JPS63244408A - Magnetoresistance type magnetic head - Google Patents

Magnetoresistance type magnetic head

Info

Publication number
JPS63244408A
JPS63244408A JP8031287A JP8031287A JPS63244408A JP S63244408 A JPS63244408 A JP S63244408A JP 8031287 A JP8031287 A JP 8031287A JP 8031287 A JP8031287 A JP 8031287A JP S63244408 A JPS63244408 A JP S63244408A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
layer
layers
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8031287A
Other languages
Japanese (ja)
Inventor
Hiroshi Takino
浩 瀧野
Kiyoshi Satake
佐竹 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8031287A priority Critical patent/JPS63244408A/en
Publication of JPS63244408A publication Critical patent/JPS63244408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the reproduced output characteristic by constituting a magnetic thin film by two layer of magnetic layers via a nonmagnetic intermediate layer and applying a current to one of the magnetic layers in a direction nearly orthogonal to the track width direction so as to improve the Barkhausen effect effectively. CONSTITUTION:The lamination structure where two magnetic layers 11, 12 are laminated via a nonmagnetic intermediate layer 10 are laminated is adopted for the magnetic thin film and a current (i) is applied at least to one of the two magnetic layers 11 and 12 in a direction nearly orthogonal to the track width direction in a magnetoresistance type magnetic head provided with an MR effect element 1 and the magnetic thin film leading signal magnetic flux to the MR effect element 1. The thickness (t) of the nonmagnetic intermediate layer 10 in the magnetic film is selected, for example, as 5<=t<=1,000Angstrom so that the Coulomb interaction is more dominant between both the magnetic layers 11 and 12 than the exchange interaction and the thickness is negligibly small as the magnetic gap. Thus, Barkhausen noise is sufficiently made small even in the narrow track width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気抵抗効果型磁気ヘッド、特にその磁気抵抗
効果素子に磁気記録媒体からの信号磁束を導く磁性薄膜
を有してなる磁気抵抗効果型磁気ヘッドに関わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetoresistive magnetic head, particularly a magnetoresistive head having a magnetic thin film that guides signal magnetic flux from a magnetic recording medium to a magnetoresistive element thereof. Related to type magnetic heads.

〔発明の概要〕[Summary of the invention]

本発明は磁気抵抗効果素子とこれに信号磁束を導く磁性
薄膜を有する磁気抵抗効果型磁気ヘッドにおいて、その
磁性薄膜を非磁性中間層を介して2層の磁性薄膜が積層
された構成とすると共に少くともその一方の磁性薄膜に
トランク幅方向とほぼ直交す方向の通電を行うようにし
てバルクハウゼンノイズの発生を効果的に回避する。
The present invention provides a magnetoresistive magnetic head having a magnetoresistive element and a magnetic thin film that guides signal magnetic flux to the magnetoresistive element, in which the magnetic thin film has a structure in which two magnetic thin films are laminated with a non-magnetic intermediate layer interposed therebetween. The occurrence of Barkhausen noise is effectively avoided by energizing at least one of the magnetic thin films in a direction substantially perpendicular to the trunk width direction.

〔従来の技術〕[Conventional technology]

磁気抵抗効果型磁気ヘッド(以下MR効果型磁気ヘッド
という)において、そのバルクハウゼンノイズの低減化
を図るために例えば特開昭61−182620号公開公
報に開示されているように、その磁気抵抗効果素子(以
下MR効果素子という)を非磁性中間層を介して2層の
MR効果磁性層を積層した構造をとるものの提案がなさ
れている。
In order to reduce Barkhausen noise in a magnetoresistive magnetic head (hereinafter referred to as an MR effect magnetic head), the magnetoresistive effect is used as disclosed in, for example, Japanese Patent Application Laid-open No. 182620/1983. It has been proposed that an element (hereinafter referred to as an MR effect element) has a structure in which two MR effect magnetic layers are laminated with a nonmagnetic intermediate layer interposed therebetween.

