JPS63250560A - Sensor for detecting material in liquid by acoustic wave - Google Patents

Sensor for detecting material in liquid by acoustic wave

Info

Publication number
JPS63250560A
JPS63250560A JP8613687A JP8613687A JPS63250560A JP S63250560 A JPS63250560 A JP S63250560A JP 8613687 A JP8613687 A JP 8613687A JP 8613687 A JP8613687 A JP 8613687A JP S63250560 A JPS63250560 A JP S63250560A
Authority
JP
Japan
Prior art keywords
electrodes
surface acoustic
substrate
liquid
acoustic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8613687A
Other languages
Japanese (ja)
Inventor
Toyoe Moriizumi
森泉 豊栄
Yoshihiro Unno
海野 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP8613687A priority Critical patent/JPS63250560A/en
Publication of JPS63250560A publication Critical patent/JPS63250560A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the sensitivity of detecting the specific material in a liquid to be detected by providing paired electrodes for impressing an AC voltage and paired electrodes for generating an AC voltage onto the same surface of a substrate formed of a piezo-electric material which generates leak surface acoustic waves and the cut surface and providing a layer to adsorb the specific material between both. CONSTITUTION:The comb-shaped electrodes 111, 112 for input and the comb-shaped electrodes 121, 122 for output are provided on the same surface of the piezo-electric substrate 10 and a receptor 3 is provided between both the electrodes. An input signal generated by an oscillator 15 excites the leak surface acoustic waves on the substrate 10 by the electrodes 111, 112. The leak surface acoustic waves propagate in the substrate 10 and the receptor 3 and are converted to an electric signal by the electrodes 121, 122. The output signal thereof is compared with the input signal generated by the oscillator 15 in a phase comparator 16. The phase difference between the two signals is the propagation delay time of the leak surface acoustic waves between the electrodes 111, 112 and the electrodes 121, 122. The propagation speed of the leak surface acoustic waves changes when the specific material in the liquid 7 to be detected is adsorbed in the receptor 3. The change quantity of the phase is thus measured by the comparator 16, by which the detection of the specific material is permitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は漏れ弾性表面波を利用して液体中に椿花する物
質を検出するセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sensor that detects a substance forming a camellia in a liquid using leaky surface acoustic waves.

〔従来の技術〕[Conventional technology]

従来、弾性波を利用した液体中物質検出センサは、例え
ば水晶振動子により励起され、固体中を伝搬するバルク
波(Bulk wave)を利用したセンサであった。
Conventionally, a sensor for detecting a substance in a liquid using elastic waves has been a sensor that uses, for example, a bulk wave excited by a crystal oscillator and propagating in a solid.

その−例を第4図により説明する。同図においてlはA
Tカット水晶振動子、2は周波数カウンタ、3は特定の
物質を吸着する材料の薄膜であるレセプタ、4は発振回
路、51と52は水晶振動子lの表面と裏面の入力電極
(不図示)に夫々接続された入力リード、6!と62は
同じ〈水晶振動子1の表面と裏面の出力電極(不図示)
に夫々接続された出力リードである。7は被検液体、8
はビー力である。この構成で発振回路4から入力リード
51・52を通じて水晶振動子1の厚み方向に交流が印
加されると水晶振動子1が振動する。
An example thereof will be explained with reference to FIG. In the same figure, l is A
T-cut crystal resonator, 2 is a frequency counter, 3 is a receptor which is a thin film of material that adsorbs a specific substance, 4 is an oscillation circuit, 51 and 52 are input electrodes on the front and back surfaces of the crystal resonator l (not shown) Input leads connected to, respectively, 6! and 62 are the same (output electrodes on the front and back surfaces of the crystal resonator 1 (not shown)
These are the output leads connected to the respective output leads. 7 is the test liquid, 8
is the be force. With this configuration, when an alternating current is applied from the oscillation circuit 4 to the thickness direction of the crystal resonator 1 through the input leads 51 and 52, the crystal resonator 1 vibrates.

