JPS63246862A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63246862A
JPS63246862A JP8151687A JP8151687A JPS63246862A JP S63246862 A JPS63246862 A JP S63246862A JP 8151687 A JP8151687 A JP 8151687A JP 8151687 A JP8151687 A JP 8151687A JP S63246862 A JPS63246862 A JP S63246862A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
electrode
bipolar transistor
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8151687A
Other languages
Japanese (ja)
Inventor
Norio Kususe
楠瀬 典男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8151687A priority Critical patent/JPS63246862A/en
Publication of JPS63246862A publication Critical patent/JPS63246862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Abstract

PURPOSE:To make it possible to form electrodes readily at the same time, by making the polycrystalline silicon film of each electrode of the emitter, base and collector of a bipolar transistor to be one half or less the thickness of the polycrystalline silicon film of the gate electrode of a MOS transistor. CONSTITUTION:A gate electrode 13 of a MOS transistor and electrodes 10, 11 and 9 of the emitter, base and collector of a bipolar transistor comprise polycrystalline thin films. The thickness of the polycrystalline silicon thin film in the bipolar transistor is made to be one half or less the polycrystalline silicon thin film of the gate electrode 13 of the MOS transistor. The electrodes of the bipolar transistors are isolated with an insulating material 4, which is obtained by the selective oxidation of the polycrystalline silicon thin film. Thus the electrodes can be formed at the same time. The thickness of the polycrystalline silicon film of each electrode can be made to be the optimum thickness. Therefore, the characteristics of the electrodes are not impaired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一つの半導体基板上に少なくともMOSトラ
ンジスタとバイポーラトランジスタとバイポーラトラン
ジスタとを有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having at least a MOS transistor, a bipolar transistor, and a bipolar transistor on one semiconductor substrate.

〔従来の技術〕[Conventional technology]

近年、バイポーラ素子とCMO8素子を同一半導体基板
上に集積化しバイポーラ素子が有する高速性とCMO8
素子が有する低消費電力という画素子の利点を併せ持っ
た複合化半導体装置としてBi−MOS  或いはBi
−CMO8半導体装置が実用化されている。この様な複
合化半導体装置においては、相互の素子特性を犠牲にす
ることなく、個々の素子特性を生かし相互に補完する特
性を有する事が重要である。
In recent years, bipolar elements and CMO8 elements have been integrated on the same semiconductor substrate, and the high speed of bipolar elements and CMO8 elements have been integrated.
Bi-MOS or Bi
-CMO8 semiconductor devices have been put into practical use. In such a composite semiconductor device, it is important to have characteristics that complement each other by making use of the characteristics of individual elements without sacrificing the characteristics of each element.

シリコンゲート電極を有するMOSトランジスタにおい
ては、周知の如くシリコンゲート電極を信号線等の配線
層として利用すふために不純物を添加して抵抗を充分小
さくすることが一般的である。この目的に例えば不純物
リンが用いられ、こをを前記シリコンゲート電極に添加
するととで層抵抗を20Ω/口程度まで下げることがで
きる。
As is well known, in a MOS transistor having a silicon gate electrode, in order to use the silicon gate electrode as a wiring layer for a signal line or the like, it is common to add impurities to make the resistance sufficiently small. For this purpose, for example, impurity phosphorus is used, and by adding it to the silicon gate electrode, the layer resistance can be lowered to about 20 Ω/hole.

シリコンゲート電極の材質は一般的に多結晶シリコン薄
膜が使用されており、多結晶シリコン膜の膜厚は前記の
如く配線層として信号線等に利用すふ場合には厚い方が
よく、一方多結晶シリコンの加工性精度からは薄い方が
望まれる。従って、該多結晶シリコン膜厚は要求される
MOSトランジスタの性能によっても異なるが、0.3
 So、5μm程度の範囲で使われている。
The material of the silicon gate electrode is generally a polycrystalline silicon thin film, and as mentioned above, the thicker the polycrystalline silicon film is, the better when it is used as a wiring layer for signal lines, etc. From the viewpoint of machinability accuracy of crystalline silicon, a thinner one is desirable. Therefore, the thickness of the polycrystalline silicon film varies depending on the required performance of the MOS transistor, but is 0.3
So, it is used in a range of about 5 μm.

