JPS63255305A - Composite material for cutting tool - Google Patents

Composite material for cutting tool

Info

Publication number
JPS63255305A
JPS63255305A JP8905087A JP8905087A JPS63255305A JP S63255305 A JPS63255305 A JP S63255305A JP 8905087 A JP8905087 A JP 8905087A JP 8905087 A JP8905087 A JP 8905087A JP S63255305 A JPS63255305 A JP S63255305A
Authority
JP
Japan
Prior art keywords
cemented carbide
steel
composite material
intermediate layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8905087A
Other languages
Japanese (ja)
Other versions
JP2533872B2 (en
Inventor
Yasuhiro Shimizu
靖弘 清水
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62089050A priority Critical patent/JP2533872B2/en
Publication of JPS63255305A publication Critical patent/JPS63255305A/en
Application granted granted Critical
Publication of JP2533872B2 publication Critical patent/JP2533872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite material for a cutting tool having superior toughness and wear resistance by forming an intermediate layer on the outside of high toughness steel as a central material and further forming a sintered hard alloy layer having high wear resistance by vapor phase synthesis and sintering. CONSTITUTION:An intermediate layer of a prescribed thickness such as a Ti layer is deposited on the outside of high toughness steel such as high-speed steel as a central material. A sintered hard alloy layer consisting of the carbide, nitride or carbonitride of one or more of the groups IVa, Va and VIa metals and an iron family metal is then formed on the intermediate layer by vapor phase synthesis and sintering to obtain a composite material for a cutting tool. The thickness of the sintered hard alloy layer is preferably regulated to 1-10% of the thickness or diameter of the tool. The intermediate layer may be made of Cr, Hf, Ti or Mo. Since the performance and reliability of the cutting tool are considerably improved by the composite material, working efficiency can be increased by changing the service conditions of the tool, that is, by increasing cutting speed of feed speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、バイト、カッター、ドリル、エンドミル、
ホブ、タップ等に利用する切削工具用複合材料に関する
[Detailed description of the invention] [Industrial application field] This invention is applicable to cutting tools, cutters, drills, end mills,
This invention relates to composite materials for cutting tools used in hobs, taps, etc.

〔従来の技術〕[Conventional technology]

首記した如き切削工具の構成材料として従来最も多用さ
れているのは、高速度工具鋼(以下ハイス鋼と略称する
)である、これは、鋼中の合金成分として、Cr、、M
O,W、■などを含み、熱処理によりこれらの成分の炭
化物を析出させ、通常の鋼よりも耐摩耗性を高めた鋼種
である。
High-speed tool steel (hereinafter referred to as high-speed steel) is the most commonly used constituent material for cutting tools such as those mentioned above.
It is a steel type that contains O, W, ■, etc., and has higher wear resistance than ordinary steel by precipitating carbides of these components through heat treatment.

次に多く用いられるのがWCをCOで焼結した超硬合金
である。これはハイス鋼に比べて炭化物(WC)の量が
多く、耐摩耗性が格段に向上し、また、高温での硬度低
下が少ないことから、高速切削に利用できる。しかし、
靭性の面ではハイス鋼に及ばず、これまでその使用領域
が限定されていた。
The next most commonly used material is cemented carbide, which is made by sintering WC with CO. This steel has a larger amount of carbide (WC) than high-speed steel, has significantly improved wear resistance, and has less hardness loss at high temperatures, so it can be used for high-speed cutting. but,
In terms of toughness, it is not as tough as high-speed steel, so its use has been limited until now.

そこで、ハイス鋼と超硬合金の間を埋めるべく種々の改
良がなされている。
Therefore, various improvements have been made to bridge the gap between high-speed steel and cemented carbide.

まずハイス鋼からの改良として粉末ハイス鋼とコーティ
ングハイス鋼が挙げられる。前者の粉末ハイス鋼は合金
成分のCrs Mo、Wlvなどの含有量を高めたハイ
ス鋼の合金粉末をアトマイズ法などにより生成し、これ
を熱間静水圧プレス等により焼結したものである。従来
の溶製法では合金成分を多(すると炭化物粒子の粗大化
が避けられず、このため、靭性の低下が著しく、また、
研削が困難になるという問題があったが、粉末法により
これらの炭化物を微細に分散することが可能となり、靭
性を保ったまま耐摩耗性を上げるとともに、研削性を向
上させることに成功している。
First, improvements from high speed steel include powdered high speed steel and coated high speed steel. The former powdered high-speed steel is produced by atomizing a high-speed steel alloy powder with an increased content of alloy components such as Crs Mo and Wlv, and sintering it by hot isostatic pressing or the like. In the conventional melting method, the alloying components are increased (which inevitably causes the carbide particles to become coarser, resulting in a significant decrease in toughness.
There was a problem that grinding was difficult, but the powder method made it possible to finely disperse these carbides, and succeeded in increasing wear resistance while maintaining toughness and improving grindability. There is.

