JPS63267431A - Preparation of ultrafine particles - Google Patents

Preparation of ultrafine particles

Info

Publication number
JPS63267431A
JPS63267431A JP9982487A JP9982487A JPS63267431A JP S63267431 A JPS63267431 A JP S63267431A JP 9982487 A JP9982487 A JP 9982487A JP 9982487 A JP9982487 A JP 9982487A JP S63267431 A JPS63267431 A JP S63267431A
Authority
JP
Japan
Prior art keywords
ultrafine particles
arc
raw material
pure water
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9982487A
Other languages
Japanese (ja)
Inventor
Kiju Endo
喜重 遠藤
Yoshiaki Ibaraki
茨木 善朗
Takeshi Araya
荒谷 雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9982487A priority Critical patent/JPS63267431A/en
Publication of JPS63267431A publication Critical patent/JPS63267431A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Abstract

PURPOSE:To make particle diameter distribution better and prepare ultrafine particles with little cohesion by generating an arc between a raw material of ultrafine particles and an electrode provided in the liquid and forming ultrafine particles. CONSTITUTION:When forming ultrafine particles, first, inactive gas is introduced from a sealed gas introducing inlet 9, while 5% stearic acid water solution is introduced in from a water solution introducing inlet 10, and after that, pure water 7 is introduced from a pure water introducing inlet 11 and a water tank 6, being filled up to the level higher than the end surface of a double sealed nozzle 8. By said arrangement, the water solution allowed to flow cylindrically acts as a curtain to the pure water 7, and an arc to be generated therein is in the same state as generated in gas. Electric current, therefore, is supplied from an electric source 4 for discharge to between the ultrafine particle raw material 1 and an electrode 2 to generate an arc 5. The raw material 1 is melted by the action of said arc heat to generate vapor and form ultrafine particles, which are quenched with the water solution flowing cylindrically immediately after the formation and discharged into the pure water 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種金属9合金、セラミックスを含む化付物
の超微粒子7a−R造する方法に係り、符に超微粒子の
粒径分布の良好な超微粒子を製造するのに好適な方法に
関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing ultrafine particles 7a-R of additives containing various metal 9 alloys and ceramics, and particularly to The present invention relates to a method suitable for producing good ultrafine particles.

〔従来の技術〕[Conventional technology]

従来の方法は、特公昭55−44123号公報に記載の
工9にアーク熱源などを用いてガス気中で超微粒子原材
料の蒸気を発生δせ、搬送ガスで冷却装置へ運び、そし
て超微粒子を捕集するようになっていた。
In the conventional method, vapor of ultrafine particle raw material is generated in gas atmosphere using an arc heat source, etc. in step 9 described in Japanese Patent Publication No. 55-44123, and the ultrafine particles are transported to a cooling device using a carrier gas. It was supposed to be collected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、超微粒子の原材料から蒸気を発生させ
てから超#粒子化し、冷却して捕集するまでの過程にお
ける超微粒子の粒成長、凝集について配慮がちれておら
ず、捕集した超微粒子の粒径が不揃いでかつ凝集したも
のが多いという問題があった。すなわち、原材料から発
生した蒸気及び超微粒子は高温でかつ活性であるため、
搬送ガスによって冷却装置に達するまでにお互いに接触
し1粒成長、凝果金起こす。荷にアーク熱源による超微
粒子の生成法ではアーク放電するための雰囲気ガス圧力
は通常数十’forr〜大気圧で平均自由行程も小さく
、生成量も比収的多いのでこの傾向が顕者であり、一般
的に第3図に示すような粒径分布となる。
The above conventional technology does not pay much attention to the grain growth and agglomeration of ultrafine particles during the process from generating steam from the ultrafine particle raw material to ultrafine particle formation, cooling, and collection. There was a problem that the particle sizes of the fine particles were irregular and many of them were aggregated. In other words, since the steam and ultrafine particles generated from raw materials are hot and active,
By the time the carrier gas reaches the cooling device, they come into contact with each other, causing single grain growth and condensation. In the method of generating ultrafine particles using an arc heat source in a load, the atmospheric gas pressure for arc discharge is usually several tens of forr to atmospheric pressure, the mean free path is small, and the amount produced is relatively large, so this tendency is obvious. Generally, the particle size distribution is as shown in FIG.