一方、多結晶シリコンでエミッタ・ベース・コレクタ電
極が構成されているバイポーラNPNトランジスタにお
いては、エミッタ・ベース・コレクタの各領域に導入さ
れたのと同一不純物が前記多結晶シリコン電極にも添加
されていることが一般的である。
On the other hand, in a bipolar NPN transistor whose emitter, base, and collector electrodes are made of polycrystalline silicon, the same impurities introduced into each region of the emitter, base, and collector are also doped into the polycrystalline silicon electrode. It is common for there to be.

又、シリコンゲート電極、エミッタ・ベース・コレクタ
電極はドライエツチングにより形成されている。この際
、多結晶シリコンに添加されている不純物の1!11g
4、濃度等の違いによりエツチング速度が大巾に異なる
。ドライエツチングに用いられるガスの種類、組成、流
量、圧力等の電性を変ることによりエツチング速度を変
化することができるが、多結晶シリコンに添加する不純
物の種類等の差によって生じるエツチング速度の差まで
をおぎなう事は出来ない。この際、多結晶シリコン膜厚
を薄くすればある程度の効果は認められるが、プロセス
上の問題により各電極部分に応じた膜厚にすることは困
難である。
Furthermore, the silicon gate electrode and emitter/base/collector electrodes are formed by dry etching. At this time, 1!11g of impurities added to polycrystalline silicon
4. Etching speed varies widely due to differences in concentration, etc. The etching rate can be changed by changing the type, composition, flow rate, pressure, etc. of the gas used for dry etching, but the etching rate may vary depending on the type of impurity added to the polycrystalline silicon. It is not possible to cover that. At this time, if the polycrystalline silicon film is made thinner, some effect can be recognized, but due to process problems, it is difficult to make the film thickness suitable for each electrode portion.

尚、多結晶シリコン膜に添加した不純物により、各々エ
ミッタ・ベース・コレクタ領域が形成されるNPNトラ
ンジスタにおいて、多結晶シリコン膜の厚さll120
00 X以下と出来るだけ薄い方が良好な特性を得るの
で好ましい。
In addition, in an NPN transistor in which the emitter, base, and collector regions are formed by impurities added to the polycrystalline silicon film, the thickness of the polycrystalline silicon film is 120 mm.
It is preferable that the thickness be as thin as possible, such as 00X or less, since better characteristics can be obtained.

〔発明が解決しようとする問題点3 種類の異なる不純物が添加された多結晶シリコンを電、
甑として用いる場合には、前述した理由により同時に形
成出来ない問題が生じる。又、MOSトランジスタとN
PNトランジスタにおける多結晶シリコン電極の最適膜
厚が異なっている。従って、Bi−0MO8或はBi−
MOS 半導体装置の様な複合化半導体装置を実現する
のに際して相互の素子特性を犠牲にすることなく同一半
導体基板に組み込むためKは製造工程が長くなる等の経
済的損失が大きくなるという欠点がある。
[Problems to be solved by the invention: Polycrystalline silicon doped with different types of impurities is
When used as a koshi, there arises a problem that it cannot be formed at the same time due to the above-mentioned reason. Also, MOS transistor and N
The optimum film thickness of the polycrystalline silicon electrode in a PN transistor is different. Therefore, Bi-0MO8 or Bi-
When realizing a composite semiconductor device such as a MOS semiconductor device, K has the drawback of increasing the economic loss due to longer manufacturing process because it is integrated into the same semiconductor substrate without sacrificing the characteristics of each element. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、Bi−0MO8或はBi−MO8半導体装置
において、MOSトランジスタのゲート電極とバイポー
ラトランジスタのエミッタ・べ・ス・コレクタ電極が多
結晶シリコン薄膜から成り、バイポーラトランジスタに
おける該多結晶シリコン薄膜の膜厚は、MOSトランジ
スタのゲート電極のそれよりも半分以下であるととf:
特徴とする。
The present invention provides a Bi-0MO8 or Bi-MO8 semiconductor device in which the gate electrode of a MOS transistor and the emitter-base-collector electrode of a bipolar transistor are made of a polycrystalline silicon thin film; The film thickness is less than half that of the gate electrode of the MOS transistor f:
Features.

さらに、バイポーラトランジスタの各電極間は、前記多
結晶シリコン薄膜が選択酸化された絶縁物で分離されて
いること全特徴とする。
Further, each electrode of the bipolar transistor is characterized in that the polycrystalline silicon thin film is separated by an insulator that is selectively oxidized.