次に、コーティングハイス鋼は従来のハイス鋼の表面に
PVD法等によりTiC5TiN等の硬質セラミックス
を数μmから十数μmの厚みにコーティングしたもので
、この硬質セラミックスが耐摩耗性を向上させている。
Next, coated high speed steel is made by coating the surface of conventional high speed steel with hard ceramics such as TiC5TiN to a thickness of several μm to over 10 μm using a PVD method, etc. This hard ceramic improves wear resistance. .

一方、超硬合金からの改良としては、WCの粒子を極微
細(1μm以下)にして合金の強度を向上し、信鯨性を
高めている例がある。
On the other hand, as an improvement from cemented carbide, there is an example in which the WC particles are made extremely fine (1 μm or less) to improve the strength of the alloy and improve its reliability.

また、ハイス鋼の靭性と超硬合金の耐摩耗性という両方
の利点を兼ね備える方法として、ハイス鋼で中心軸を作
り、その外側に超硬合金の筒をはめ込み両者を接合(例
えば「焼ばめ」によって)する技術も提案されている。
In addition, as a method that combines the advantages of both the toughness of high-speed steel and the wear resistance of cemented carbide, a central shaft is made of high-speed steel, a cemented carbide cylinder is fitted on the outside of the shaft, and the two are joined together (for example, by "shrink fit"). ”) has also been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術のうち、溶製法によるハイス鋼は、耐
熱性、耐摩耗性に乏しく、切削速度を上げると刃先温度
が上がり、刃先が変形して使用不能になる。これは、粉
末ハイス鋼についても同様で、若干の性能向上は認めら
れるものの、根本的な解決にはなっていない、また、コ
ーティング鋼は、確かに耐摩耗性の向上に効果があるが
、コーティング層の厚みは数μm〜士数十数であり、刃
先温度が上昇するとやはり変形して使えなくなり、しか
もコーティング層が消耗するとこの傾向が一層著しくな
る。このよ゛うに、ハイス鋼(各種)は基本的に鉄ベー
ス合金のため、焼戻し温度以上の温度域(通常600℃
以上と考えられる)では使いものにならず、従って、切
削温度や送りを上げて加工能率の向上を図ろうとしても
、自ずと限界が生じる。
Among the above-mentioned conventional techniques, high-speed steel made by melting has poor heat resistance and wear resistance, and when the cutting speed is increased, the temperature of the cutting edge increases, causing the cutting edge to deform and become unusable. The same is true for powdered high-speed steel, and although a slight improvement in performance has been recognized, it is not a fundamental solution.Also, coated steel is certainly effective in improving wear resistance, but coated steel The thickness of the layer is from several μm to several tens of micrometers, and when the temperature of the cutting edge increases, it deforms and becomes unusable, and this tendency becomes even more pronounced as the coating layer wears out. In this way, high-speed steel (various types) is basically an iron-based alloy, so it can be heated in a temperature range above the tempering temperature (usually 600℃).
(considered to be the above) is of no use, and therefore, even if an attempt is made to improve machining efficiency by increasing the cutting temperature or feed, there will naturally be a limit.

次に、超硬合金では強度的にはハイス鋼と同等程度(抗
折力で500kg/fi”程度)のものが得られている
が、炭化物の量が多い脆性材料であることに変りはなく
、突然刃先が欠けたり、根本から折れたりすることがあ
り、信頼性に乏しく、加工の無人化等に対応することが
難しかった。
Next, although cemented carbide has strength comparable to that of high-speed steel (transverse rupture strength of about 500 kg/fi"), it is still a brittle material with a large amount of carbides. However, the cutting edge could suddenly chip or break at the root, resulting in poor reliability and making it difficult to adapt to unmanned machining.

