JPS63246873A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS63246873A
JPS63246873A JP8164387A JP8164387A JPS63246873A JP S63246873 A JPS63246873 A JP S63246873A JP 8164387 A JP8164387 A JP 8164387A JP 8164387 A JP8164387 A JP 8164387A JP S63246873 A JPS63246873 A JP S63246873A
Authority
JP
Japan
Prior art keywords
heat
resisting
metal
resistant
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8164387A
Other languages
Japanese (ja)
Other versions
JPH0671082B2 (en
Inventor
Noboru Motai
罍 昇
Tomoaki Soma
相馬 友明
Katsuo Shirai
白井 勝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Precision Circuits Inc
Seikosha KK
Original Assignee
Nippon Precision Circuits Inc
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Precision Circuits Inc, Seikosha KK filed Critical Nippon Precision Circuits Inc
Priority to JP62081643A priority Critical patent/JPH0671082B2/en
Publication of JPS63246873A publication Critical patent/JPS63246873A/en
Publication of JPH0671082B2 publication Critical patent/JPH0671082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Abstract

PURPOSE:To obtain a thin film transistor having a gate electrode, which is not eroded with etching liquid, without impairing the characteristics of the gate, by constituting a gate electrode material by using heat-resisting, strong- acid-resisting metal and heat-resisting, low-resistance metal. CONSTITUTION:A gate electrode is composed of heat-resisting, strong-acid- resisting metal and heat-resisting, low resistance metal. Namely, e.g., the gate electrode 2 on a substrate 1 is formed by laminating the heat-resisting, strong- acid-resisting metal 2a comprising tantalum and heat-resisting, low resistance metal 2b comprising molybdenum Mo, nickel chromium alloy NiCr, chromium Cr, nickel Ni and the like alternately by sputtering. It is desirable to use the heat-resisting, strong-acid-resisting metal 2a comprising the tantalum for the film, which is sputtered at first on the substrate, but the other low resistance metal 2b can be used. In this way, the gate electrode is provided with corrosion resistance against etching liquid for a transparent electrode film without imparing the characteristics of the gate. Thus a thin film transistor without breakdown of a gate line is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は薄膜トランジスタに関するもので、とりわけ
液晶表示パネルなどに使用される薄膜トランジスタに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to thin film transistors, and particularly to thin film transistors used in liquid crystal display panels and the like.

[従来の技術] 従来の薄膜トランジスタの構成について、液晶表示パネ
ルについて実施した例を製造工程を追って説明する。
[Prior Art] Regarding the structure of a conventional thin film transistor, an example implemented for a liquid crystal display panel will be explained following the manufacturing process.

ガラスまたは石英よりなる基板1の上にモリブデン、ニ
ッケルクロム合金、タンタル、クロムなどの耐熱性金属
よりなるゲート電極2をパターン形成する。さらにプラ
ズマCVD法により絶縁膜3としてシリコン窒化膜また
はシリコン酸化膜を形成後、イントリンシックアモルフ
ァスシリコン膜4、リンPをドープしたn型アモルファ
スシリコン膜5を連続で成膜する(第3図A)。その後
イントリンシックアモルファスシリコン膜4、n型アモ
ルファスシリコン膜5の必要部分を残してエツチングす
るdこの上にソース電極6、ドレイン電極7をITOな
どの透明電極でパターン形成し、画素電極8はドレイン
電極7と同時に接続して形成する(第3図B)。画素電
極8はドレイン電極7とは別に形成してもよいことはも
ちろんである。ソース電極6、ドレイン電極7を形成後
、これら電極をマスクにしてn型アモルファスシリコン
膜5を部分的にエツチングして、イントリンシックアモ
ルファスシリコン膜4を残してチャンネル9を形成する
。パシベーション膜10としてシリコン酸化膜またはシ
リコン窒化膜をプラズマCVD法にて成膜する(第3図
C)。さらにアルミニウムやモリブデンなどにより光遮
蔽膜11を形成し、液晶配向膜12としてポリイミド型
の樹脂やシリコン酸化膜を形成する(第3図D)。
A gate electrode 2 made of a heat-resistant metal such as molybdenum, nickel-chromium alloy, tantalum, or chromium is patterned on a substrate 1 made of glass or quartz. Furthermore, after forming a silicon nitride film or a silicon oxide film as an insulating film 3 by plasma CVD method, an intrinsic amorphous silicon film 4 and an n-type amorphous silicon film 5 doped with phosphorus P are successively formed (FIG. 3A). . After that, the intrinsic amorphous silicon film 4 and the n-type amorphous silicon film 5 are etched, leaving the necessary parts.d A source electrode 6 and a drain electrode 7 are patterned with transparent electrodes such as ITO on this, and the pixel electrode 8 is the drain electrode. 7 and formed at the same time (FIG. 3B). Of course, the pixel electrode 8 may be formed separately from the drain electrode 7. After forming the source electrode 6 and drain electrode 7, the n-type amorphous silicon film 5 is partially etched using these electrodes as a mask to form a channel 9, leaving the intrinsic amorphous silicon film 4. A silicon oxide film or a silicon nitride film is formed as a passivation film 10 by plasma CVD (FIG. 3C). Furthermore, a light shielding film 11 is formed of aluminum, molybdenum, etc., and a polyimide type resin or silicon oxide film is formed as a liquid crystal alignment film 12 (FIG. 3D).