〔実施例〕〔Example〕

次に本発明の実施例として同一半導体基板上にPチャン
ネルMO8tlンジスタとバイポーラトランジスタを形
成する場合について説明する。第1図(A)に示すよう
に、まずP型シリコン基板IKN型埋込層2t−形成し
、その上にNuシリコン層3をエピタキシャル成長させ
る。次に、フォトレジストをマスクにボロン(B)をイ
オン打込みして絶縁領域4を形成し、いくつかの半導体
の島に分離する。その後耐酸化性膜をマスクにして選択
酸化膜5を形成する。
Next, as an embodiment of the present invention, a case where a P-channel MO8tl transistor and a bipolar transistor are formed on the same semiconductor substrate will be described. As shown in FIG. 1A, first, an IKN type buried layer 2t- is formed on a P type silicon substrate, and a Nu silicon layer 3 is epitaxially grown thereon. Next, using a photoresist as a mask, boron (B) ions are implanted to form an insulating region 4, which is separated into several semiconductor islands. Thereafter, a selective oxide film 5 is formed using the oxidation-resistant film as a mask.

第1図(B)に示すように、PチャンネルMOSトラン
ジスタとなる領域にゲート酸化膜6を形成する。次に、
バイポーラトランジスタとなる領域にペース領域7を形
成し、さらにバイポーラトランジスタとなる領域部分の
酸化膜を除去したのち半導体基板全面に良好なバイポー
ラトランジスタの特性が得られる最適膜厚(例えば1o
ooX )の多結晶シリコン層8を被着する。
As shown in FIG. 1B, a gate oxide film 6 is formed in a region that will become a P-channel MOS transistor. next,
After forming a pace region 7 in the region that will become a bipolar transistor and removing the oxide film in the region that will become a bipolar transistor, the optimum film thickness (for example, 100 nm) is formed on the entire surface of the semiconductor substrate to obtain good bipolar transistor characteristics.
A polycrystalline silicon layer 8 of ooX) is deposited.

第1図(C)に示すようl’(耐酸化性膜12をマスク
にしてバイポーラトランジスタのエミッタ・ベース・コ
レクタ多結晶シリコンミ概容々を選択酔化し、エミッタ
10.ベース11、コレクタ12の各電極となる領域を
互に絶縁分離する。
As shown in FIG. 1C, the emitter, base, and collector polycrystalline silicon layers of the bipolar transistor are selectively oxidized using the oxidation-resistant film 12 as a mask, and each electrode of the emitter 10, base 11, and collector 12 is heated. The regions are insulated and separated from each other.

次に、第1図(D)に示すようKMO8トランジスタ領
域部分の耐酸化性膜を除去しゲートtaとして必要にな
る多結晶シリコン膜厚8′を追加被着する。
Next, as shown in FIG. 1D, the oxidation-resistant film in the KMO8 transistor region is removed, and a polycrystalline silicon film 8' thick, which is required as the gate ta, is additionally deposited.

その後、第1図(E)に示すように、多結晶シリコン膜
8.8′に熱拡散法等により不純物原子リンを添加し、
シリコンゲート電極の抵抗を低くする。
Thereafter, as shown in FIG. 1(E), impurity atoms of phosphorus are added to the polycrystalline silicon film 8.8' by thermal diffusion method or the like.
Lower the resistance of the silicon gate electrode.

尚この際、バイポーラトランジスタの各電極の多結晶シ
リコン8は耐酸化性膜12でおおわれているので不純物
が添加されない。次いで、フォトレジストをマスクに多
結晶シリコン8.8を選択エツチングしてMOSトラン
ジスタのゲート電極13t−形成すると共に、バイポー
ラトランジスタ上の多結晶シリコン8′を除去する。尚
、前記耐酸化性膜12が多結晶シリコン8′を除去する
際のストッパーとなるので下層の多結晶シリコン電極は
エツチグされない。
At this time, since the polycrystalline silicon 8 of each electrode of the bipolar transistor is covered with the oxidation-resistant film 12, no impurity is added. Next, the polycrystalline silicon 8.8 is selectively etched using the photoresist as a mask to form the gate electrode 13t of the MOS transistor, and the polycrystalline silicon 8' on the bipolar transistor is removed. Incidentally, since the oxidation-resistant film 12 serves as a stopper when removing the polycrystalline silicon 8', the underlying polycrystalline silicon electrode is not etched.