また、ハイス鋼と超硬合金を接合したものは、超硬合金
と比較して靭性は向上するものの、時々接合部から割れ
ることがあり、十分満足できる性能ではなかった。
In addition, although high-speed steel and cemented carbide are bonded together, although their toughness is improved compared to cemented carbide, they sometimes crack at the joint, resulting in insufficient performance.

この発明は、上記の問題点を解決して強靭性と優れた耐
摩耗性の両特性を両立させることを目的としている。
The purpose of this invention is to solve the above problems and achieve both toughness and excellent wear resistance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の工具材料は、中心部に靭性の高い鋼を用い、
その外側に耐摩耗性の高い超硬合金を気相合成と焼成に
よって形成した複合材料であって、中心の鋼と外側の超
硬合金層との間には中間層をはさんだ構造と成しである
The tool material of this invention uses steel with high toughness in the center,
It is a composite material in which a highly wear-resistant cemented carbide is formed on the outside by vapor phase synthesis and sintering, with an intermediate layer sandwiched between the central steel and the outer cemented carbide layer. It is.

なお、超硬合金層の厚みは、工具全体の厚み又は径の1
%以上、10%以下とするのが望ましい。
Note that the thickness of the cemented carbide layer is 1 of the total thickness or diameter of the tool.
% or more and 10% or less.

また、この超硬合金層は、fVa、Va、Via族金属
の1種又は2種以上の炭化物、窒化物又は炭窒化物と鉄
族金属で構成するが、その望ましい組成は、WC:5〜
95重量%、wc基以外IVa、 Va、Via族金属
の炭化物、窒化物又は炭窒化物80〜95重量%、鉄族
金属:3〜40重量%である。
Further, this cemented carbide layer is composed of one or more carbides, nitrides, or carbonitrides of fVa, Va, and Via group metals and an iron group metal, and its desirable composition is WC: 5 to 5.
95% by weight, 80-95% by weight of carbides, nitrides, or carbonitrides of IVa, Va, and Via group metals other than the wc group, and 3-40% by weight of iron group metals.

この層の組成は、更に鋼との界面付近では鉄金属に富み
、これから表面に向かうに従って徐々に鉄族金属が減少
した構造にするとより好ましい形態ができる。
A more preferable composition can be obtained if the composition of this layer is rich in iron metals near the interface with steel, and gradually decreases in iron group metals toward the surface.

このほか、中間層は、熱膨張係数が中心の鋼よりは小さ
く、外側の超硬合金よりは大きい物質で形成するのがよ
い、これ等の点に関しての理由は後述する。
In addition, the intermediate layer is preferably formed of a material whose coefficient of thermal expansion is smaller than that of the central steel and larger than that of the outer cemented carbide.The reasons for these points will be described later.

中心の鋼は、工具全体の靭性を向上させるためのもので
、工具に対して働く引張、圧縮、曲げ、せん断などの応
力に対しての耐性をこの鋼で確保する。従って、高強度
な綱が望まれるが外側の超硬合金層が摩滅した場合のこ
とを考慮すると、従来使われているハイス鋼(溶製又は
粉末冶金製)が最も好ましい。
The central steel is used to improve the toughness of the entire tool, ensuring its resistance to stresses such as tension, compression, bending, and shearing that are applied to the tool. Therefore, although a high-strength steel is desired, considering the case where the outer cemented carbide layer wears out, conventionally used high-speed steel (made by ingot or powder metallurgy) is most preferable.

外側の超硬合金層は、耐熱性、耐摩耗性を得るためのも
ので、その層は気相合成されたrVa、■a、■a族金
属の炭化物と鉄族金属を中心の綱の上に堆積させ、これ
を焼結して作る。気相合成の炭化物、窒化物を使う理由
は、まず第一に超微粒子が得られることが挙げられる。
The outer cemented carbide layer is intended to provide heat resistance and wear resistance, and is made of carbides of rVa, ■a, and ■a group metals synthesized in a vapor phase, and a steel layer mainly made of iron group metals. It is made by depositing it on and sintering it. The first reason for using vapor-phase synthesized carbides and nitrides is that ultrafine particles can be obtained.

超硬合金の強度は、内在する欠陥に依存することが知ら
れており、その欠陥として、ボア(空孔)、粗粒WC、
バインダー(CO)プール等が報告されている。これ増
大するが、この欠陥が合金中のWC粒径と同じ大きさに
なるとそれ以上の強度向上は望めない。
It is known that the strength of cemented carbide depends on the inherent defects, such as bores, coarse grained WC,
Binder (CO) pools, etc. have been reported. However, if these defects become the same size as the WC grain size in the alloy, no further improvement in strength can be expected.

