JPS6328358B2 - - Google Patents

Info

Publication number
JPS6328358B2
JPS6328358B2 JP9804580A JP9804580A JPS6328358B2 JP S6328358 B2 JPS6328358 B2 JP S6328358B2 JP 9804580 A JP9804580 A JP 9804580A JP 9804580 A JP9804580 A JP 9804580A JP S6328358 B2 JPS6328358 B2 JP S6328358B2
Authority
JP
Japan
Prior art keywords
type
region
gan layer
layer
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9804580A
Other languages
Japanese (ja)
Other versions
JPS5723284A (en
Inventor
Kyoshi Yoneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9804580A priority Critical patent/JPS5723284A/en
Publication of JPS5723284A publication Critical patent/JPS5723284A/en
Publication of JPS6328358B2 publication Critical patent/JPS6328358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0037Devices characterised by their operation having a MIS barrier layer

Description

【発明の詳細な説明】 本発明はGaN(窒化ガリウム)ダイオードの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing GaN (gallium nitride) diodes.

青色発光ダイオードとして利用価値のある
GaNダイオードにあつては、GaN結晶自体N型
のものしか得られないのでMIS(金属−絶縁層−
半導体)型構造となつている。
Valuable as a blue light emitting diode
For GaN diodes, since the GaN crystal itself can only be of N type, MIS (metal-insulating layer-
It has a semiconductor type structure.

本発明は斯るダイオードをプレーナ形態で得ん
とするもので以下本発明実施例をその工程順に説
明する。
The present invention aims to obtain such a diode in a planar form, and embodiments of the present invention will be described below in the order of their steps.

第1図は第1の工程を示し、表面が平坦なサフ
アイヤ基板1が準備される。
FIG. 1 shows the first step, in which a sapphire substrate 1 with a flat surface is prepared.

第2図は第2の工程を示し、基板1上にノンド
ーブのGaN結晶を約15μm厚さに気相成長する。
この成長層はキヤリア濃度が1019cm-3程度のN+
型を呈し、以下N+型GaN層2と称す。
FIG. 2 shows the second step, in which a non-doped GaN crystal is grown on the substrate 1 in a vapor phase to a thickness of about 15 μm.
This growth layer has a carrier concentration of about 10 19 cm -3 N +
It exhibits a type of GaN layer 2, and is hereinafter referred to as an N + type GaN layer 2.

第3図は第3の工程を示し、N+型GaN層2上
に、更にZn(亜鉛)をドーブしたN型GaN層3を
気相成長する。該層のキヤリア濃度は約1016cm-3
にして、その層厚は約15μmである。
FIG. 3 shows the third step, in which an N-type GaN layer 3 doped with Zn (zinc) is grown on the N + type GaN layer 2 in a vapor phase. The carrier concentration in this layer is approximately 10 16 cm -3
The layer thickness is approximately 15 μm.

第4図は第4の工程を示し、N型GaN層3の
一部表面を除いてSi(シリコン)酸化膜4が被着
される。斯る酸化膜の部分的被着はN型GaN層
3の全表面にSi酸化膜を被着した後、写真蝕刻法
等で必要部分だけ残すことによりなされる。
FIG. 4 shows the fourth step, in which a Si (silicon) oxide film 4 is deposited on the N-type GaN layer 3 except for a part of the surface. Such partial deposition of an oxide film is achieved by depositing a Si oxide film on the entire surface of the N-type GaN layer 3 and then leaving only the necessary portions by photolithography or the like.

第5図は第5の工程を示し、N型GaN層3の
一部表面領域5にZnイオンが注入される。Si酸
化膜4は斯る選択注入の際のマスクとして用いら
れる。注入領域5の深さは5000Å程度が好まし
く、このためにはイオン注入時の加速エネルギは
約100KeV、が適当である。又、注入量は十分大
きく1015イオン/cm2程度が必要である。
FIG. 5 shows the fifth step, in which Zn ions are implanted into a partial surface region 5 of the N-type GaN layer 3. The Si oxide film 4 is used as a mask during such selective implantation. The depth of the implanted region 5 is preferably about 5000 Å, and for this purpose, the appropriate acceleration energy during ion implantation is about 100 KeV. Further, the implantation amount needs to be sufficiently large, about 10 15 ions/cm 2 .