本発明の目的は、上記問題点に鑑みなされたものであり
、各種金属、せ金、セラミックスを含む化合物の超微粒
子をアーク熱源τ用いて効率よく生成すると共に、その
粒径分布が良好でかつ凝集の少ない超微粒子を得る方法
を提供することにある。
The object of the present invention was made in view of the above-mentioned problems, and it is an object of the present invention to efficiently generate ultrafine particles of compounds containing various metals, fillers, and ceramics using an arc heat source τ, and to have a good particle size distribution. The object of the present invention is to provide a method for obtaining ultrafine particles with little agglomeration.

〔問題点を解決するための手段〕[Means for solving problems]

上i己目的は、超微粒子の原材料と電極とを液中に設け
て電極の回9からシールドガスを流し、かつ、シールド
ガスの回りから脂肪酸を含む水溶液を円筒状に流し、原
材料と電極との間にアークを発生させることによって達
成でれる。
The purpose is to place the raw material of ultrafine particles and the electrode in a liquid, flow the shielding gas from the electrode point 9, and flow the aqueous solution containing fatty acids in a cylindrical shape from around the shielding gas to connect the raw material and the electrode. This can be achieved by generating an arc between the

即ち本発明の特徴はアーク熱源を用いて超微粒子を製造
するに際し1g、中に設けた超微粒子の原材料と電極と
の間にアークを発生δせて超微粒子を生成することft
t+!j徴とする。
That is, the feature of the present invention is that when producing ultrafine particles using an arc heat source, an arc is generated δ between the ultrafine particle raw material provided inside and an electrode to generate ultrafine particles.
T+! J symptoms.

この際、超微粒子の原材料と電極とは共に水中に設ける
ことが望ましい。また電極の回りから7−ルドガスを流
し、かつこのシールドガスの回りから液体を円筒状に流
すことが好ましい。更にこの場合には脂肪酸を言む水溶
液を円筒状に流すことが特に有効である。
At this time, it is desirable that both the raw material of the ultrafine particles and the electrode be placed in water. Further, it is preferable to flow a shielding gas from around the electrode and to flow a liquid from around this shielding gas in a cylindrical shape. Furthermore, in this case, it is particularly effective to flow the aqueous solution containing the fatty acid in a cylindrical shape.

〔作用〕[Effect]

超微粒子の原材料と−憔との間にアークを発生さぞ、こ
のアーク熱により、原材料から蒸気全発生させ、超微粒
子を生成aせゐ。この時磁極の回Vから流すシールドガ
ス及び円筒状に流す液体は電極、原材料2よひアーク全
周囲の液体から遮断するように作用する。それによって
アークはカス気中で発生させた時と同様に、女定して発
生するので、連続的に原材料の超微粒子を生成すること
ができる。−万、超微粒子は生成直後に円筒状に流れて
いる液体によって急冷却ちれるので2粒成長することが
なく、このため粒径分布の良好な超微粒子を得ることが
できる。’ifc、脂肪酸を宮む水浴液を円筒状に流す
ことによって、超微粒子は急冷却されると同時に、脂肪
酸が被覆される。このため1枚径分布が良好でかつ凝集
のない超微粒子を製造することができる。
An arc is generated between the raw material of the ultrafine particles and the gas, and the heat of the arc causes all the steam to be generated from the raw material, producing ultrafine particles. At this time, the shielding gas flowing from the magnetic pole V and the liquid flowing in a cylindrical shape act to cut off the electrode, the raw material 2, and the liquid all around the arc. As a result, the arc is generated in the same way as when it is generated in the air, so ultrafine particles of the raw material can be continuously generated. - Immediately after the ultrafine particles are generated, they are rapidly cooled down by the liquid flowing in a cylindrical shape, so that two particles do not grow, and therefore ultrafine particles with a good particle size distribution can be obtained. 'ifc, by flowing a water bath containing fatty acids in a cylindrical shape, the ultrafine particles are rapidly cooled and at the same time coated with fatty acids. Therefore, it is possible to produce ultrafine particles with a good single-particle diameter distribution and no agglomeration.