そこで、WCの粒径を小さくした超微粒超硬合金が開発
されているが、その場合でも、WCの粒径は0.5μm
程度が限度である。しかるに、気相法によると0.1μ
m以下の超微粒子が比較的容易に得られ、焼結後の粒径
も小さく抑えられて合金の強度が飛躍的に向上する。
Therefore, ultrafine-grained cemented carbide with a smaller WC grain size has been developed, but even in that case, the WC grain size is 0.5 μm.
The extent is the limit. However, according to the gas phase method, 0.1μ
Ultrafine particles with a diameter of 100 m or less can be obtained relatively easily, and the particle size after sintering can be kept small, resulting in a dramatic improvement in the strength of the alloy.

また、超微粒子のため、刃立ち性が良くなる利点もある
。即ち、ドリル、エンドミルなどの刃部を形成する際、
エツジ部分は薄くなることから、粗い粒子があると、そ
の部分でチッピングが生じて刃先が欠損する場合がある
が、超微粒子であると、そのような問題が起きない。
Additionally, since it is an ultra-fine particle, it has the advantage of improving edge sharpness. That is, when forming the cutting part of a drill, end mill, etc.
Since the edge portion becomes thinner, if there are coarse particles, chipping may occur at that portion and the cutting edge may be damaged, but with ultra-fine particles, such problems do not occur.

更に、超微粒子としたことで、焼結性が向上し、低温で
の焼結が可能になる。
Furthermore, by using ultrafine particles, sinterability is improved and sintering at low temperatures becomes possible.

気相合成を使う理由の第二として、結合金属の粒子と容
易に混合可能な点が挙げられる。従来の超硬合金の製造
は、炭化物、窒化物と結合金属とを一緒に溶媒中でボー
ルミル混合し、次いでプレスし、焼結するというプロセ
スに従っており、混合が十分でないと出来る合金が不均
一になるという問題があった。これに対し、気相合成さ
れた炭化物、窒化物粒子は、結合金属である鉄族金属粒
子と気相中で混合することができる。気相中の混合の特
徴は粒子の大きさに対して平均自由工程が大きく、速や
かに均一混合体が形成されることである。従って、気相
合成法では短時間で均一な混合体を形成することが可能
で、合金の特性も安定する。
The second reason for using vapor phase synthesis is that it can be easily mixed with the bound metal particles. Conventional cemented carbide production follows a process of ball-milling carbides, nitrides, and bonding metals together in a solvent, then pressing, and sintering; insufficient mixing can result in non-uniform alloys. There was a problem. On the other hand, carbide and nitride particles synthesized in the vapor phase can be mixed with iron group metal particles as the binding metal in the vapor phase. A characteristic of mixing in the gas phase is that the mean free path is large relative to the particle size, and a homogeneous mixture is quickly formed. Therefore, in the vapor phase synthesis method, it is possible to form a uniform mixture in a short time, and the properties of the alloy are also stable.

気相合成を使う理由の第三として、組成のコントロール
が容易なことが挙げられる。即ち、合成速度あるいは原
料の輸送速度をコントロールすることで炭化物、窒化物
と鉄族金属の割合を任意にかつ連続的に変化することが
でき、その結果として、超硬合金の組成を中心の鋼との
界面から表面に向けて連続的に変化させることが可能に
なる。
The third reason for using gas phase synthesis is that the composition can be easily controlled. In other words, by controlling the synthesis rate or the transportation rate of raw materials, the ratio of carbides, nitrides, and iron group metals can be changed arbitrarily and continuously, and as a result, the composition of cemented carbide can be changed to This makes it possible to change continuously from the interface with the surface to the surface.

前項で、超硬合金の組成は鋼との界面部で鉄族金属に富
み、表面に向かうにつれて鉄族金属が減少しているのが
望ましいとした理由は、網側では超硬合金の性質が鋼に
近づくため、熱膨張係数差が小さくなってその差による
界面部の熱応力が緩和され、一方、表面側では鉄族金属
の減少により耐摩耗性が高まることにあるが、気相合成
によれば、このような組成コントロールが容易に実施で
き、合金設計の自由度が著しく増す。
In the previous section, it was stated that it is desirable for the composition of cemented carbide to be rich in iron group metals at the interface with steel, and to decrease toward the surface, because the properties of the cemented carbide on the mesh side are Because it approaches steel, the difference in thermal expansion coefficient becomes smaller and the thermal stress at the interface due to the difference is alleviated.On the other hand, on the surface side, the wear resistance increases due to the reduction of iron group metals. According to the method, such composition control can be easily carried out, and the degree of freedom in alloy design is significantly increased.