そのバルク波が水晶振動子lを伝搬すると、水晶振動子
lの厚み方向に電位差が生じ、出カリードロ1・62を
通じて交流が発振回路4に出力される。共振周波数によ
りこの閉ループが繰り返される。
When the bulk wave propagates through the crystal resonator l, a potential difference is generated in the thickness direction of the crystal resonator l, and an alternating current is outputted to the oscillation circuit 4 through the output drawer 1 and 62. The resonant frequency repeats this closed loop.

ここで、被検液体7中に含まれる特定物質が水晶振動子
lの表面上のレセプタ3により吸着されると、レセプタ
3の質量が増加する。そのため水晶振動子lの表面部分
の質量増加により共振同波数は下がる。もとの共振周波
数をfo、賀14に増加後の共振同波数低下量をΔf、
レセプタ3の質量増加量をΔM、その面積をA、単位面
積当りの質量増加量をΔmとすると、 なる関係が成り立つ、aは比例定数である。
Here, when the specific substance contained in the test liquid 7 is adsorbed by the receptor 3 on the surface of the crystal resonator 1, the mass of the receptor 3 increases. Therefore, as the mass of the surface portion of the crystal resonator l increases, the resonant wave number decreases. The original resonant frequency is fo, and the amount of decrease in the resonant wave number after increasing to 14 is Δf.
If the mass increase of the receptor 3 is ΔM, its area is A, and the mass increase per unit area is Δm, the following relationship holds true, where a is a proportionality constant.

したがって周波数カウンタ2に共振周波数の変化が現わ
れると、レセプタ3に特定物質が吸着されたことが分り
、被検液体7中にその特定物質が存在することを確認で
きる。また周波数カウンタ2にて共振周波数低下量Δf
をカウントすれば、上記(1)式により特定物質の量を
算出できる。
Therefore, when a change in the resonant frequency appears on the frequency counter 2, it is known that a specific substance has been adsorbed to the receptor 3, and the presence of the specific substance in the liquid to be tested 7 can be confirmed. In addition, the resonance frequency decrease amount Δf is determined by the frequency counter 2.
By counting, the amount of the specific substance can be calculated using the above equation (1).

例えば被検液体7中の検出すべき物質が有機物の場合、
該有機物と特異的に結合する物質を薄膜状に固定化して
レセプタ3とする0例えば免疫センサとして抗原を検出
するためには抗体を固定化し、抗体を検出する場合は抗
原を固定化する。一般にレセプタ3はタンパク質を使う
場合が多い。
For example, if the substance to be detected in the test liquid 7 is an organic substance,
A substance that specifically binds to the organic matter is immobilized in the form of a thin film to form the receptor 3. For example, in order to detect an antigen as an immunosensor, an antibody is immobilized, and in the case of detecting an antibody, the antigen is immobilized. Generally, receptor 3 often uses proteins.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来のバルク波を利用した液体中物質検出セン
サでは、検出感度を高める方法として、(1)式から以
下の方法が考えられる。その方法は、aの値が大きな振
動子材料を選択する、共振周波数Δfを高くする。単位
面積当りの質量増加量Δmを高くする、の3通りである
In the above-mentioned conventional sensor for detecting substances in liquid using bulk waves, the following method can be considered based on equation (1) as a method for increasing detection sensitivity. The method involves selecting a vibrator material with a large value of a, and increasing the resonant frequency Δf. There are three ways to increase the mass increase amount Δm per unit area.

しかし、温度安定性をはじめとする諸々の要素を考える
と、aの値が大きな振動子材料は選択し難く、比較的小
ざな値の材料が採用されているのが実状である6次に共
振周波数Δfは、振動子の圧電材料である水晶の機械的
な加工により決るため、あまり高くできず1通常100
MH2以下である。
However, when considering various factors such as temperature stability, it is difficult to select a resonator material with a large value of a, and the reality is that materials with a relatively small value are used. The frequency Δf is determined by the mechanical processing of the crystal, which is the piezoelectric material of the vibrator, so it cannot be set too high and is usually 100.
MH2 or less.