し実施例〕 以下1本発明の一実施例を第1図及び第2図にLv説明
する。第1図におい°C,1は超微粒子原材料、2は電
極、3は鋼ルツボ、4はアーク放′1用を源、5はアー
ク、6は水槽、7は純水、8は2重シールドノズル、9
はシールドガス導入口。
Embodiment] An embodiment of the present invention will be explained below with reference to FIGS. 1 and 2. In Figure 1, °C, 1 is an ultrafine particle raw material, 2 is an electrode, 3 is a steel crucible, 4 is a source for arc radiation 1, 5 is an arc, 6 is a water tank, 7 is pure water, 8 is a double shield Nozzle, 9
is the shield gas inlet.

10は水浴液導入口、11は純水導入、排出口である。10 is a water bath liquid inlet, and 11 is a pure water inlet and outlet.

超微粒子の生成は、1ず、シールドガス導入口9から不
活性ガスを、水溶液導入口10から5%ステアリン戚氷
水溶液流し、その後、純水導入口11から純水7を水槽
6に2重シールドノズル8の端面よシも上まで満たす。
To generate ultrafine particles, first, inert gas is flowed through the shield gas inlet 9 and a 5% stearin ice aqueous solution is flowed through the aqueous solution inlet 10, and then pure water 7 is poured into the water tank 6 from the pure water inlet 11. Fill the end face of the shield nozzle 8 to the top.

この方法によシ、超微粒子原材料1及び電極2が純水7
と接触するのを防ぐことができる。すなわち1円筒状に
流した水g液は純水7に対してカーテンの役目を果たし
By this method, ultrafine particle raw material 1 and electrode 2 are purified water 7
contact can be prevented. That is, the water g liquid flowing in a cylindrical shape acts as a curtain for the pure water 7.

での結果、アークはガス気中で発生した場合と同様の状
態となる。次に超微粒子原材料1と電極2との間に放電
用電源4から電流を供給し、アーク5を発生名せる。こ
のアーク熱により原材料1が浴融し、蒸気が発生し、超
微粒子が生成さγしるが。
As a result, the arc will be in the same state as if it were generated in a gas atmosphere. Next, a current is supplied from a discharge power source 4 between the ultrafine particle raw material 1 and the electrode 2 to generate an arc 5. The raw material 1 is melted in the bath by this arc heat, steam is generated, and ultrafine particles are generated.

この時この超微粒子は円筒状に流した水溶液の中を必ず
通り、純水7へ放出ちれる。
At this time, the ultrafine particles always pass through the cylindrical aqueous solution and are released into the pure water 7.

−例としてスズの原材料をシールドガスとしてアルゴン
ガス10t/馴、水浴/g、3t/馴、シールドガスノ
ズル内径104111φ、水溶液ノズル内径0.5mφ
1条件150A−26Vでアークを発生させた場&、そ
の生成iは120 g/Hであり、得られた超微粒子の
粒径分布は第2図の二うになり、その平均粒径は約2O
nIn′t′あった。
- For example, using tin raw material as shielding gas, argon gas 10t/g, water bath/g, 3t/stamping, shield gas nozzle inner diameter 104111φ, aqueous solution nozzle inner diameter 0.5mφ
When an arc was generated under one condition of 150A-26V, the generation i was 120 g/H, and the particle size distribution of the obtained ultrafine particles was as shown in Figure 2, and the average particle size was about 2O
There was nIn't'.

筐たこの超微粒子をエチルアルコールと混什し。Mix ultrafine particles of octopus with ethyl alcohol.