[発明が解決しようとする問題点] 上記従来例において、ゲート電極2をMOlNicr、
Cr、Ni等の金属材料で形成した場合、これら金属は
後工程のソース電極6、ドレイン電極7、画素電極8を
形成するためのITOのエツチング液、たとえば塩酸と
塩化鉄系のエツチング液に侵される。ゲート電極2を覆
うゲート絶縁膜のシリコン窒化膜やシリコン酸化膜にピ
ンホールやフラッフがなければ問題がないが、実際には
ピンホールやフラッフが存在し、そこからITOのエツ
チング液がしみ込み、ゲート電極を侵す。
[Problems to be Solved by the Invention] In the above conventional example, the gate electrode 2 is made of MOlNicr,
When formed from metal materials such as Cr and Ni, these metals are eroded by an ITO etching solution, such as a hydrochloric acid and iron chloride based etching solution, for forming the source electrode 6, drain electrode 7, and pixel electrode 8 in the subsequent process. It will be done. There is no problem if there are no pinholes or fluffs in the silicon nitride film or silicon oxide film of the gate insulating film that covers the gate electrode 2, but in reality, pinholes and fluffs exist, and the ITO etching solution seeps through them. Attacks the gate electrode.

ゲート電極材料として、ITOのエツチング液や強酸に
強いTaを用いると、ゲートのライン抵抗がMoで形成
した場合より2.5〜10倍も高くなり、寄生容量と併
せてゲートパルスのなまりを生ずる。したがって、アク
ティブマトリックス駆動表示パネル等に応用した場合、
表示品質の低下を生じる。
If Ta, which is resistant to ITO etching solution and strong acids, is used as the gate electrode material, the line resistance of the gate will be 2.5 to 10 times higher than when it is made of Mo, which, together with the parasitic capacitance, will cause the gate pulse to become blunt. . Therefore, when applied to active matrix drive display panels, etc.
This results in a decrease in display quality.

こうした欠点を解決するために耐強酸性と抵抗値の両方
を満足させるために、MOなどの金属材の上にエツチン
グ液に強いTaを被覆することも考えられるが、これだ
とスパッタに手間がかかり、パターニング工程が2度に
なる、などの欠点がある。
In order to solve these drawbacks and satisfy both strong acid resistance and resistance value, it is possible to coat a metal material such as MO with Ta, which is resistant to etching liquids, but this would require less time and effort for sputtering. There are drawbacks such as the patterning process being repeated twice.

[問題点を解決するための手段] この発明はゲート電極材料として耐熱、耐強酸性金属と
耐熱、低抵抗金属とを用いて構成することにより、ゲー
ト特性を損なわずに、エツチング液に侵されないゲート
電極を有する薄膜トランジスタを提供するものである。
[Means for Solving the Problems] The present invention uses a heat-resistant, strong acid-resistant metal and a heat-resistant, low-resistance metal as gate electrode materials, so that the gate electrode is not attacked by an etching solution without impairing the gate characteristics. A thin film transistor having a gate electrode is provided.

[実施例] この発明の実施例が上記従来例に対して特徴を有する点
はゲート電極の構成にある。
[Embodiment] The feature of the embodiment of the present invention compared to the above-mentioned conventional example lies in the structure of the gate electrode.