また単位面積当りの質量増加量Δmを高くしようとして
も、特定物質を吸着する材料の種類はあまり多くなく、
レセプタとして選択できる材料は限られているため、単
位面積当りの質量増加量6口を高くすることは困難であ
る。これらの条件により、従来のバルク波を利用した液
体中物質検出センサは、検出感度に限界があり、実用上
十分とは言えないという欠点があった。
Furthermore, even if we try to increase the amount of mass increase Δm per unit area, there are not many types of materials that can adsorb specific substances.
Since the materials that can be selected for the receptor are limited, it is difficult to increase the mass increase per unit area. Due to these conditions, conventional sensors for detecting substances in liquid using bulk waves have a limitation in detection sensitivity, and have the disadvantage that they cannot be said to be practically sufficient.

本発明は、上記欠点を除去するためになされたもので、
弾性波を利用し液体中の特定物質を極めて感度良く検出
するセンサを提供するものである。
The present invention has been made to eliminate the above-mentioned drawbacks.
The present invention provides a sensor that uses elastic waves to detect specific substances in liquid with extremely high sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するためになされた本発明の弾性波に
よる液体中物質検出センサを、実施例に対応する第1図
により説明する。同図に示すように本発明の弾性波によ
る液体中物質検出センサは、漏れ弾性表面波が発生する
圧電体材料およびカット面からなる基板10の同一表面
上に、交流電圧を印加する対電極111 ・112 と
交流電圧を発生する対電極1214122 とを設けで
ある。そして、その両方の対電極Ill  ・112 
と対電極12.  ・122 との中間部分に特定物質
を吸着する層3を設けである。
A sensor for detecting substances in liquid using elastic waves according to the present invention, which has been made to solve the above problems, will be explained with reference to FIG. 1 corresponding to an embodiment. As shown in the figure, in the sensor for detecting substances in liquid using elastic waves of the present invention, a counter electrode 111 to which an alternating current voltage is applied is placed on the same surface of a substrate 10 made of a piezoelectric material and a cut surface where leakage surface acoustic waves are generated.・112 and a counter electrode 1214122 that generates an alternating voltage are provided. And both counter electrodes Ill ・112
and counter electrode 12.・A layer 3 that adsorbs a specific substance is provided in the middle part between 122 and 122.

対電極1116112は基板10同一表面に形成される
もので、例えばくし型電極である。対電極12.  ・
122も同一表面に形成され、対電極11、  ・11
2 と同一形状であることが好ましい、基板lOは、対
電極11.  ・112により交流電圧が印加されて漏
れ弾性表面波が励振され、かつ、少ない伝搬ロスで伝搬
される圧電体材料およびカット面が選ばれる。このよう
な圧電体材料として、例えばL 1Nb03基板、Li
TaO3基板、水晶が好ましい、カット面角度は1例え
ば36°回転Y板LiTaO3基板でX方向伝搬するよ
うにする。
The counter electrode 1116112 is formed on the same surface of the substrate 10, and is, for example, a comb-shaped electrode. Counter electrode 12.・
122 is also formed on the same surface, and counter electrodes 11, ・11
The substrate IO, which preferably has the same shape as the counter electrode 11.2, is preferably of the same shape as the counter electrode 11. - An alternating current voltage is applied by 112 to excite the leaky surface acoustic wave, and a piezoelectric material and a cut surface that propagate with little propagation loss are selected. Examples of such piezoelectric materials include L 1Nb03 substrate, Li
A TaO3 substrate, quartz is preferred, and the cut plane angle is 1, for example, a 36° rotated Y-plate LiTaO3 substrate so that propagation occurs in the X direction.

〔作用〕[Effect]

本発明の検出センサは、対電極111 ・112から基
板10に交流電圧を印加すると、基板10により伝搬損
失の少ない漏れ弾性表面波が励振され、基板lOの表面
を伝搬する。
In the detection sensor of the present invention, when an AC voltage is applied to the substrate 10 from the counter electrodes 111 and 112, a leaky surface acoustic wave with low propagation loss is excited by the substrate 10 and propagates on the surface of the substrate IO.

漏れ弾性表面波は、圧電体材料中にそのエネルギのいく
らかを放射しながら伝搬する波である。
A leaky surface acoustic wave is a wave that propagates into a piezoelectric material while radiating some of its energy.