超音波で分散して直径15amφ、昼ざ150鵡の試験
管に入れ、超微粒子が沈澱する様子を観察した所、18
0日独逸しても沈澱は認められなかった。
When dispersed with ultrasonic waves and placed in a test tube with a diameter of 15 amφ and 150 parrots at daytime, the precipitation of ultrafine particles was observed.
No precipitate was observed even after 0 days of drying.

尚、脂肪酸としてステアリン酸の他にオレーイン敵、ラ
ワリンハ、ミリスチンは、バルミチル酸でも同様の効果
がある。
In addition to stearic acid as fatty acids, olein, rawinha, myristic, and valmicylic acid have similar effects.

本矢施例に工tLば、平均粒匝20 n rnの粒径分
布が良好でかつ凝集のない金属超微板子が得られる効果
かめる。
In this example, we can see the effect of obtaining ultrafine metal plates with a good particle size distribution of an average grain size of 20 nm and no agglomeration.

なおアーク源としてはタングステン4極アークの他にプ
ラズマアークでも開鎖の幼果が侍すれる。
In addition to the tungsten quadrupole arc, a plasma arc can also be used as an arc source.

〔開明の幼果〕[Young fruit of Kaimei]

本発明方法によれば、A!i倣枚子を生成した直仮に急
rv却し、同時に六−乞肩慎物で被覆することかでさる
ので、筏径分布が良好で凝集のない安定な超微粒子を得
0ことかでさる。lfc装置を非常に簡略化することが
できる。
According to the method of the present invention, A! It is possible to obtain stable ultrafine particles with a good raft diameter distribution and no agglomeration by immediately discarding the imitated particles and simultaneously coating them with a six-layered material. . The IFC device can be greatly simplified.

【図面の簡単な説明】[Brief explanation of drawings]

易1図は本発明の超微粒子の製造方法の一実施例に係る
製造装置の模式断面図、第2図は同実施例による粒径と
粒子数比との関係を示す特性図。 第3図μ従来技術による粒儀と粒子数比との関係を示す
特性図である。 1・・・超微粒子原材料、2・・・電極、3・・・銅ル
ツボ。 ドノズル。                    
   ノ ・″・ゝ・1、・□ ′j51 代理人 升埋士 小川勝男 (、二′L、、1弔 / 
Σ )   二車シールトノス゛ル I!J 2 起 第3E
FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus according to an embodiment of the method for producing ultrafine particles of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between particle size and particle number ratio according to the same embodiment. FIG. 3 μ is a characteristic diagram showing the relationship between grain size and particle number ratio according to the prior art. 1... Ultrafine particle raw material, 2... Electrode, 3... Copper crucible. Do nozzle.
ノ ・″・ゝ・1,・□ ′j51 Agent: Masu buryer Katsuo Ogawa (,2′L,,1 condolence /
Σ) Motorcycle seal nozzle I! J 2 Ki No. 3E

Claims (1)

【特許請求の範囲】 1、アーク熱源を用いて超微粒子を製造する方法におい
て、液中に設けた超微粒子の原材料と電極との間にアー
クを発生させて超微粒子を生成することを特徴とする超
微粒子の製造方法。 2、超微粒子の原材料と前記電極とを水中に設けること
を特徴とする特許請求の範囲第1項記載の超微粒子の製
造方法。 3、前記電極の回りからシールドガスを流し、かつ該シ
ールドガスの回りから液体を円筒状に流すようにしたこ
とを特徴とする特許請求の範囲第1項または第2項記載
の超微粒子の製造方法。 4、脂肪酸を含む水溶液を円筒状に流すようにしたこと
を特徴とする特許請求の範囲第3項記載の超微粒子の製
造方法。
[Claims] 1. A method for producing ultrafine particles using an arc heat source, characterized by generating ultrafine particles by generating an arc between an electrode and a raw material for ultrafine particles provided in a liquid. A method for producing ultrafine particles. 2. The method for producing ultrafine particles according to claim 1, characterized in that the raw material for the ultrafine particles and the electrode are provided in water. 3. Production of ultrafine particles according to claim 1 or 2, characterized in that a shielding gas is caused to flow from around the electrode, and a liquid is caused to flow from around the shielding gas in a cylindrical shape. Method. 4. The method for producing ultrafine particles according to claim 3, characterized in that the aqueous solution containing fatty acids is caused to flow in a cylindrical shape.
JP9982487A 1987-04-24 1987-04-24 Preparation of ultrafine particles Pending JPS63267431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9982487A JPS63267431A (en) 1987-04-24 1987-04-24 Preparation of ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9982487A JPS63267431A (en) 1987-04-24 1987-04-24 Preparation of ultrafine particles