第1図の第1の実施例では基板1の上のゲート電極2は
タンタルによりなる耐熱、耐強酸性金属2aと、タンタ
ル以外のモリブデンM o 、ニッケルクロム合金N 
iCr sクロムCr、ニッケルNiなどの耐熱、低抵
抗金属2bとが交互にスパッタにより積層形成されてい
る。この場合、耐強酸性金属2aの各膜厚は10nm以
下、好ましくは3〜5nm以下にする。10nm以上に
するとエツチング液の浸み込みでゲート電極パターンが
侵される。このスパッタにあたっては、同一スパッタ用
ターゲットに2種類の金属材料を配置してもよいし、二
つのターゲットを交互にスパッタしてもよい。基板1に
最初にスパッタされる膜はタンタルの耐熱、耐強酸性金
属2aが好ましいが他方の低抵抗金属2bであってもよ
い。
In the first embodiment shown in FIG. 1, a gate electrode 2 on a substrate 1 is made of a heat-resistant, strong acid-resistant metal 2a made of tantalum, molybdenum M o other than tantalum, and a nickel-chromium alloy N.
iCr s Heat-resistant, low-resistance metals 2b such as chromium Cr and nickel Ni are laminated alternately by sputtering. In this case, each film thickness of the strong acid-resistant metal 2a is 10 nm or less, preferably 3 to 5 nm or less. If the thickness is 10 nm or more, the gate electrode pattern will be attacked by the etching solution. In this sputtering, two types of metal materials may be placed on the same sputtering target, or the two targets may be sputtered alternately. The film first sputtered onto the substrate 1 is preferably a heat-resistant, strong acid-resistant metal such as tantalum 2a, but may be the other low-resistance metal 2b.

第2図の第2の実施例では基板1上のゲート電極2はタ
ンタルよりなる耐熱、耐強酸性金属2aとモリブデンな
どの耐熱、低抵抗金属2bとがミックス状態で形成され
ている。スパッタにあたってはタンタルとそれ以外のモ
リブデンなどの金属とを粉末状にしたものをミックスし
た焼結型のものをターゲットにしておこなえばよい。タ
ンタルの含有割合は1〜99%で可能であるが、通常3
0〜70%位が用いられる。なお二種類の金属は合金状
態であってもよい。
In the second embodiment shown in FIG. 2, the gate electrode 2 on the substrate 1 is formed of a mixture of a heat-resistant, strong acid-resistant metal 2a made of tantalum and a heat-resistant, low-resistance metal 2b such as molybdenum. Sputtering may be performed using a sintered target that is a mixture of powdered tantalum and other metals such as molybdenum. The content ratio of tantalum can be 1 to 99%, but it is usually 3%.
Approximately 0 to 70% is used. Note that the two types of metals may be in an alloy state.

上記第1実施例でタンタルよりなる耐熱、耐強酸性金属
2aとモリブデンよりなる耐熱、低抵抗金属2bを、5
0wt%ずつの比率で形成したもの、および第2の実施
例でタンタルとモリブデンを50wt%ずつの比で合金
化したものの抵抗値はモリブデンだけで形成した場合の
1.5倍程度であり、抵抗値の著しい増加はなかった。
In the first embodiment, the heat-resistant, strong acid-resistant metal 2a made of tantalum and the heat-resistant, low-resistance metal 2b made of molybdenum are
The resistance value of the alloy formed with tantalum and molybdenum in a ratio of 0 wt% each and the alloy of tantalum and molybdenum in a ratio of 50 wt% in the second example is about 1.5 times that of the case formed with only molybdenum, and the resistance is There was no significant increase in value.

またこれらを塩酸と塩化鉄系のITOエツチング液に浸
してITOのエツチング時間だけ漬けたが、ゲート電極
パターンのサイドエツチングや電極膜のハガレは生じな
かった。また薄膜トランジスタ製造プロセスに入れたと
ころ、ゲートラインの断線が減少しITOエッチング工
程の影響は認められなかった。
Furthermore, when these were immersed in an ITO etching solution containing hydrochloric acid and iron chloride for the ITO etching time, no side etching of the gate electrode pattern or peeling of the electrode film occurred. Furthermore, when it was used in a thin film transistor manufacturing process, the number of disconnections in the gate line was reduced, and no influence of the ITO etching process was observed.