更にMOSトランジスタの拡散層14を不純物ボロンを
イオン注入法により添加して形成する。
Furthermore, the diffusion layer 14 of the MOS transistor is formed by adding impurity boron by ion implantation.

この際、同時にバイポーラトランジスタのベース電極1
1にも不純物ポロンを添加しベース電極の抵抗を小さく
する。次いで不純物ヒ素をイオン注入法によりエミッタ
及びコレクタ電極10.9に添加し、バイポーラトラン
ジスタのエミッタ領域及びコレクタ取り出し電極を形成
する。
At this time, at the same time, the base electrode 1 of the bipolar transistor
1 is also doped with impurity poron to reduce the resistance of the base electrode. Next, impurity arsenic is added to the emitter and collector electrodes 10.9 by ion implantation to form the emitter region and collector lead-out electrode of the bipolar transistor.

更に半導体装置として完成するために、第1図(F)に
示すように、PSG等の絶縁膜5を被着し、該絶縁膜1
5に上層配線と接続するための開孔窓を開口し蒸着法等
によりアルミニウム16を被着したのち上i−配線を形
成する。
Furthermore, in order to complete the semiconductor device, an insulating film 5 such as PSG is deposited as shown in FIG.
An aperture window is opened in 5 for connection to the upper layer wiring, and aluminum 16 is deposited by vapor deposition or the like, after which an upper i-wiring is formed.

以上説明したように種類の異なる不純物が添加されるエ
ミッタ・ベース・コレクタ多結晶シリコン電極間相互を
酸化膜分離することにより前記各電極を容易にかつ同時
に形成出来る。又、MOSトランジスタのゲート電極及
びバイポーラトランジスタのエミッタ・ベース・コレク
タ電極の多結晶シリコン膜厚を各々最適な膜厚とするこ
とが出来るので各々の特性はそこなわれずにすむ。
As explained above, by separating the emitter, base, and collector polycrystalline silicon electrodes to which different types of impurities are added by an oxide film, each of the electrodes can be formed easily and simultaneously. Further, since the polycrystalline silicon film thicknesses of the gate electrode of the MOS transistor and the emitter/base/collector electrode of the bipolar transistor can be set to the optimum film thicknesses, the characteristics of each can be maintained without being impaired.

また、Pch  MOSトランジスタのソース・ドレイ
ン拡散層形成と同時にバイポーラトランジスタのペース
電極も形成することにより、引き出し抵抗を低くするこ
とが出来るという製造工程の簡略化が、バイポーラ、M
OSトランジスタ相互の素子特性を犠牲にすることなし
に可能である。
In addition, by forming the base electrode of the bipolar transistor at the same time as the source/drain diffusion layer formation of the Pch MOS transistor, the manufacturing process can be simplified by lowering the extraction resistance.
This is possible without sacrificing the device characteristics of the OS transistors.

尚、本発明の実施例t−Pch  MOSトランジスタ
とバイポーラトランジスタを同一半導体基板に形成する
Bi−MOS半導体装置で説明したが、Pch とNc
h MOSトランジスタをバイポーラトランジスタと同
一半導体基板に形成するBi −CMOS半導体装置を
実現する場合においてNchMOSトランジスタのソー
ス・ドレイン拡散層形成と同時にバイポーラトランジス
タのエミッタ領域を形成可能となるのでBi−0MO8
半導体装置と同じ製造工程で実現出来る大きな利点を持
っている。
Although the embodiment of the present invention has been described as a Bi-MOS semiconductor device in which a t-Pch MOS transistor and a bipolar transistor are formed on the same semiconductor substrate, Pch and Nc
h When realizing a Bi-CMOS semiconductor device in which a MOS transistor and a bipolar transistor are formed on the same semiconductor substrate, the emitter region of the bipolar transistor can be formed at the same time as the source/drain diffusion layer of the NchMOS transistor is formed.
It has the great advantage of being realized in the same manufacturing process as semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(F)は本発明によるBi−MOS半導
体装置を実現する場合の各製造工程における断面図であ
る。 1・・・・・・P型シリコン基板、2・・・・・・N型
埋め地層、3・・・・・・N型エピタキシャル、4・・
・・・・P型絶縁領域、5・・・・・・酸化膜、6・・
・・・・ゲート酸化膜、7・・・・・・P型ベース領M
、8・・・・・・多結晶シリコン、9・・・・・・コレ
クタ電極、10・・・・・・エミッタ電源、11・・・
・・・ベース電極、13・・・・・・ゲート電極、14
・・・・・・P型拡散領域、15・・・・・・絶縁膜、
16・・・・・・アルミニウム、12・・・・・・耐酸
化性膜。” ! !  田 崖 l 同
FIGS. 1(A) to 1(F) are cross-sectional views in each manufacturing process when realizing a Bi-MOS semiconductor device according to the present invention. 1... P-type silicon substrate, 2... N-type buried layer, 3... N-type epitaxial, 4...
... P-type insulating region, 5 ... Oxide film, 6 ...
...Gate oxide film, 7...P type base region M
, 8... Polycrystalline silicon, 9... Collector electrode, 10... Emitter power supply, 11...
... Base electrode, 13 ... Gate electrode, 14
...P-type diffusion region, 15...Insulating film,
16... Aluminum, 12... Oxidation resistant film. ” !! Tagaki l Same