Publications (1)

Publication Number Publication Date
JPS63267431A true JPS63267431A (en) 1988-11-04

Family

ID=14257573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9982487A Pending JPS63267431A (en) 1987-04-24 1987-04-24 Preparation of ultrafine particles

Country Status (1)

Country Link
JP (1) JPS63267431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
WO2003037553A1 (en) * 2001-10-29 2003-05-08 Phild Co., Ltd. Method and apparatus for the production of metal powder
JP2009519125A (en) * 2005-12-13 2009-05-14 コミッサリア タ レネルジー アトミーク Devices and methods for producing nanometer and submicrometer scale particulate suspensions
US8128789B2 (en) 2001-10-12 2012-03-06 Phiten Co., Ltd. Method for producing ultrafine dispersion water of noble metal ultrafine particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
US5874684A (en) * 1993-07-27 1999-02-23 Nanophase Technologies Corporation Nanocrystalline materials
US8128789B2 (en) 2001-10-12 2012-03-06 Phiten Co., Ltd. Method for producing ultrafine dispersion water of noble metal ultrafine particles
WO2003037553A1 (en) * 2001-10-29 2003-05-08 Phild Co., Ltd. Method and apparatus for the production of metal powder
CN1311898C (en) * 2001-10-29 2007-04-25 法依鲁特株式会社 Method and apparatus for the production of metal powder
US7300491B2 (en) 2001-10-29 2007-11-27 Phild Co., Ltd. Method and apparatus for the production of metal powder
JP2009519125A (en) * 2005-12-13 2009-05-14 コミッサリア タ レネルジー アトミーク Devices and methods for producing nanometer and submicrometer scale particulate suspensions

Similar Documents

Publication Publication Date Title
JP4392864B2 (en) Method for producing gold particles by aerosol decomposition
WO2019165958A1 (en) Method for preparing nano-quantum dot, nano-quantum dot material, application and quantum dot article
US20220048111A1 (en) Method for continuously preparing noble metal and alloy nanoparticles thereof
JP3986711B2 (en) Method for producing single-walled carbon nanotube
JPS60175537A (en) Preparation of ultra-fine ceramic particles
CN105057688B (en) A kind of production method of ultra-fine Pb-free coating glass putty
JPWO2003037553A1 (en) Method and apparatus for producing metal powder
CN111318716A (en) High-entropy alloy spherical powder for powder bed melting additive manufacturing and preparation method and application thereof
JP2014520207A (en) Nickel alloys for hydrogen storage and energy generation therefrom
JP2023550716A (en) Pulsed metal powder preparation and condensation method
JPS63267431A (en) Preparation of ultrafine particles
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
JPH0623405B2 (en) Method for producing spherical copper fine powder
CN103962567B (en) A kind of preparation method of spherical molybdenum powder and equipment
CN114951670A (en) Preparation method of ultrasonic atomization high-temperature alloy powder for 3D printing
JP2508506B2 (en) Spherical fine powder manufacturing method and manufacturing apparatus
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JP3253175B2 (en) Method for producing spherical silver fine particles
JPS63242906A (en) Production of oxide ultrafine particle
JP2613279B2 (en) Production method of gold fine particles
JPH0474810A (en) Manufacture of nickel base metal fine powder
Amouzegar et al. Nonconventional applications of nebulizers: Nanomaterials synthesis
JP2009097039A (en) Particle manufacturing method
JP2004307241A (en) Production method for carbon nanotube
CN111468716B (en) Method for preparing carbon-coated aluminum nanoparticles by using metal wire electric explosion method