この発明の工具材料の超硬合金層は、上述の気相合成に
よって形成されているため、一般的製造法で得られる超
硬合金と比較して特性が一段と向上している。
Since the cemented carbide layer of the tool material of this invention is formed by the above-mentioned vapor phase synthesis, its properties are further improved compared to cemented carbide obtained by general manufacturing methods.

次に、中間層であるが、これは焼結後の鋼と超硬合金の
熱膨張係数の差による熱応力の緩和を主目的とし、また
、副次的には鋼と超硬合金の接合をより強固にすると共
に、両者の合金成分が拡散して特性が劣化することを防
ぐ働きをする。また、中間層の構成物質は、熱膨張係数
が鋼と外側の超硬合金との間にあるのが望ましいとした
のは、この中間層の主目的が加熱応力の緩和にあること
による。
Next, there is the intermediate layer, whose main purpose is to alleviate thermal stress due to the difference in thermal expansion coefficient between the steel and cemented carbide after sintering, and secondly, to join the steel and cemented carbide. In addition to making the alloy stronger, it also works to prevent the alloy components of both from diffusing and deteriorating their properties. The reason why it is desirable that the material constituting the intermediate layer has a coefficient of thermal expansion between that of steel and that of the outer cemented carbide is that the main purpose of this intermediate layer is to alleviate heating stress.

なお、熱膨張係数はハイス鋼(SKH57)で約12X
10−’/’j:、超硬合金では約5 Xl0−’/’
Cである。これを考えると中間層として好適なものとし
ては、Cr5HE、Tr、Mo、Nb、Pd5Pt、R
o、Rh、Ru、Sb、S i、Tas Ti。
The coefficient of thermal expansion is approximately 12X for high-speed steel (SKH57).
10-'/'j:, approximately 5 Xl0-'/' for cemented carbide
It is C. Considering this, suitable intermediate layers include Cr5HE, Tr, Mo, Nb, Pd5Pt, R
o, Rh, Ru, Sb, S i, Tas Ti.

V s Z r −A l * Os 、M o S 
i z 、T i C、、Ti0. 、That 、Y
、O,、UO* 、Zr0tその他ムライト、スピネル
等が挙げられるが、本発明にいう中間層の材質は上に挙
げた例に限定されない、また、中間層を単一のものでな
く多層にすることも当然本発明の範噴に含まれる。
V s Z r −A l * Os , M o S
i z , T i C, , Ti0. ,That,Y
, O,, UO*, Zr0t, mullite, spinel, etc., but the material of the intermediate layer referred to in the present invention is not limited to the above-mentioned examples, and the intermediate layer may be made of multiple layers instead of a single one. Naturally, this is also included within the scope of the present invention.

次に、超硬合金層の厚みを、工具全体の厚み又は径に対
する比率で1〜lO%が望ましいとしたのは、1%以下
では満足な耐熱性、耐摩耗性が得られず、一方10%を
越すと靭性の低下が著しくなるからである。
Next, the reason why the thickness of the cemented carbide layer is desirably 1 to 10% relative to the overall thickness or diameter of the tool is because if it is less than 1%, satisfactory heat resistance and wear resistance cannot be obtained. %, the toughness will be significantly reduced.

また、超硬合金は、WC:5〜95重量%、これ以外の
IVa、Va、VIa族金属の炭化物、窒化物、炭窒化
物80〜95重量%、鉄族金属:3〜40重置%の組成
が望ましいとしたのは、この組成が最大の効果を引き出
せるからである。即ち、WCは合金の耐熱性、耐摩耗性
の向上に寄与するが、その含有量が5重量%以下では上
記2つの特性を十分に高め得ず、一方、95重量%を超
えると靭性が低下する。■a、Va、VTa族金属の炭
化物、窒化物、炭窒化物は合金の耐熱性、耐摩耗性を更
に高める効果があるが、含有量が95重量%を超えると
やはり靭性が低下する。また、鉄族金属は合金の靭性を
高めるが、3%以下では効果が薄<、40%を越すと耐
摩耗性が悪化する。
In addition, the cemented carbide includes WC: 5 to 95% by weight, carbides, nitrides, and carbonitrides of other IVa, Va, and VIa group metals: 80 to 95% by weight, and iron group metals: 3 to 40% by weight. The reason why the composition is desirable is that this composition can bring out the maximum effect. That is, WC contributes to improving the heat resistance and wear resistance of the alloy, but if the content is less than 5% by weight, the above two properties cannot be sufficiently enhanced, while if it exceeds 95% by weight, the toughness decreases. do. (2) Carbides, nitrides, and carbonitrides of a, Va, and VTa group metals have the effect of further increasing the heat resistance and wear resistance of the alloy, but if the content exceeds 95% by weight, the toughness still decreases. Further, iron group metals improve the toughness of the alloy, but if it is less than 3%, the effect is weak, and if it exceeds 40%, the wear resistance deteriorates.