しかし、その圧電体中へのエネルギー放射量が著しく少
ない場谷が存在する0例えば気体もしくは真空に接する
38°回転Y板LiTa0:+基板のX方向伝搬では、
1波長当りり、S X 1O−4dB (電気的に短絡
時) 、3.8 X 1O−5dB (電気的に開放時
)である。
However, for example, in the case of propagation in the X direction of a 38° rotated Y plate LiTa0:+ substrate in contact with gas or vacuum, there is a field where the amount of energy radiated into the piezoelectric body is extremely small.
Per wavelength, S x 10-4 dB (when electrically short-circuited) and 3.8 x 10-5 dB (when electrically open).

このように漏れ弾性表面波は、基板表面垂直方向の振動
変位が充分小さい、上記36°回転Y板L 1Ta03
基板の場合、基板表面垂直方向の振動変位は、水平方向
に比べ1110以下である。基板表面垂直方向の振動は
、その基板を液体に接した場合液体中へのエネルギ放射
に寄与するため、少ない方が好ましい、上記により励振
され伝搬する漏れ弾性表面波は、基板表面垂直方向の振
動変位が小さいため、液体中へのエネルギ放射が少なく
、液体中での伝搬ロスが少ない。
In this way, the leakage surface acoustic waves are caused by the above-mentioned 36° rotated Y plate L 1Ta03 whose vibration displacement in the direction perpendicular to the substrate surface is sufficiently small.
In the case of the substrate, the vibration displacement in the direction perpendicular to the substrate surface is 1110 or less compared to the horizontal direction. Vibration in the direction perpendicular to the substrate surface contributes to energy radiation into the liquid when the substrate is in contact with liquid, so it is preferable to minimize the vibration. Since the displacement is small, less energy is radiated into the liquid and there is less propagation loss in the liquid.

L 1Nb03基板、 LiTaO3基板、水晶等の圧
電体材料に、くシ型電極等により交流電圧が印加される
弾性表面波には、上記の漏れ弾性表面波の他に、レイリ
イ波モードの表面波が存在する。レイリイ波モードの表
面波とは、伝搬方向の変位と表面直交方向の変位との合
成波であり1弾性表面波フィルタや弾性表面波共振子と
して広く一般的に利用されている。レイリイ波モードの
表面波は、気体中もしくは真空中で利用され、液体中で
は伝搬に伴ないそのエネルギの大部分を液体中に放射し
、著しい伝搬ロスがある0例えば弾性表面波フィルタや
弾性表面波共振子としてよく利用される 128゜回転
Y板LiNbO3基板のX方向伝搬では、1波長当り0
.99dB (表面を電気的に短絡した場合) 、 0
.84dB(表面を電気的に開放した場合)という大き
な値となる。
In addition to the leaky surface acoustic waves mentioned above, surface acoustic waves in the Rayleigh wave mode are generated when an AC voltage is applied to piezoelectric materials such as L1Nb03 substrates, LiTaO3 substrates, and crystals using comb-shaped electrodes. exist. A Rayleigh wave mode surface wave is a composite wave of a displacement in the propagation direction and a displacement in a direction perpendicular to the surface, and is widely and commonly used as a surface acoustic wave filter or a surface acoustic wave resonator. Rayleigh wave mode surface waves are used in gas or vacuum, and in liquids, most of their energy is radiated into the liquid as they propagate, and there is a significant propagation loss. In the X direction propagation of a 128° rotated Y-plate LiNbO3 substrate, which is often used as a wave resonator, 0 per wavelength.
.. 99dB (when the surface is electrically shorted), 0
.. This is a large value of 84 dB (when the surface is electrically open).

上記の比較により液体中では、漏れ弾性表面波の方がレ
イリイ波モードの表面波より伝搬損失の面で優れている
ことが分る。
The above comparison shows that leaky surface acoustic waves are superior to Rayleigh wave mode surface waves in terms of propagation loss in liquids.

