensity components parallel to the microwave electric field in the magnetic field distribution perpendicular to the microwave electric field. , so as to form a region below the magnetic field of the electron cyclotron resonance (ECR) condition determined by the frequency of the microwave and a region above the magnetic field of the electron cyclotron resonance (ECR) condition, and the electron cyclotron resonance (ECR)
R) A plasma device in which the substrate is placed at a position below the magnetic field of the condition. 2. The plasma device according to claim 1, wherein the cut-off frequency of the microwave determined by the region below the magnetic field of ECR conditions is higher than the frequency of the microwave. 3. The plasma apparatus according to claim 1 or 2, wherein an etching gas is introduced into a vacuum chamber to etch the surface of the substrate. 4. The plasma apparatus according to claim 1 or 2, wherein a CVD gas is introduced into a vacuum chamber to form a film on the surface of the substrate.
JP12451387A 1987-05-20 1987-05-20 Plasma device Pending JPS63288023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12451387A JPS63288023A (en) 1987-05-20 1987-05-20 Plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12451387A JPS63288023A (en) 1987-05-20 1987-05-20 Plasma device

Publications (1)

Publication Number Publication Date
JPS63288023A true JPS63288023A (en) 1988-11-25

Family

ID=14887348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12451387A Pending JPS63288023A (en) 1987-05-20 1987-05-20 Plasma device

Country Status (1)

Country Link
JP (1) JPS63288023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342472A (en) * 1991-08-12 1994-08-30 Tokyo Electron Limited Plasma processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342472A (en) * 1991-08-12 1994-08-30 Tokyo Electron Limited Plasma processing apparatus

Similar Documents

Publication Publication Date Title
KR940000384B1 (en) Treating apparatus of plasma
JP3217274B2 (en) Surface wave plasma processing equipment
JPS6130036A (en) Microwave plasma processing apparatus
JPH09232099A (en) Plasma treating device
KR930005012B1 (en) Microwave plasma etching method and apparatus
JPS63288023A (en) Plasma device
JPH10158847A (en) Plasma treating system by microwave excitation
JPH0217636A (en) Dry etching device
JP2808888B2 (en) Microwave plasma device
JP4488551B2 (en) Microwave plasma processing apparatus and sealing member
JP2697464B2 (en) Microwave plasma processing equipment
JPS59103340A (en) Plasma processing apparatus
JPH0393224A (en) Dry etching
JP3042347B2 (en) Plasma equipment
JPH02139900A (en) Plasma device
JPH0530500B2 (en)
JP2001244244A (en) Plasma processing apparatus
JPH01307212A (en) Ecr plasma processing equipment
JPH02137223A (en) Plasma treatment apparatus
JPH04264722A (en) Method and device for plasma treatment using microwave
JPH0715901B2 (en) Plasma processing device
JPH09129613A (en) Microwave excitation plasma treatment device
JP2836329B2 (en) Plasma apparatus and plasma processing method
JPH0414822A (en) Microwave plasma etching method
JPH02119100A (en) Plasma apparatus