第6図は第6の工程を示し、Si酸化膜4を除去
した後、注入領域5上にZnイオン不透過膜6が
被着される。斯る膜はSi酸化膜4の選択被着と同
様にして形成され、その材質としては窒化シリコ
ンが適当である。
FIG. 6 shows the sixth step, in which after removing the Si oxide film 4, a Zn ion impermeable film 6 is deposited on the implanted region 5. Such a film is formed in the same manner as the selective deposition of the Si oxide film 4, and its material is silicon nitride.

第7図は第7の工程を示し、基板1を含む全体
がアンモニア雰囲気中で約1000℃、1時間熱処理
される。斯る熱処理で、N型GaN層3の膜6で
覆われていない表面からはZnイオンがアウトデ
イフユージヨンによりぬけ出し、従つてキヤリア
濃度にして1018cm-3程度のN+型表面領域7が形
成される。一方、注入領域5内のZnイオンは膜
6のためにぬけ出ることなく、活性化して注入領
域5内のドナーを補償する。このとき、上記第5
の工程でのイオン注入量が十分大きく、従つて上
記補償効果により注入領域5は絶縁領域5aへと
変質する。
FIG. 7 shows the seventh step, in which the entire structure including the substrate 1 is heat-treated at about 1000° C. for 1 hour in an ammonia atmosphere. Through such heat treatment, Zn ions escape from the surface of the N-type GaN layer 3 that is not covered with the film 6 by out-diffusion, resulting in an N + -type surface with a carrier concentration of about 10 18 cm -3 . Region 7 is formed. On the other hand, the Zn ions in the implanted region 5 do not escape because of the film 6 and are activated to compensate for the donors in the implanted region 5. At this time, the fifth
The amount of ion implantation in the step is sufficiently large, so that the implanted region 5 changes into an insulating region 5a due to the compensation effect described above.

第8図は最終工程を示し、膜6を除去した後、
正電極8及び負電極9が夫々絶縁領域5a及び
N+型表面領域7上に被着される。尚、正、負電
極8,9の材質としてはAn(金)及びIn(インジ
ウム)が夫々適当であり、斯る負電極9はN+
表面領域の存在により該領域との間に良好なオー
ミツク接触を形成する。
FIG. 8 shows the final step, in which after removing the film 6,
The positive electrode 8 and the negative electrode 9 are respectively insulating region 5a and
It is deposited on the N + type surface area 7. Note that An (gold) and In (indium) are suitable materials for the positive and negative electrodes 8 and 9, respectively, and the negative electrode 9 has a good relationship with the N + type surface region due to the presence of the N + type surface region. Forms ohmic contact.