対電極fiz  ・112の入力交流により励振された
漏れ弾性表面波は、特定物質が吸着される層3上を伝搬
し、対電極121 ・122により出力交流になる。入
力交流と出力交流の位相差は、基板lOの表面を漏れ弾
性表面波が伝搬することによる遅延である。したがって
伝搬時間が変化すれば、位相差も変化する0層3上に特
定物質が吸着されると、2S;板lOの表面部の質量が
変化し、漏れ弾性表面波の伝搬速度が変化する。この位
相変化量を測定することにより、特定物質の検出が可能
となる。
The leaky surface acoustic waves excited by the input AC of the counter electrodes fiz 112 propagate on the layer 3 where the specific substance is adsorbed, and are converted into output AC by the counter electrodes 121 and 122. The phase difference between the input AC and the output AC is a delay due to propagation of the surface acoustic wave leaking through the surface of the substrate IO. Therefore, if the propagation time changes, the phase difference also changes. When a specific substance is adsorbed on the 0 layer 3, the mass of the surface portion of the 2S plate 1O changes, and the propagation speed of the leaky surface acoustic wave changes. By measuring this amount of phase change, it becomes possible to detect a specific substance.

位相変化量をΔφ、入力交流の周波数をfl、漏れ弾性
表面波の伝搬速度をV、伝搬速度の変化量をΔVとする
と、 (bは定数) の関係が成立つ、また、伝搬速度の変化量ΔVは、漏れ
弾性表面波伝搬速度に関する摂動法による計算により、 ΔV 。
If the amount of phase change is Δφ, the frequency of the input AC is fl, the propagation velocity of the leaky surface acoustic wave is V, and the amount of change in propagation velocity is ΔV, then the following relationship holds true (b is a constant), and the change in propagation velocity The quantity ΔV is calculated by the perturbation method regarding the leakage surface acoustic wave propagation velocity.

□〒cfビΔm・・・・・ (4) (Cは定数) の関係が成り立つ、ゆえに、 Δφ=bcf+2*Δm=−−−  (2)となる。□〒cf Δm・・・・・・(4) (C is a constant) The relationship holds, therefore, Δφ=bcf+2*Δm=−−− (2).

この(2)式は、従来の構成による場合の算出式(1)
と比較し、同型の式となっている。aとbcの値は、基
板10を構成する圧電材料の種類によって特有の値とな
るが、はぼ同程度である。
This formula (2) is the calculation formula (1) when using the conventional configuration.
Compared to , the formulas are of the same type. The values of a and bc have specific values depending on the type of piezoelectric material that constitutes the substrate 10, but they are approximately the same.

入力交流の周波数f1は、対電極1111el12と1
2+  ・122の形状により適宜決定される。
The frequency f1 of the input AC is between the counter electrodes 1111el12 and 1
2+ ・Determined appropriately depending on the shape of 122.

対電極111  ・112 と121@122の形状が
、例えばくし型電極の場合、現在、周波数f1が数GH
I まで実施可能である。この周波数f1は従来の構成
の場合の共振周波数をfOと比べ、十分高く出来る。
If the counter electrodes 111, 112 and 121@122 are, for example, comb-shaped electrodes, the frequency f1 is currently several GH
It is possible to implement up to I. This frequency f1 can be made sufficiently higher than the resonant frequency fO in the case of the conventional configuration.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明を適用する弾性波による液体中物質検出
センサを使用した検出装置の実施例である。
FIG. 1 shows an embodiment of a detection device using a sensor for detecting substances in liquid using elastic waves to which the present invention is applied.

同図の構成中10は圧電基板、1116112は交流電
圧入力用くし型電極、1210122は交流電圧出力用
くし型電極、3は特定物質を吸着する材料薄膜からなる
レセプタで、以上により本発明の検出ヤンサが構成され
る。15は発振器。
In the structure of the figure, 10 is a piezoelectric substrate, 1116112 is a comb-shaped electrode for AC voltage input, 1210122 is a comb-shaped electrode for AC voltage output, and 3 is a receptor made of a thin film of material that adsorbs a specific substance. Yansa is composed. 15 is an oscillator.

16は位相比較、器である。16 is a phase comparator.

発振器15で作られた入力信号は、入力用くし型電極1
11  @112により圧電基板10上に漏れ弾性表面
波を励振する。漏れ弾性表面波は、基板lO、レセプタ
3を伝搬し、出力用くし型電極121  ・122によ
り電気信号に変換される。この出力信号は、位相比較器
16にて発振器15で作られた入力信号と比較される。
The input signal generated by the oscillator 15 is transmitted to the input comb-shaped electrode 1.
11 @112 excites a leaky surface acoustic wave on the piezoelectric substrate 10. The leaked surface acoustic waves propagate through the substrate lO and the receptor 3, and are converted into electrical signals by the output comb-shaped electrodes 121 and 122. This output signal is compared with the input signal generated by the oscillator 15 in a phase comparator 16.

これら2信号の位相差は、入力用くし型電極111”l
12 と出力用くし型電極1216122の間の漏れ弾
性表面波の伝搬遅延時間である。被検液体7中の特定物
質がレセプタ3に吸着されると、漏れ弾性表面波の伝搬
速度が変化し、位相比較器16で位相変化量が測定でき
、特定物質の検出が可能となる。
The phase difference between these two signals is determined by the input comb-shaped electrode 111"l
12 and the output comb-shaped electrode 1216122 is the propagation delay time of the leaky surface acoustic wave. When the specific substance in the test liquid 7 is adsorbed by the receptor 3, the propagation speed of the leaked surface acoustic wave changes, and the amount of phase change can be measured by the phase comparator 16, making it possible to detect the specific substance.

第2図は本発明を適用する弾性波による液体中物質検出
センサを使用した検出装置の別な実施例である。
FIG. 2 shows another embodiment of a detection device using an elastic wave sensor for detecting substances in liquid to which the present invention is applied.

レセプタ3、圧電基板10、交流電圧入力用くし型電極
11+”l12.交流電圧出力用くし型電極121 ・
122からなる本発明の検出センサは第1図に示す実施
例と同一であり、検出のための回路部分が相違する0回
路部分は19が増幅器、20が移相器、21が周波数カ
ウンタである。入力用くし型電極111 ・112 に
加えられる電気信号は、漏れ弾性表面波に変換され、レ
セプタ3上を伝搬し、出力用くし型電極121  ・1
22にて再び電気信号に変換される。この電気信号は、
移相器20を経て増幅器19にて増幅され、入力用くし
型電極Ill  ・112 に加えられる。このループ
で一周分の位相差φa11 と増幅器19の増幅率Gお
よびループ内における他の損失Iとの間に次の関係が成
り立つ時、漏れ弾性表面波発振として発振する。
Receptor 3, piezoelectric substrate 10, comb-shaped electrode 11+''l12 for AC voltage input. comb-shaped electrode 121 for AC voltage output.
The detection sensor of the present invention consisting of 122 is the same as the embodiment shown in FIG. 1, except that the circuit portion for detection is different: 19 is an amplifier, 20 is a phase shifter, and 21 is a frequency counter. . The electrical signals applied to the input comb-shaped electrodes 111 and 112 are converted into leaky surface acoustic waves, propagate on the receptor 3, and are transmitted to the output comb-shaped electrodes 121 and 1.
At step 22, the signal is converted back into an electrical signal. This electrical signal is
It passes through the phase shifter 20, is amplified by the amplifier 19, and is applied to the input comb-shaped electrode Ill.112. When the following relationship holds between the phase difference φa11 for one round in this loop, the amplification factor G of the amplifier 19, and other losses I in the loop, oscillation occurs as leaky surface acoustic wave oscillation.

φa++=2nπ  (nは整数) G>I この発振周波数は、周波数カウンタ21によりカウント
される。被検液体7中の特定物質がレセプタ3に吸着さ
れると質量が増加し、漏れ弾性表面波の伝搬速度が変化
する。この位相差Δφは、第1図の実施例の場合と同様
、 Δ V Δφ=b’f2− ■ となり、ΔV/Vは次式により表現される。
φa++=2nπ (n is an integer) G>I This oscillation frequency is counted by the frequency counter 21. When the specific substance in the test liquid 7 is adsorbed by the receptor 3, the mass increases and the propagation speed of the leaky surface acoustic wave changes. This phase difference Δφ is ΔV Δφ=b'f2− (2) as in the embodiment shown in FIG. 1, and ΔV/V is expressed by the following equation.

Δ V −= c ’ f 2Δm b“およびCoは定数、f2は発振周波数、である、ま
た、入力用くし型電極1116112 と出力用くし型
電極121 ・122との間の位相は。
ΔV −=c′ f 2Δm b”, Co is a constant, f2 is the oscillation frequency, and the phase between the input comb-shaped electrode 1116112 and the output comb-shaped electrode 121 and 122 is.

周波数に対してほぼ直線位相となるため、Δf、Δφ f2 °φ Δf:b’c’f2Δm、、、、、(5)と表現出来る
6発振周波数f2は数GH2まで発振可能であり、液体
中の特定物質を高感度で検出できる。
Since the phase is almost linear with respect to the frequency, the 6 oscillation frequency f2, which can be expressed as Δf, Δφ f2 °φ Δf:b'c'f2Δm, (5), can oscillate up to several GH2, and is specific substances can be detected with high sensitivity.

第3図は本発明を適用する弾性波による液体中物質検出
センサを使用した検出装置の別な実施例である。同図の
221・222は入力用くし型電極、231・232は
出力用くし型電極、24は増幅器、25は移相器である
。入力用電極221・222、出力用電極231・23
2、増幅器24、移相器25により閉ループを構成し、
発振器とする。
FIG. 3 shows another embodiment of a detection device using a substance-in-liquid detection sensor using elastic waves to which the present invention is applied. In the figure, 221 and 222 are input comb-shaped electrodes, 231 and 232 are output comb-shaped electrodes, 24 is an amplifier, and 25 is a phase shifter. Input electrodes 221 and 222, output electrodes 231 and 23
2. Construct a closed loop with an amplifier 24 and a phase shifter 25,
Use it as an oscillator.

この信号を参照信号として周波数カウンタ21に入力す
る。入力用電極11+・112、出力用電極12+・1
22、増幅器19、移相器20により構成される閉ルー
プ差は、レセプタ3の有無のみとなる。したがって基板
10の温度変化等による周波数変化は、参照信号の周波
数も変化させ、特定物質のレセプタ3への吸着のみを検
出できる。
This signal is input to the frequency counter 21 as a reference signal. Input electrodes 11+/112, output electrodes 12+/1
22, the amplifier 19, and the phase shifter 20, the only difference in the closed loop is the presence or absence of the receptor 3. Therefore, a change in frequency due to a change in the temperature of the substrate 10 or the like changes the frequency of the reference signal, and only the adsorption of the specific substance to the receptor 3 can be detected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の弾性波による液体中物質
検出センサは、漏れ弾性表面波を利用したもので、被検
液体中の特定物質を検出する感度を著しく向上させると
いう利点がある。
As described above, the sensor for detecting a substance in liquid using elastic waves of the present invention utilizes leaky surface acoustic waves, and has the advantage of significantly improving the sensitivity for detecting a specific substance in a sample liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する検出センサを使用した装置の
実施例のブロック回路図、第2図は同じく本発明を適用
する検出センサを使用した装置の別な実施例のブロック
回路図、第3図は同じく別な実施例のブロック回路図、
第4図は従来の検出センサを使用した装置の実施例のブ
ロック回路図である。 136.水晶振動子
FIG. 1 is a block circuit diagram of an embodiment of a device using a detection sensor to which the present invention is applied, and FIG. 2 is a block circuit diagram of another embodiment of a device using a detection sensor to which the present invention is applied. Figure 3 is a block circuit diagram of another embodiment,
FIG. 4 is a block circuit diagram of an embodiment of a device using a conventional detection sensor. 136. Crystal oscillator

Claims (1)