以下に、この発明の実施例を挙げる。Examples of this invention are listed below.

〔実施例1〕 高速度工具鋼製のエンドミル(SKH56,2枚刃、刃
径9,0ss)Eを用いてこれを添付図に示す超硬合金
層生成筒N1中に入れ、まずTi粒子生成装置2からT
iの粒子流を導入してエンドミルの表面に中間層として
のTi層を2(lumの厚みで堆積させた。その後、W
C気相合成装置3と、CO微粒子生成装置4を稼動させ
、WC超微粒子とco微粒子を混合しながらエンドミル
上に堆積させた。このとき、堆積時間を変えて種々の厚
みのWC−Co混合層を作った。そして、得られたエン
ドミルを焼結炉に装入し、1300℃の温度で真空焼結
を行った後、所定の工具形状に研削加工した。
[Example 1] Using a high-speed tool steel end mill (SKH56, 2-flute, blade diameter 9.0ss), place it into the cemented carbide layer generation cylinder N1 shown in the attached diagram, and first generate Ti particles. device 2 to T
A Ti layer as an intermediate layer was deposited on the surface of the end mill with a thickness of 2 lums by introducing a particle flow of 2 lums.
The C gas phase synthesizer 3 and the CO fine particle generator 4 were operated, and the WC ultrafine particles and the CO fine particles were mixed and deposited on the end mill. At this time, WC-Co mixed layers with various thicknesses were created by varying the deposition time. Then, the obtained end mill was placed in a sintering furnace, vacuum sintered at a temperature of 1300° C., and then ground into a predetermined tool shape.

試作品の超硬合金部分の厚みの工作径に鏑する割合を第
1表に示す0次にこの試料を耐摩テストと切削テストに
供した。テスト条件は以下の如くである。
The ratio of the thickness of the cemented carbide part of the prototype to the machining diameter is shown in Table 1.This sample was subjected to a wear resistance test and a cutting test. The test conditions are as follows.

テスト1 (耐摩テスト) 被削材  5KDII 切削速度 30m/sin テーブル送り 50B/sin 切込み 100 切削様式 溝切削 寿命基準 外周刃摩耗中0.4鶴 テスト2(折損テスト) 被削材  5soc 切削速度 49m/sin テーブル送り 200n/win 〜 切込み 10酊 切削様式 溝切削 寿命基準 折損するときのテーブル送りこのテスト結果
を第1表に併記した。なお比較のためハイス鋼、粉末ハ
イス鋼、コーティング八イス鋼、超硬合金製のエンドミ
ルについても同一条件でテストし、その結果も第1表に
示した。
Test 1 (wear resistance test) Workpiece material 5KDII Cutting speed 30m/sin Table feed 50B/sin Depth of cut 100 Cutting style Groove cutting life standard 0.4 during peripheral blade wear Test 2 (breakage test) Workpiece material 5soc Cutting speed 49m/ sin Table feed 200n/win ~ Depth of cut 10mm Cutting style Groove cutting life standard Table feed when breakage The test results are also listed in Table 1. For comparison, end mills made of high speed steel, powdered high speed steel, coated high speed steel, and cemented carbide were also tested under the same conditions, and the results are also shown in Table 1.

〔実施例2〕 5鶴径の合金1) (S CM435 )の丸棒の表面
に、中間としてptを5μm堆積させた後、各種組成に
コントロールした超硬合金層を堆積させ、次いで焼結を
行い、その後、この複合体をドリルに加工した。超硬合
金層の厚みは0.25mであった。
[Example 2] After depositing 5 μm of PT as an intermediate layer on the surface of a round bar of Alloy 1) (S CM435) with a diameter of 5 mm, cemented carbide layers with controlled compositions of various types were deposited, and then sintering was performed. The composite was then fabricated into a drill. The thickness of the cemented carbide layer was 0.25 m.