Claims (1)

【特許請求の範囲】[Claims] 一つの半導体基板上に少なくともゲート電極が多結晶シ
リコンから成るMOSトランジスタとエミッタ・ベース
・コレクタ電極が多結晶シリコンから成るバイポーラト
ランジスタとを有する半導体装置において、バイポーラ
トランジスタのエミッタ・ベース・コレクタ各電極の、
多結晶シリコン膜がMOSトランジスタのゲート電極多
結晶シリコン膜厚の少なくとも半分以下であることを特
徴とする半導体装置。
In a semiconductor device having, on one semiconductor substrate, a MOS transistor whose gate electrode is made of polycrystalline silicon and a bipolar transistor whose emitter, base, and collector electrodes are made of polycrystalline silicon, each of the emitter, base, and collector electrodes of the bipolar transistor is ,
A semiconductor device characterized in that the polycrystalline silicon film is at least half the thickness of a gate electrode polycrystalline silicon film of a MOS transistor.
JP8151687A 1987-04-01 1987-04-01 Semiconductor device Pending JPS63246862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8151687A JPS63246862A (en) 1987-04-01 1987-04-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8151687A JPS63246862A (en) 1987-04-01 1987-04-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63246862A true JPS63246862A (en) 1988-10-13

Family

ID=13748509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8151687A Pending JPS63246862A (en) 1987-04-01 1987-04-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63246862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150058A (en) * 1988-11-30 1990-06-08 Nec Corp Bipolar cmos composite semiconductor device
US5525530A (en) * 1992-10-23 1996-06-11 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device
US6441441B1 (en) * 1996-06-07 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150058A (en) * 1988-11-30 1990-06-08 Nec Corp Bipolar cmos composite semiconductor device
US5525530A (en) * 1992-10-23 1996-06-11 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device
US5753957A (en) * 1992-10-23 1998-05-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6441441B1 (en) * 1996-06-07 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4504332A (en) Method of making a bipolar transistor
US3944447A (en) Method for fabrication of integrated circuit structure with full dielectric isolation utilizing selective oxidation
US4892837A (en) Method for manufacturing semiconductor integrated circuit device
EP0034910A1 (en) A method of manufacturing a semiconductor device, and a device so manufactured
JPS62277745A (en) Semiconductor integrated circuit
JPS63246862A (en) Semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
US4502201A (en) Semiconductor integrated circuit device and fabrication method thereof
JPS643065B2 (en)
JPS60187055A (en) Semiconductor integrated circuit device
JP2654011B2 (en) Method for manufacturing semiconductor device
JPS6159775A (en) Semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
JP2764988B2 (en) Semiconductor device
JPH0226061A (en) Manufacture of semiconductor integrated circuit
JPS62123762A (en) Manufacture of semiconductor device
JP2828644B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0467786B2 (en)
JPS647501B2 (en)
JPS6376470A (en) Manufacture of semiconductor device
JPH01202855A (en) Manufacture of semiconductor integrated circuit
JPH05235012A (en) Semiconductor integrated circuit device
JPS6022828B2 (en) Manufacturing method of semiconductor device
JPH0478009B2 (en)
JPS6114663B2 (en)