【特許請求の範囲】[Claims] 1、漏れ弾性表面波が発生する圧電体材料およびカット
面からなる基板の同一表面上に、交流電圧を印加する対
電極と交流電圧を発生する対電極とを設け、その両方の
対電極の中間部分に特定物質を吸着する層を設けたこと
を特徴とする弾性波による液体中物質検出センサ。
1. A counter electrode for applying an AC voltage and a counter electrode for generating an AC voltage are provided on the same surface of a substrate made of a piezoelectric material and a cut surface where leakage surface acoustic waves are generated, and a counter electrode for generating an AC voltage is provided between the two counter electrodes. A sensor for detecting substances in liquid using elastic waves, which is characterized by having a layer that adsorbs specific substances.
JP8613687A 1987-04-08 1987-04-08 Sensor for detecting material in liquid by acoustic wave Pending JPS63250560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8613687A JPS63250560A (en) 1987-04-08 1987-04-08 Sensor for detecting material in liquid by acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8613687A JPS63250560A (en) 1987-04-08 1987-04-08 Sensor for detecting material in liquid by acoustic wave

Publications (1)

Publication Number Publication Date
JPS63250560A true JPS63250560A (en) 1988-10-18

Family

ID=13878301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8613687A Pending JPS63250560A (en) 1987-04-08 1987-04-08 Sensor for detecting material in liquid by acoustic wave

Country Status (1)

Country Link
JP (1) JPS63250560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389673B2 (en) 2004-09-10 2008-06-24 Murata Manufacturing Co., Ltd. Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same
US7437907B2 (en) 2004-09-10 2008-10-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid and apparatus for detecting substance in liquid using the same
US7656070B2 (en) 2005-04-06 2010-02-02 Murata Manufacturing Co., Ltd. Surface wave sensor apparatus
JP2010114880A (en) * 2008-11-04 2010-05-20 Samsung Electronics Co Ltd Surface acoustic wave element, surface acoustic wave device and methods for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7389673B2 (en) 2004-09-10 2008-06-24 Murata Manufacturing Co., Ltd. Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same
US7437907B2 (en) 2004-09-10 2008-10-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid and apparatus for detecting substance in liquid using the same
US7656070B2 (en) 2005-04-06 2010-02-02 Murata Manufacturing Co., Ltd. Surface wave sensor apparatus
JP2010114880A (en) * 2008-11-04 2010-05-20 Samsung Electronics Co Ltd Surface acoustic wave element, surface acoustic wave device and methods for manufacturing the same

Similar Documents

Publication Publication Date Title
US6033852A (en) Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands
US5932953A (en) Method and system for detecting material using piezoelectric resonators
US4905701A (en) Apparatus and method for detecting small changes in attached mass of piezoelectric devices used as sensors
US4467235A (en) Surface acoustic wave interferometer
US5795993A (en) Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent
KR100706561B1 (en) Method and device for operating a microacoustic sensor array
US7762124B2 (en) Sensor for detecting substance in liquid
JP6604238B2 (en) Elastic wave sensor
Ferrari et al. Development and application of mass sensors based on flexural resonances in alumina beams
US4199990A (en) Elastic surface wave accelerometer
Jacob et al. Acoustic nonlinearity parameter measurements in solids using the collinear mixing of elastic waves
JPH03209157A (en) Instrument for measuring solution by utilizing surface acoustic wave and method for measuring specific material in solution
Walton et al. Gravimetric biosensors based on acoustic waves in thin polymer films
JPS63250560A (en) Sensor for detecting material in liquid by acoustic wave
US5532538A (en) Sensing and signal processing devices using quasi-SH (shear horizontal) acoustic waves
Giesler et al. Electrostatically excited and capacitively detected flexural plate waves on thin silicon nitride membranes with chemical sensor applications
Wenzel et al. Flexural plate-wave sensor: chemical vapor sensing and electrostrictive excitation
Josse et al. On the mass sensitivity of acoustic-plate-mode sensors
JP4773656B2 (en) Frequency warping to improve the S / N ratio of the resonator
JPS62190905A (en) Surface acoustic wave device
Liu et al. Effect of a biasing electric field on the propagation of antisymmetric Lamb waves in piezoelectric plates
US5218858A (en) Thin rod flexural acoustic wave sensors
JP2008180668A (en) Lamb wave type high-frequency sensor device
JPH026728A (en) Measuring instrument for liquid viscosity by surface acoustic wave
JPH0755680A (en) Lamb wave device