このドリルを以下に示す条件で切削テストに供した。各
合金の組成とテスト結果を第2表に記す。
This drill was subjected to a cutting test under the conditions shown below. The composition and test results of each alloy are listed in Table 2.

被削材 545C 切削速度 40m/+ll1n 送り  0.2鶴/rev 穴深さ 35鶴 (貫通) 被削材振動周波数2Hz 被削材振動振幅 1) 寿命基準 折損又は穴径不良になるまでの加工大数 第  2  表 〔効果〕 以上述べたように、この発明の切削工具材料は、中心部
に鋼をおき、また、その外側には気相合成と焼成によっ
て作られた超硬合金層をおき、さらに、中心の鋼と外側
の超硬合金層との間には中間層を配した構成とすること
により、鋼のもつ強靭酸と超硬合金のもつ優れた耐摩耗
性を兼備させ、しかもこれ等の特性が安定に維持される
ようにしたものであるから、切削工具の性能と信顛性が
飛躍的に向上し、そのために、工具の使用条件、即ち、
切削速度や送り速度を上げて加工能率をたかめることが
可能になり、また、加工機の長時間の無人運転にも対応
できるようになると云う効果が得られる。
Work material 545C Cutting speed 40m/+ll1n Feed 0.2/rev Hole depth 35 (penetration) Work material vibration frequency 2Hz Work material vibration amplitude 1) Life standard Machining size until breakage or hole diameter defect Table 2 [Effects] As mentioned above, the cutting tool material of the present invention has steel in the center and a cemented carbide layer made by vapor phase synthesis and firing on the outside. Furthermore, by arranging an intermediate layer between the central steel and the outer cemented carbide layer, we are able to combine the strong acidity of steel with the excellent wear resistance of cemented carbide. The performance and reliability of the cutting tool are dramatically improved because the characteristics such as the following are stably maintained.
It is possible to increase machining efficiency by increasing the cutting speed and feed rate, and it is also possible to support long-term unattended operation of the processing machine.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は、この発明の工具材料の製造に用いる装置の一
例の概略構成を示す線図である。 1・・・・・・超硬合金層生成装置、2・・・・・・T
i粒子生成装置、3・・・・・・WCC機台合成装置4
・・・・・・Co微粒子生成装置、5・・・・・・炉体
、6・・・・・・ヒータ、7・・・・・・ヒータ用電源
、8.8′・・・・・・微粒子導入管、9・・・・・・
Ti原料、10・・・・・・蒸発用電子銃、1)・・・
・・・CO原料、12・・・・・・蒸発用電源、13・
・・・・・輸送管、14・・・・・・炭化物、窒化物生
成用原料、15・・・・・・アーク放電用電源
The attached drawing is a diagram showing a schematic configuration of an example of an apparatus used for manufacturing the tool material of the present invention. 1...Cemented carbide layer generating device, 2...T
i particle generation device, 3...WCC machine synthesis device 4
...Co particle generator, 5 ... Furnace body, 6 ... Heater, 7 ... Power supply for heater, 8.8' ...・Particle introduction tube, 9...
Ti raw material, 10...Electron gun for evaporation, 1)...
... CO raw material, 12 ... Evaporation power source, 13.
...transport pipe, 14...raw material for carbide and nitride generation, 15...power supply for arc discharge

Claims (5)