上記実施例では耐熱、耐強酸性金属2aとしてタンタル
を用いているが、その代りにタンタルとシリコンの合金
Ta512にしてもよく、またその中に微量のボロンや
炭素、窒素、酸素等が混入したものであってもよい。
In the above embodiment, tantalum is used as the heat-resistant and strong acid-resistant metal 2a, but an alloy of tantalum and silicon, Ta512, may be used instead, and a trace amount of boron, carbon, nitrogen, oxygen, etc. may be mixed therein. It may be something.

さらに耐熱、強酸性金属2aとしてはタンタルの代りに
モリブデン、タングステン、チタンなどの耐熱、低抵抗
金属のシリサイドを用いてもよい。
Further, as the heat-resistant, strongly acidic metal 2a, a silicide of a heat-resistant, low-resistance metal such as molybdenum, tungsten, or titanium may be used instead of tantalum.

また耐熱、耐強酸性金属2aおよび耐熱、低抵抗金属2
bはそれぞれ一種類ずつの材料より構成するものに限ら
ず、二種類以上の材料を用いて積層あるいは合金などに
してもよい。
Also heat resistant, strong acid resistant metal 2a and heat resistant, low resistance metal 2
Each b is not limited to being made of one type of material, but may be laminated or alloyed using two or more types of materials.

ゲート電極2の形成方法としては、スパッタ法に限るも
のではなく、蒸着法やCVD法を用いてもよい。
The method for forming the gate electrode 2 is not limited to the sputtering method, and a vapor deposition method or a CVD method may be used.

[発明の効果] この発明によればゲート電極はゲート特性を損わずに透
明電極膜のエツチング液に対する耐蝕性を有するのでゲ
ートラインの断線の少ない薄膜トランジスタを得ること
ができる。
[Effects of the Invention] According to the present invention, since the gate electrode has corrosion resistance to the etching solution of the transparent electrode film without impairing the gate characteristics, it is possible to obtain a thin film transistor with less disconnection of the gate line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の断面図、第2図は他の実施
例の断面図、第3図(A)〜(D)は従来例における薄
膜トランジスタの製造工程を追って示す断面図である。 2・・・・ゲート電極 2a・・・耐熱、耐強酸性金属 2b・・・耐熱、低抵抗金属。 以  上
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a sectional view of another embodiment, and Figs. 3 (A) to (D) are sectional views sequentially showing the manufacturing process of a thin film transistor in a conventional example. . 2...Gate electrode 2a...Heat resistant, strong acid resistant metal 2b...Heat resistant, low resistance metal. that's all

Claims (5)

【特許請求の範囲】[Claims] (1)ゲート電極を、耐熱、耐強酸性金属と耐熱、低抵
抗金属とより構成したことを特徴とする薄膜トランジス
タ。
(1) A thin film transistor characterized in that the gate electrode is composed of a heat-resistant, strong acid-resistant metal and a heat-resistant, low-resistance metal.
(2)ゲート電極を、耐熱、耐強酸性金属と耐熱、低抵
抗金属とを積層させて構成したことを特徴とする特許請
求の範囲第1項の薄膜トランジスタ。
(2) The thin film transistor according to claim 1, wherein the gate electrode is formed by laminating a heat-resistant, strong acid-resistant metal and a heat-resistant, low-resistance metal.
(3)ゲート電極を、耐熱、耐強酸性金属と耐熱、低抵
抗金属との混合または合金により構成したことを特徴と
する特許請求の範囲第1項の薄膜トランジスタ。
(3) The thin film transistor according to claim 1, wherein the gate electrode is made of a mixture or alloy of a heat-resistant, strong acid-resistant metal and a heat-resistant, low-resistance metal.
(4)上記耐熱、耐強酸性金属はタンタルである特許請
求の範囲第1項の薄膜トランジスタ。
(4) The thin film transistor according to claim 1, wherein the heat-resistant and strong acid-resistant metal is tantalum.
(5)上記耐熱、耐強酸性金属は耐熱性金属ののシリサ
イドである特許請求の範囲第1項の薄膜トランジスタ。
(5) The thin film transistor according to claim 1, wherein the heat-resistant and strong acid-resistant metal is a silicide of a heat-resistant metal.
JP62081643A 1987-04-02 1987-04-02 Thin film transistor Expired - Fee Related JPH0671082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62081643A JPH0671082B2 (en) 1987-04-02 1987-04-02 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62081643A JPH0671082B2 (en) 1987-04-02 1987-04-02 Thin film transistor

Publications (2)

Publication Number Publication Date
JPS63246873A true JPS63246873A (en) 1988-10-13
JPH0671082B2 JPH0671082B2 (en) 1994-09-07