かくして本発明により得られるMIS型ダイオー
ドは、その絶縁層がGaN表面内に埋設形成され
たブレーナ型となり、従つて同一GaN表面内に
複数の絶縁層を形成してモノリシツク型表示装置
等を得ることができ、又ダイオードの正、負電極
を同一面側に設置できるので斯る電極と外部リー
ド線との結合が容易になる。更にこの種ダイオー
ドの特性に重要な影響を及ぼす絶縁層はイオン注
入により形成されるものであるから、その層厚や
濃度を高精度に制御でき、再現性良くダイオード
を製造することができる。
Thus, the MIS type diode obtained according to the present invention is a Brenna type in which the insulating layer is buried within the GaN surface, and therefore a monolithic display device etc. can be obtained by forming a plurality of insulating layers within the same GaN surface. Furthermore, since the positive and negative electrodes of the diode can be placed on the same side, it is easy to connect these electrodes to external lead wires. Furthermore, since the insulating layer, which has an important influence on the characteristics of this type of diode, is formed by ion implantation, the layer thickness and concentration can be controlled with high precision, and the diode can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は本発明実施例を説明するた
めの工程別断面図である。 3……N型GaN層、5……注入領域、6……
Znイオン不透過性膜。
FIGS. 1 to 8 are cross-sectional views of each process for explaining an embodiment of the present invention. 3... N-type GaN layer, 5... Injection region, 6...
Zn ion impermeable membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 ZnのドープされたN型GaN層の一部表面領
域にZnのイオン注入を行ない、次いで該領域を
Znイオン不透過性膜で被覆した後熱処理を行な
つて、上記領域内のZnを活性化して該領域を絶
縁性になすと共に、上記領域以外の上記N型
GaN層表面よりZnのアウトデイフユージヨンを
行なつて斯る表面をN+型に変換することを特徴
とするGaNダイオードの製造方法。
1 Zn ions are implanted into a part of the surface region of the Zn-doped N-type GaN layer, and then the region is
After being coated with a Zn ion-impermeable film, a heat treatment is performed to activate the Zn in the above region to make the region insulating, and to
A method for manufacturing a GaN diode, characterized in that Zn is out-diffused from the surface of the GaN layer to convert the surface to N + type.
JP9804580A 1980-07-16 1980-07-16 Manufacture of gan diode Granted JPS5723284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9804580A JPS5723284A (en) 1980-07-16 1980-07-16 Manufacture of gan diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9804580A JPS5723284A (en) 1980-07-16 1980-07-16 Manufacture of gan diode

Publications (2)

Publication Number Publication Date
JPS5723284A JPS5723284A (en) 1982-02-06
JPS6328358B2 true JPS6328358B2 (en) 1988-06-08

Family

ID=14209173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9804580A Granted JPS5723284A (en) 1980-07-16 1980-07-16 Manufacture of gan diode

Country Status (1)

Country Link
JP (1) JPS5723284A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540791B2 (en) * 1991-11-08 1996-10-09 日亜化学工業株式会社 A method for manufacturing a p-type gallium nitride-based compound semiconductor.

Also Published As

Publication number Publication date
JPS5723284A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JP2906260B2 (en) Manufacturing method of PN junction device
US4344980A (en) Superior ohmic contacts to III-V semiconductor by virtue of double donor impurity
US4009058A (en) Method of fabricating large area, high voltage PIN photodiode devices
JPS6328358B2 (en)
US4045252A (en) Method of manufacturing a semiconductor structure for microwave operation, including a very thin insulating or weakly doped layer
JPS6362313A (en) Manufacture of semiconductor device
JP2021170608A (en) Manufacturing method of semiconductor element
JPS6125209B2 (en)
JPH0467336B2 (en)
JP2798927B2 (en) Semiconductor light receiving device and method of manufacturing the same
JPS62152184A (en) Photodiode
JPS59148327A (en) Manufacture of semiconductor device
JPS5972723A (en) Formation of ohmic electrode of iii-v group compound semiconductor
JP2541230B2 (en) Method for manufacturing field effect transistor
US3794533A (en) Method for diffusing zn into a iii-v compound semiconductor crystal through alumina masking
JPS61172379A (en) Manufacture of semiconductor device
JPS62101089A (en) Blue color light emitting device
JPS61145823A (en) Molecular beam epitaxial growth method
JPS62221122A (en) Manufacture of semiconductor device
JPS63219176A (en) Manufacture of field-effect transistor
JPS62198120A (en) Manufacture of semiconductor device
JPS63311775A (en) Manufacture of compound semiconductor device
JPS592380A (en) Manufacture of semiconductor light-emitting device
JPS58212132A (en) Manufacture of compound semiconductor device
JPS6294981A (en) Formation of electrode for semiconductor device