【特許請求の範囲】[Claims] (1)中心部の鋼の外側に、気相合成されたIVa、Va
、VIa族金属の1種又は2種以上の炭化物、窒素物又は
炭窒化物と鉄族金属から成る超硬合金層を焼成して設け
、さらに、上記中心部の鋼と外側の超硬合金層との間に
中間層をはさんで成る切削工具用複合材料。
(1) IVa, Va synthesized in a vapor phase on the outside of the central steel
, a cemented carbide layer consisting of one or more carbides, nitrogen substances, or carbonitrides of Group VIa metals and an iron group metal is provided by firing, and further, the steel in the center and the cemented carbide layer on the outside are provided. Composite material for cutting tools consisting of an intermediate layer sandwiched between.
(2)上記超硬合金層の厚みが工具全体の厚み又は径の
1%以上、10%以下であることを特徴とする特許請求
の範囲第(1)項記載の切削工具用複合材料。
(2) The composite material for a cutting tool according to claim (1), wherein the thickness of the cemented carbide layer is 1% or more and 10% or less of the thickness or diameter of the entire tool.
(3)上記超硬合金の組成が、WC:5〜95重量%、
WC以外のVIa、Va、VIa族金属の炭化物、窒化物又
は炭窒化物:0〜95重量%、鉄族金属:3〜40%で
あることを特徴とする特許請求の範囲第(1)項又は第
(2)項記載の切削工具用複合材料。
(3) The composition of the cemented carbide is WC: 5 to 95% by weight,
Claim (1) characterized in that carbides, nitrides, or carbonitrides of group VIa, Va, and VIa metals other than WC: 0 to 95% by weight, and iron group metals: 3 to 40%. Or the composite material for cutting tools according to item (2).
(4)上記中間層を、熱膨張係数が中心の鋼よりは小さ
く、外側の超硬合金よりは大きな物質で形成したことを
特徴とする特許請求の範囲第(1)項乃至第(3)項の
いずれかに記載の切削工具用複合材料。
(4) Claims (1) to (3) characterized in that the intermediate layer is formed of a material whose coefficient of thermal expansion is smaller than that of the central steel and larger than that of the outer cemented carbide. Composite material for cutting tools according to any of paragraphs.
(5)上記超硬合金層は、鋼との界面付近で鉄族金属に
富み、表面に至るにつれて鉄族金属が減少していること
を特徴とする特許請求の範囲第(1)項乃至第(4)項
のいずれかに記載の切削工具用複合材料。
(5) The cemented carbide layer is rich in iron group metals near the interface with the steel, and iron group metals decrease toward the surface. (4) Composite material for cutting tools according to any one of items.
JP62089050A 1987-04-10 1987-04-10 Composite material for cutting tools Expired - Lifetime JP2533872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62089050A JP2533872B2 (en) 1987-04-10 1987-04-10 Composite material for cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62089050A JP2533872B2 (en) 1987-04-10 1987-04-10 Composite material for cutting tools

Publications (2)

Publication Number Publication Date
JPS63255305A true JPS63255305A (en) 1988-10-21
JP2533872B2 JP2533872B2 (en) 1996-09-11

Family

ID=13960049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62089050A Expired - Lifetime JP2533872B2 (en) 1987-04-10 1987-04-10 Composite material for cutting tools

Country Status (1)

Country Link
JP (1) JP2533872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091692A (en) * 1997-10-06 2000-07-18 Fujitsu Limited Optical information storage apparatus
JP2010099758A (en) * 2008-10-21 2010-05-06 Kagoshima Univ Cutting chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091692A (en) * 1997-10-06 2000-07-18 Fujitsu Limited Optical information storage apparatus
JP2010099758A (en) * 2008-10-21 2010-05-06 Kagoshima Univ Cutting chip

Also Published As

Publication number Publication date
JP2533872B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US7635515B1 (en) Heterogeneous composite bodies with isolated lenticular shaped cermet regions
WO2007089882A2 (en) High-performance friction stir welding tools
JP6064549B2 (en) Sintered body and method of manufacturing the sintered body
US5787773A (en) Hand shear
KR20190073370A (en) Composite sintered body
JPH0711051B2 (en) Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy
US11680022B2 (en) Composite sintered material
JP2012511437A (en) Cutting tool insert manufacturing method that requires high dimensional accuracy
JPS63255305A (en) Composite material for cutting tool
US5351588A (en) Hand shear
CN108588628A (en) The surface graded coating of high speed mold cutter and its preparation process
JP6775694B2 (en) Composite sintered body
CN112391547B (en) Preparation method of polycrystalline material
Panov Tungsten-free hard alloys: an analytical review
JPH03146677A (en) Coated sintered hard alloy for intermittent cutting
JP5799969B2 (en) Ceramic crystal particles, ceramic sintered body, and method for producing them
JP2001187431A (en) Laminated structural material
JP2814633B2 (en) Composite hard alloy material
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JPH01127629A (en) Production of hard alloy
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JPS62170451A (en) Sintered hard alloy
JP2814632B2 (en) Composite hard alloy material
JP2620237B2 (en) Composite structure rotary tool and method of manufacturing the same
JPH10310839A (en) Super hard composite member with high toughness, and its production