Family

ID=13752021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62081643A Expired - Fee Related JPH0671082B2 (en) 1987-04-02 1987-04-02 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH0671082B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105325A (en) * 1989-09-19 1991-05-02 Sharp Corp Active matrix display device
US5070379A (en) * 1989-06-29 1991-12-03 Oki Electric Industry Co., Ltd. Thin-film transistor matrix for active matrix display panel with alloy electrodes
WO1992006504A1 (en) * 1990-10-05 1992-04-16 General Electric Company Thin film transistor having an improved gate structure and gate coverage by the gate dielectric
WO1992006490A1 (en) * 1990-10-05 1992-04-16 General Electric Company Device self-alignment by propagation of a reference structure's topography
US5225364A (en) * 1989-06-26 1993-07-06 Oki Electric Industry Co., Ltd. Method of fabricating a thin-film transistor matrix for an active matrix display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110165A (en) * 1983-11-21 1985-06-15 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS6142962A (en) * 1984-08-07 1986-03-01 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS62145870A (en) * 1985-12-20 1987-06-29 Matsushita Electric Ind Co Ltd Thin film transistor
JPS62205656A (en) * 1986-03-06 1987-09-10 Toshiba Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110165A (en) * 1983-11-21 1985-06-15 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS6142962A (en) * 1984-08-07 1986-03-01 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS62145870A (en) * 1985-12-20 1987-06-29 Matsushita Electric Ind Co Ltd Thin film transistor
JPS62205656A (en) * 1986-03-06 1987-09-10 Toshiba Corp Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225364A (en) * 1989-06-26 1993-07-06 Oki Electric Industry Co., Ltd. Method of fabricating a thin-film transistor matrix for an active matrix display panel
US5070379A (en) * 1989-06-29 1991-12-03 Oki Electric Industry Co., Ltd. Thin-film transistor matrix for active matrix display panel with alloy electrodes
JPH03105325A (en) * 1989-09-19 1991-05-02 Sharp Corp Active matrix display device
WO1992006504A1 (en) * 1990-10-05 1992-04-16 General Electric Company Thin film transistor having an improved gate structure and gate coverage by the gate dielectric
WO1992006490A1 (en) * 1990-10-05 1992-04-16 General Electric Company Device self-alignment by propagation of a reference structure's topography
GB2253742A (en) * 1990-10-05 1992-09-16 Gen Electric Device self-alignment by propagation of a reference structure's topography
US5340758A (en) * 1990-10-05 1994-08-23 General Electric Company Device self-alignment by propagation of a reference structure's topography

Also Published As

Publication number Publication date
JPH0671082B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
CN1323319C (en) Method for manufacturing thin film transistor array
US7289183B2 (en) Copper conducting wire structure and fabricating method thereof
US20110147753A1 (en) Display device, copper alloy film for use therein, and copper alloy sputtering target
JP2001223365A (en) Thin film transistor and its manufacturing method
JP2006191013A (en) Thin-film transistor substrate and its manufacturing method, and liquid crystal display
JPH04229595A (en) Thin film matrix configuration especially designed for electro luminescent display
JP2000314897A (en) Liquid crystal display device
JP2002353222A (en) Metal wiring, thin film transistor and display device using the same
JPS63246873A (en) Thin film transistor
JPH0555575A (en) Semiconductor device
JP4316117B2 (en) Thin film transistor manufacturing method
JP2001318389A (en) Transparent electrode substrate, its manufacturing method and liquid crystal device
JP3035101B2 (en) Electrode substrate and manufacturing method thereof
US5693983A (en) Thin-film structure with conductive molybdenum-chromium line
JPH06294973A (en) Array substrate for liquid crystal display device
JP2000199912A (en) Active matrix type liquid crystal display device and its production
JPH02132833A (en) Thin film wiring
KR100275953B1 (en) Method of manufacturing thin film transistor
JPH03196021A (en) Matrix type display device
JP2505662B2 (en) Method for manufacturing thin film transistor
JPH05303111A (en) Active matrix substrate and its production
JPH0766422A (en) Array substrate for liquid crystal display device
JPH07175419A (en) Display device, nonlinear switching element and its manufacture
JPS6113227A (en) Method for connecting electrode wiring
JP2005317579A (en) Thin-film transistor, thin-film transistor substrate and manufacturing method therefor, and liquid crystal display using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees