JPS632445A - Four-phase psk demodulator - Google Patents

Four-phase psk demodulator

Info

Publication number
JPS632445A
JPS632445A JP61144786A JP14478686A JPS632445A JP S632445 A JPS632445 A JP S632445A JP 61144786 A JP61144786 A JP 61144786A JP 14478686 A JP14478686 A JP 14478686A JP S632445 A JPS632445 A JP S632445A
Authority
JP
Japan
Prior art keywords
phase
signal
voltage
circuit
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144786A
Other languages
Japanese (ja)
Inventor
Yukihiro Okada
行弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP61144786A priority Critical patent/JPS632445A/en
Publication of JPS632445A publication Critical patent/JPS632445A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically compensate the phase shift of a reproduced carrier signal, by superposing the amplitude-difference voltage between a pair of orthogonal phase demodulating signals corresponding to the phase shift of a reproduced reference arrier signal upon a phase controlling voltage. CONSTITUTION:An orthogonal phase demodulating section 30 forms a pair of orthogonal phase demodulating signals from a four-phase PSK reproduced reference carrier signal (g). The pair of orthogonal phase demodulating signals from LPFs 14 and 15 before limiters 16 and 17 are sample-held by sample holding circuits 101 and 102 through a gate 103, to which the orthogonal phase demodulating signals are supplied from the limiters 16 and 17, and a voltage corresponding to the amplitude value difference of the sample held values associated with the phase shift of the signal (g) is outputted from a differential amplifier 104. The voltage is superposed upon the phase controlling voltage of the voltage controlling phase shifter 106 of a phase circuit forming the signal (g) and phase shifts of reproduced carrier signals are automatically compensated without making any manual correction, etc., to be carried out at every time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、通信・放送などの分野において、マイクロ波
周波数帯の4相PSK変調信号を復調する同期型復調装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a synchronous demodulator that demodulates a four-phase PSK modulated signal in a microwave frequency band in the fields of communication, broadcasting, and the like.

〔従来の技術〕[Conventional technology]

マイクロ波周波数帯の衛星放送の信号伝送系においては
、音声信号・映像信号を時分割多重して伝送する。音声
信号の伝送は占有帯域幅および伝送効率の面ですぐれた
4相PSK変調方式が用いられている。4相PSK変調
信号の復調は、人力された4相PSK変調信号から搬送
波信号を再生し、この再生搬送波信号を用い入力の変調
信号を復調する同期型復調方式が主に用いられている。
In a signal transmission system for satellite broadcasting in the microwave frequency band, audio and video signals are time-division multiplexed and transmitted. A four-phase PSK modulation method, which is excellent in terms of occupied bandwidth and transmission efficiency, is used for audio signal transmission. For demodulation of a 4-phase PSK modulated signal, a synchronous demodulation method is mainly used in which a carrier wave signal is regenerated from a manually generated 4-phase PSK modulated signal, and the input modulated signal is demodulated using this regenerated carrier wave signal.

この搬送波信号を再生する方式としては、入力殿送波信
号の周波数が高い場合(たとえば衛星放送では140 
Mllz)には逆変調方式が有利である。
The method for reproducing this carrier signal is that when the frequency of the input transmission signal is high (for example, 140
Mllz), the inverse modulation method is advantageous.

以下、逆変調方式による4相PSK′4sL調装置につ
いて、第5図を参照して説明する。この復調装置は大別
して、直交位相復調部30と再変調回路41、位相回路
42を含む搬送波再生部40とからなっている。入力さ
れた4相PSK変調信号aは、直交位相復調部30にお
いて、搬送波再生部40により再生された基準搬送波信
号gにより復調される。変調信号aは2分岐され、乗算
器11゜12で、基準搬送波信号g、基準搬送波信号g
を一π/2移相器13で90″だけずらした信号りとそ
れぞれ乗算し、復調信号以外の不要成分は低域通過フィ
ルタ14.15で除去し、さらにリミッタ16.17に
よって復調データb、cを得る。b、cは対になったデ
ィジタル信号であって、復調装置の出力として出力する
とともに、搬送波再生部40の再変調回路41に入力す
る。再変調回路41では、入力変調信号aを直交位相復
調部30で生ずる遅延だけ遅延回路18で遅らせた信号
d、倍信号と90″位相差の信号eとそれぞれ乗算器1
9.20で乗算して加算器22で合成し、搬送波信号f
を再生する。この信号fは他の周波数成分を含むので、
次の位相回路42において、帯域通過フィルタ23を介
してから、リミッタ24で一定振幅とする。この−定振
幅の搬送波信号は手動移相器25で、位相調整をなし、
入力変調信号aに対して一定の位相を有する再生基準搬
送波信号gとして直交位相復調部209に伝達される。
Hereinafter, a four-phase PSK'4sL adjustment device using the inverse modulation method will be explained with reference to FIG. This demodulation device is roughly divided into a quadrature phase demodulation section 30, a remodulation circuit 41, and a carrier regeneration section 40 including a phase circuit 42. The input 4-phase PSK modulated signal a is demodulated in the quadrature phase demodulation section 30 using the reference carrier signal g regenerated by the carrier regeneration section 40. The modulation signal a is branched into two, and multipliers 11 and 12 divide the modulation signal into a reference carrier signal g and a reference carrier signal g.
are respectively multiplied by a signal shifted by 90'' by a 1π/2 phase shifter 13, unnecessary components other than the demodulated signal are removed by a low-pass filter 14.15, and further the demodulated data b, b and c are a pair of digital signals, which are output as the output of the demodulator and also input to the remodulation circuit 41 of the carrier wave regeneration unit 40. In the remodulation circuit 41, the input modulation signal a A signal d delayed by the delay circuit 18 by the delay caused by the orthogonal phase demodulation section 30, a signal e having a phase difference of 90'' from the double signal, and the multiplier 1, respectively.
9. Multiply by 20 and synthesize by adder 22, carrier wave signal f
Play. Since this signal f contains other frequency components,
In the next phase circuit 42, the signal is passed through a band pass filter 23 and then set to a constant amplitude by a limiter 24. This - constant amplitude carrier wave signal is subjected to phase adjustment by a manual phase shifter 25,
It is transmitted to the quadrature phase demodulation section 209 as a reproduction reference carrier signal g having a constant phase with respect to the input modulation signal a.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

復調装置に入力する4相PSK変調信号は、マイクロ波
通信においては、数段の周波数変換を経たIF倍信号あ
り、局部発振器の周波数変動により、周波数変動が避け
られない。そのため前述の搬送波再生部の帯域通過フィ
ルタ23において位相が変動するため、初期に機器調整
として手動移相器25で位相調整を行なっていても、再
生基準搬送波信号の位相が定まらなくなる。
In microwave communication, the four-phase PSK modulated signal input to the demodulator is an IF multiplied signal that has undergone several stages of frequency conversion, and frequency fluctuations are unavoidable due to frequency fluctuations of the local oscillator. As a result, the phase in the band-pass filter 23 of the carrier wave reproducing section described above varies, so that even if the phase is initially adjusted using the manual phase shifter 25 as equipment adjustment, the phase of the reproduced reference carrier signal becomes unstable.

この対策としては、特願昭60−149336号(本発
明者が発明者の一人である)において、再変調回路の出
力を低い周波数に変換し、その低周波信号が常に帯域通
過フィルタの中心周波数になるようにして、再びもとの
周波数に変換するAFC回路を提示している。
As a countermeasure to this problem, in Japanese Patent Application No. 149336/1984 (of which the present inventor is one of the inventors), the output of the remodulation circuit is converted to a lower frequency, and the low frequency signal is always at the center frequency of the bandpass filter. This paper presents an AFC circuit that converts the frequency back to the original frequency.

上記方法は、精密な位相追尾が得られ、対策としてすぐ
れているが、回路規模が大きくなるという問題点がある
。本発明の目的は、上記事情に鑑み、変調信号の周波数
変動が少ない場合において、比較的筒車な方法で、再生
搬送波信号の位相変動を実用上差しつかえない程度に補
償する復調装置を提供することにある。
The above method provides precise phase tracking and is an excellent countermeasure, but it has the problem of increasing the circuit scale. In view of the above circumstances, it is an object of the present invention to provide a demodulator that compensates for phase fluctuations of a reproduced carrier signal to a practically acceptable level in a relatively simple method when the frequency fluctuations of a modulated signal are small. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の対象とする4相PSK復調装置は、前述したよ
うに、人力信号である4相PSK変調信号を、再生基準
搬送波信号を用いて復調する直交位相復調部と、復調さ
れた受信ディジタル信号によって、前記入力信号を再変
調し、前記再生基準搬送波信号を発生する搬送波再生部
とからなる逆変調方式の4相PSK復調装置である。
As described above, the 4-phase PSK demodulator to which the present invention is applied includes a quadrature phase demodulator that demodulates a 4-phase PSK modulated signal, which is a human input signal, using a reproduced reference carrier signal, and a demodulated received digital signal. This is an inverse modulation type four-phase PSK demodulator comprising a carrier wave reproducing section that re-modulates the input signal and generates the reproduced reference carrier signal.

本発明においては、前記搬送波再生部に、その再変調回
路で再生された搬送波信号の位相を制御電圧によって推
移させ再生基準搬送波信号とする移相回路を設けるとと
もに、前記直交位相復調部の2分岐路にある低域通過フ
ィルタの各出力をサンプルする1対のサンプリングホー
ルド回路と。
In the present invention, the carrier wave regeneration section is provided with a phase shift circuit that shifts the phase of the carrier wave signal regenerated by the remodulation circuit using a control voltage to make it a reproduction reference carrier signal, and the quadrature phase demodulation section has two branches. a pair of sample-and-hold circuits that sample the outputs of each low-pass filter in the path;

復調した一定の受信ディジタル信号に対して、前記サン
プリングホールド回路のサンプリング信号を発生するゲ
ート回路と、前記サンプリングホールド回路の出力の差
分信号を前記搬送波再生部の移相回路の制御電圧に重畳
する手段とを設け、入力信号の周波数変動に対し、再生
基準搬送波信号の位相自動調整を行なうようにしている
A gate circuit for generating a sampling signal of the sampling and holding circuit for a certain demodulated received digital signal, and means for superimposing a difference signal between the outputs of the sampling and holding circuit on the control voltage of the phase shift circuit of the carrier wave regeneration section. is provided to automatically adjust the phase of the reproduced reference carrier signal in response to frequency fluctuations of the input signal.

〔作用〕[Effect]

4相PSK変調信号S (t)は S (t ) = A 、cos(Wct+Φ)(1)
= a 、1cos WCL+ b 1lstn Wc
t   (21と表わされ、直交する2成分になり、デ
ィジタル信号に該当する各成分の係数は、位相Φにより
きまる。4相PSKでは位相を4分割し、各相に(an
、bn)を割りあてる。したがってS (t)の位相遷
移図は第2図のようになる。ここで括弧内は(an、b
n)を示し、簡単のためla、l。
The 4-phase PSK modulated signal S (t) is S (t) = A, cos (Wct + Φ) (1)
= a, 1cos WCL+ b 1lstn Wc
t (21), which has two orthogonal components, and the coefficient of each component corresponding to the digital signal is determined by the phase Φ.In 4-phase PSK, the phase is divided into four, and each phase has (an
, bn). Therefore, the phase transition diagram of S (t) is as shown in FIG. Here, the words in parentheses are (an, b
n) and la, l for simplicity.

lb、lは1とする。Let lb and l be 1.

次にΦと(an、bn)の対応を示す。Next, the correspondence between Φ and (an, bn) will be shown.

a、   b、l    S (t) 1   1   A+cos(Wct−π/4)−11
A +cos(Wct −3π/4)−1−L   A
 +cos(Wct −5π/4)   (3)1  
− I   A 、cos(Wet −7π/4)逆変
調方式では、第3図に示すように、再生基準搬送波信号
で、直交位相復調を行なう。この回路は第5図に示すも
のと同一で符号を同一としている。A、B、・−、Fは
図示の各点を示す。各点の信号は次の如くなる。
a, b, l S (t) 1 1 A+cos(Wct-π/4)-11
A +cos(Wct-3π/4)-1-L A
+cos(Wct -5π/4) (3)1
In the - I A , cos (Wet -7π/4) inverse modulation method, as shown in FIG. 3, orthogonal phase demodulation is performed using a reproduced reference carrier signal. This circuit is the same as that shown in FIG. 5, and the same reference numerals are used. A, B, . . . , F indicate each point shown in the figure. The signal at each point is as follows.

A :  Alcos(WCt+Φ)  °Azcos
WctB :  A+cos(Wct+Φ)  ・A゛
zsinWctC:  A、cosΦ D : −A、sinΦ A、はA+、Azおよび低域通過フィルタ14゜15の
特性によりきまる。C,D点の信号はリミッタ16.1
7で1または−1として出力されるので、各位相につき
、各点の値は次のような値になる。
A: Alcos (WCt+Φ) °Azcos
WctB: A+cos(Wct+Φ) ・A゛zsinWctC: A, cosΦ D: -A, sinΦ A is determined by A+, Az, and the characteristics of the low-pass filter 14゜15. Signals at points C and D are limiter 16.1
7 is output as 1 or -1, so the value at each point for each phase is as follows.

Φ    0点  D点  E点  F点−π/4  
   A4   A4  1   1−3/4π  −
A4A4−11 一5/4π  −A a   A 4  1   1−
7/4π   A a   A a   1   1こ
こでA、=A3/〜9である。
Φ 0 point D point E point F point -π/4
A4 A4 1 1-3/4π −
A4A4-11 -5/4π -A a A 4 1 1-
7/4π A a A a 1 1 where A, = A3/~9.

いま、再生基準搬送波信号の位相がθだけ変位し、A、
cos(Wct+θ)になったとすると、0点。
Now, the phase of the reproduced reference carrier signal is displaced by θ, and A,
If it becomes cos(Wct+θ), 0 points.

D点の値はA、cos(Φ−〇) 、  −A、sin
 (Φ−θ)となる。
The value of point D is A, cos(Φ-〇), -A, sin
(Φ−θ).

θが士への微小位相変位であって、Φ=−π/4、すな
わちS (t ) = A +cos(Wct −rc
 / 4 )の変調波信号を復調した場合、各点の信号
値は0点  D点 E点  F点 θ=+△  A a <   Aa >   1  1
θ=−△  A a >   A 4 <   1  
1の関係になる。なおA4>はA、より小、A4〈はA
4より大であることを示す。0点、D点の大小関係は第
4図で直ちにわかる。0点、D点の信号値の変化は逆方
向であってその差は変位が小さい限り、θに比例し、そ
の正、負はθの正、負に関係する。E点・F点の信号値
はθが小さいかぎり変動しない。
θ is the minute phase displacement to
/ 4) When demodulating the modulated wave signal, the signal value at each point is 0 point D point E point F point θ = +△ A a < Aa > 1 1
θ=-△ A a > A 4 < 1
The relationship becomes 1. Note that A4> is A, smaller than A4, and A4< is A
Indicates that it is greater than 4. The magnitude relationship between the 0 point and the D point can be seen immediately in FIG. Changes in the signal values at point 0 and point D are in opposite directions, and the difference between them is proportional to θ as long as the displacement is small, and its positive and negative values are related to the positive and negative values of θ. The signal values at points E and F do not change as long as θ is small.

本発明では上記のθの変位に対する0点、D点間の振幅
値の差を検出し、その電圧差を利用して位相回路中の電
圧制御移相器の制御電圧に重畳することで、再生搬送波
信号の位相を進め、または遅らせることで、自動的に位
相制御を行ない、再生基準位相信号とする。
In the present invention, the difference in the amplitude value between the 0 point and the D point with respect to the displacement of θ is detected, and the voltage difference is used to superimpose it on the control voltage of the voltage-controlled phase shifter in the phase circuit. By advancing or delaying the phase of the carrier wave signal, phase control is automatically performed and the signal is used as a reproduction reference phase signal.

0点・D点の振幅値の差を検知するために、先ず0点・
D点の信号をサブリングするが、そのためのサンプリン
グ信号は、E点・F点がともに“1”になったときにゲ
ート回路で発生させる。
In order to detect the difference in amplitude values between the 0 point and the D point, first the 0 point and the D point are detected.
The signal at point D is sub-ringed, and the sampling signal for this purpose is generated by the gate circuit when both points E and F become "1".

ところで、上記に示したθ=±△に対する振幅値の変動
(つまり、0点・D点が逆方向に振幅が変動すること)
は、sin、cosの両信号のπ/4またはその奇数倍
での点の変動であって、 Φ=−π/4+−3/4π、−すなわち4相PSK変調
信号のいずれの位相でもいえることである。
By the way, the fluctuation of the amplitude value with respect to θ = ±△ shown above (that is, the amplitude fluctuates in the opposite direction between the 0 point and the D point)
is the variation of the point at π/4 of both sin and cosine signals or an odd multiple thereof, and Φ=-π/4+-3/4π, - that is, it can be said for any phase of the 4-phase PSK modulated signal. It is.

また、これらの位相で振幅変動が最大であり、したがっ
て振幅差も最大になる。−般にデータ伝送に際し、デー
タにたいして、スクランブルをかけるので、復8周デー
タとしては(1,1)、−・(1゜−1)の出現確率は
略々間じであるからどの復調データについてサンプリン
グしてもよい。
Also, the amplitude variation is maximum at these phases, and therefore the amplitude difference is also maximum. - In general, data is scrambled during data transmission, so the probability of appearance of (1, 1), -. May be sampled.

〔実施例〕〔Example〕

以下、図面を参照し、本発明の一実施例につき説明する
。第1図は実施例の回路ブロック図を示すもので、直交
位相復調部30の構成は従来例(第5図)と全く同一で
あり、搬送波再生部4゜で再生された基準搬送波信号g
およびそれと直交する信号りとを、入力4相PSK変調
信号aに乗算器11.12においてそれぞれ乗算し、低
域通過フィルタ14.15およびリミッタ16.17に
よって復調データb、cを得る。復調データb。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a circuit block diagram of the embodiment, and the configuration of the quadrature phase demodulation section 30 is exactly the same as that of the conventional example (FIG. 5), and the reference carrier signal g regenerated by the carrier regeneration section 4°
The input 4-phase PSK modulated signal a is multiplied by the input 4-phase PSK modulated signal a and a signal orthogonal thereto in a multiplier 11.12, respectively, and demodulated data b and c are obtained by a low-pass filter 14.15 and a limiter 16.17. Demodulated data b.

Cでさらに入力変調信号aを遅延回路18により遅延し
た変調信号dを再変調回路41で変調することで搬送波
信号fを再生する。この再変調回路41は第5図の回路
と全く同一である。
At C, the input modulation signal a is further delayed by the delay circuit 18, and the modulation signal d is modulated by the re-modulation circuit 41, thereby reproducing the carrier wave signal f. This remodulation circuit 41 is exactly the same as the circuit shown in FIG.

信号fは帯域通過フィルタ23によって、搬送波周波数
以外の信号を除去し、リミッタ24で一定振幅の信号f
“とじて電圧制御移相器106に人力させる。電圧制御
移相器106の構成は、この例では可変容量ダイオード
106(1)を利用するものでその印加電圧を変化して
移相量を定めている。最初初期調整としてスイッチ10
5を開いておいて、可変電圧107を調整する。位相調
整は、電圧制御移相器106の出力信号が復調装置の入
力である4相PSK変調信号に対し再生基準搬送波信号
gとなるようにする。
The signal f is filtered by a bandpass filter 23 to remove signals other than the carrier frequency, and a limiter 24 converts the signal f to a constant amplitude signal f.
The configuration of the voltage-controlled phase shifter 106 uses a variable capacitance diode 106 (1) in this example, and the amount of phase shift is determined by changing the applied voltage. First, as an initial adjustment, switch 10
5 is left open and the variable voltage 107 is adjusted. The phase adjustment is performed so that the output signal of the voltage-controlled phase shifter 106 becomes the reproduction reference carrier signal g with respect to the 4-phase PSK modulated signal that is input to the demodulator.

次にスイッチ105を閉じることによって、加算器10
8に自動位相制御のための差電圧kが加わる。この差電
圧には、直交位相復調部30の2分岐(cos成分、 
sin成分にそれぞれ関係する)路の低域通過フィルタ
14.15の出力をサンプルホールド回路101,10
2でサンプルし、その出力を差動増幅器104に導き、
その出力として得たものである。作用の項で述べたよう
に第3図の0点、D点の電圧差になり、再生基準搬送波
信号gの位相変位により生ずるものである。上記サンプ
リングホールド回路101,102のサンプリンタ信号
は、復調データb、cがともに1になったとき(Φ=−
π/4に相当)にゲート回路103で発生するようにし
である。
Then, by closing switch 105, adder 10
A differential voltage k for automatic phase control is added to 8. This differential voltage includes two branches (cos component,
Sample and hold circuits 101 and 10 output the outputs of the low-pass filters 14 and 15, respectively related to the sine component.
2, and lead its output to a differential amplifier 104,
This is the output obtained. As described in the section of the operation, there is a voltage difference between the 0 point and the D point in FIG. 3, which is caused by the phase shift of the reproduced reference carrier signal g. The sampler signals of the sampling and hold circuits 101 and 102 are generated when demodulated data b and c both become 1 (Φ=-
(corresponding to π/4) in the gate circuit 103.

上記差電圧には電圧制御移相器106に印加されている
バイアス電圧(可変電圧107を初期に調整してさだめ
た電圧)に加算器108を介して加算される。加算する
電圧を正に加えるか、負に加えるかは、どの復調データ
でサンプリングするかによりきまり、また電圧側’qB
移相器106の回路構成に関係するが、位相変化に対し
負帰還ループを形成するようにすることで、自動的に位
相ずれを補正することができる。
The differential voltage is added via an adder 108 to the bias voltage (voltage accumulated by initially adjusting the variable voltage 107) applied to the voltage-controlled phase shifter 106. Whether the voltage to be added is added positively or negatively depends on which demodulated data is sampled, and the voltage side 'qB
Although it is related to the circuit configuration of the phase shifter 106, by forming a negative feedback loop in response to a phase change, a phase shift can be automatically corrected.

〔発明の効果〕〔Effect of the invention〕

以上、詳しく説明したように、本復調装置では、入力す
る4相PSK復調信号の周波数変動があり、復調装置内
部において、再生させる搬送波信号の位相がずれること
があっても、自動的にその位相ずれを電圧制御移相器で
補正する。したがって常に正しい復調が可能になる。前
記位相変位が小さい間は、この補正精度は高く、また直
線的に補正することができる。
As explained in detail above, in this demodulator, even if there is a frequency fluctuation of the input 4-phase PSK demodulated signal and the phase of the carrier signal to be reproduced shifts inside the demodulator, the phase is automatically changed. The deviation is corrected using a voltage controlled phase shifter. Therefore, correct demodulation is always possible. As long as the phase shift is small, the correction accuracy is high and correction can be performed linearly.

回路構成は、きわめて簡単で、従来の逆変調方式の復調
装置に少数の回路を追加することで実現できる。
The circuit configuration is extremely simple and can be realized by adding a small number of circuits to a conventional inverse modulation type demodulator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の回路ブロック図、第2図
〜第4図は本発明を説明するための図、第5図は従来例
の回路ブロック図である。 11.12,19.20−・−乗算器、13.21−・
−−π/2移相器、 14、L5−低域通過フィルタ、 16.17・・・リミッタ、  18−遅延回路、22
−加算器、 23・−帯域通過フィルタ、24−リミッ
タ、 25・−手動移相器、30・−直交位相復調部、 40・・−搬送波再生部、 41−再変調回路、42−
位相回路、 101.102・−サンプリングホールド回路、103
−ゲート回路、 104・−差動増幅器、105−・・
スイッチ、  106−電圧制御移相器、10’l−m
−可変制御電圧、 106(1)−・可変容量ダイオード、108−・加算
器。
FIG. 1 is a circuit block diagram of an embodiment of the present invention, FIGS. 2 to 4 are diagrams for explaining the present invention, and FIG. 5 is a circuit block diagram of a conventional example. 11.12, 19.20--multiplier, 13.21--
--π/2 phase shifter, 14, L5-low pass filter, 16.17...limiter, 18-delay circuit, 22
- adder, 23 - band pass filter, 24 - limiter, 25 - manual phase shifter, 30 - quadrature phase demodulator, 40 - carrier regeneration unit, 41 - remodulation circuit, 42 -
Phase circuit, 101.102・-Sampling hold circuit, 103
-Gate circuit, 104--Differential amplifier, 105-...
switch, 106-voltage controlled phase shifter, 10'l-m
-Variable control voltage, 106(1)--Variable capacitance diode, 108--Adder.

Claims (1)

【特許請求の範囲】 入力信号である4相PSK変調信号を、再生基準搬送波
信号を用いて復調する直交位相復調部と、復調された受
信ディジタル信号によって、前記入力信号を再変調し、
前記再生基準搬送波信号を発生する搬送波再生部とから
なる逆変調方式の4相PSK復調装置において、 前記搬送波再生部に、その再変調回路で再生された搬送
波信号の位相を制御電圧によって推移させ再生基準搬送
波信号とする移相回路を設けるとともに、 前記直交位相復調部の2分岐路にある低域通過フィルタ
の各出力をサンプルする1対のサンプリングホールド回
路と、復調した一定の受信ディジタル信号に対して、前
記サンプリングホールド回路のサンプリング信号を発生
するゲート回路と、前記サンプリングホールド回路の出
力の差分信号を前記搬送波再生部の移相回路の制御電圧
に重畳する手段とを設け、 入力信号の周波数変動に対し、再生基準搬送波信号の位
相自動調整を行なうことを特徴とする4相PSK復調装
置。
[Scope of Claims] A quadrature phase demodulation section that demodulates a four-phase PSK modulated signal that is an input signal using a reproduced reference carrier signal, and re-modulates the input signal using the demodulated received digital signal,
In an inverse modulation type four-phase PSK demodulator comprising a carrier wave regeneration section that generates the reproduction reference carrier signal, the carrier wave regeneration section is configured to cause the carrier wave signal regenerated by the remodulation circuit to shift the phase of the carrier wave signal using a control voltage. In addition to providing a phase shift circuit to use as a reference carrier signal, a pair of sampling and hold circuits to sample each output of the low-pass filter in the two branches of the quadrature phase demodulation section, and further comprising a gate circuit for generating a sampling signal of the sampling and holding circuit, and means for superimposing a difference signal of the output of the sampling and holding circuit on a control voltage of a phase shift circuit of the carrier wave reproducing section, and controlling the frequency fluctuation of the input signal. A four-phase PSK demodulator is characterized in that it automatically adjusts the phase of a reproduced reference carrier signal.
JP61144786A 1986-06-23 1986-06-23 Four-phase psk demodulator Pending JPS632445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144786A JPS632445A (en) 1986-06-23 1986-06-23 Four-phase psk demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144786A JPS632445A (en) 1986-06-23 1986-06-23 Four-phase psk demodulator

Publications (1)

Publication Number Publication Date
JPS632445A true JPS632445A (en) 1988-01-07

Family

ID=15370411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144786A Pending JPS632445A (en) 1986-06-23 1986-06-23 Four-phase psk demodulator

Country Status (1)

Country Link
JP (1) JPS632445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658018A1 (en) * 1993-12-09 1995-06-14 Canon Kabushiki Kaisha Method and system for clock synchronization in an optical communications network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658018A1 (en) * 1993-12-09 1995-06-14 Canon Kabushiki Kaisha Method and system for clock synchronization in an optical communications network

Similar Documents

Publication Publication Date Title
US5400363A (en) Quadrature compensation for orthogonal signal channels
FI87711B (en) ADJUSTMENT OF FISHING EQUIPMENT AND FACILITIES IN TVAOVAEGSMOTTAGARE
US5268647A (en) Method and arrangement of coherently demodulating PSK signals using a feedback loop including a filter bank
US4359692A (en) Rapid acquisition shift keyed signal demodulator
GB2145594A (en) Frequency offset correcting circuit
JPH0657024B2 (en) Data receiver
US4814719A (en) Unsymmetrical QPSK demodulator
US4581586A (en) Crosstalk reduction in unbalanced QPSK detectors
JP3570843B2 (en) Phase modulator
US4757272A (en) Four phase PSK demodulator
JPS632445A (en) Four-phase psk demodulator
US4145663A (en) Digital synchronous detectors using time division for extracting carrier wave and demodulated signals
JPH06237277A (en) Psk carrier signal regenerating device
JPH03133236A (en) Demodulator
JP2932289B2 (en) 4 phase demodulation circuit
JP2874450B2 (en) Demodulator
JPS6248420B2 (en)
JPS60130246A (en) Carrier recovery device
US6301295B1 (en) AM modulated wave eliminating circuit
JPS62234448A (en) Detector for orthogonal partial response signal
JPS6392143A (en) Demodulating device for orthogonal partial response signal
JP3115251B2 (en) AM data multiplexed modulated wave signal demodulation circuit
JP2545882B2 (en) Data playback device
JPS639340A (en) Demodulator for orthogonal response signal
JPS61177054A (en) Receiving circuit of phase modulating signal