しかしながら、このようなMR効果素子を用いたMR効
果磁気ヘッドにおいてもこのMR効果素子に対して磁気
記録媒体からの信号磁束を拾って導く導磁路としての磁
性薄膜を具備するMR効果型磁気ヘッドにおいては、こ
の磁性薄膜に起因するバルクハウゼンノイズが生ずる。
However, even in an MR effect magnetic head using such an MR effect element, an MR effect type magnetic head is provided with a magnetic thin film as a magnetic guide path that picks up and guides signal magnetic flux from a magnetic recording medium to the MR effect element. In this case, Barkhausen noise occurs due to this magnetic thin film.

一方、特開昭57−203979号公開公報においては
MR効果素子に磁束を導く導磁路としての磁性薄膜を非
磁性中間層を介した磁性層の積層構造とすることによっ
て、この磁性薄膜におけるバルクハウゼンノイズの改善
を図るようにした薄膜磁気ヘッドの提案がなされている
。すなわち、通常一般の導磁路としての磁性薄膜は、第
4図に示すように、単層磁性層例えばパーマロイあるい
はアモルファス磁性層等の高透磁率磁性膜によって構成
されるものであるが、この単層磁性層による場合、磁気
記録媒体から与えられる信号磁界Hs力方向直交する方
向すなわちトランク幅方向に磁化容易軸e、a方向が選
定される。この場合、磁気異方性エネルギー、形状異方
性等に起因する静磁エネルギーの和が層全体として最小
となるような状態を保持すべく同第4図ににその磁区構
造を示すように長方形の磁性膜(5)すなわち、単層磁
性層においてその面内において短辺方向に沿って磁化方
向が交互に逆向きの磁区(52)が生じると共に、これ
ら隣り合う磁区(52)に関して閉ループを形成するよ
うにその両端間に磁性層の長辺方向に沿ってすなわち磁
化困難軸り、a方向に沿って順次逆向きの磁区(53)
が生じている。この構成において、再生時における磁気
記録媒体からの信号磁界Hsは、上述したように単層磁
性層すなわち磁性膜(5)の磁化困難軸り、a方向に加
えられることによって、この際回転磁化過程により磁気
ヘッドが動作するのでバルクハウゼンノイズはさほど発
生しない。ところが、記録情報の高密度化に伴って狭ト
ラツク化が進み、これに伴って磁性膜(5)の幅が狭小
化されてくるにしたがい、形状磁気異方性が増加するの
で全体としての磁気異方性の方向はトランク幅方向すな
わち磁性膜の幅方向からこれと直交する方向へと傾いて
くる。その結果磁気ヘッド動作において磁壁(54)及
び(55)の移動によるものが含まれるようになり、バ
ルクハウゼンノイズが増加し、S/Hの低下を招来し、
信号処理上不利となる。
On the other hand, in Japanese Unexamined Patent Publication No. 57-203979, a magnetic thin film serving as a magnetic conduction path for guiding magnetic flux to an MR effect element has a laminated structure of magnetic layers with a non-magnetic intermediate layer interposed therebetween. There have been proposals for thin film magnetic heads designed to improve Hausen noise. That is, as shown in FIG. 4, a magnetic thin film used as a general magnetic conduction path is usually composed of a high permeability magnetic film such as a single layer magnetic layer, for example, a permalloy or an amorphous magnetic layer. In the case of a layered magnetic layer, the easy magnetization axes e and a directions are selected in a direction perpendicular to the direction of the signal magnetic field Hs force applied from the magnetic recording medium, that is, in the trunk width direction. In this case, in order to maintain a state in which the sum of magnetostatic energy due to magnetic anisotropy energy, shape anisotropy, etc. is minimum for the entire layer, the magnetic domain structure is rectangular as shown in Figure 4. In other words, in the magnetic film (5) of the single-layer magnetic layer, magnetic domains (52) whose magnetization directions are alternately opposite are generated along the short side direction in the plane thereof, and a closed loop is formed with respect to these adjacent magnetic domains (52). Along the long side direction of the magnetic layer between both ends, that is, along the hard magnetization axis, and along the a direction, magnetic domains (53) in opposite directions are created.
is occurring. In this configuration, the signal magnetic field Hs from the magnetic recording medium during reproduction is applied in the a-direction, along the hard-to-magnetize axis of the single-layer magnetic layer, that is, the magnetic film (5), as described above. Since the magnetic head operates according to the following, Barkhausen noise does not occur much. However, as the density of recorded information increases, the track becomes narrower, and as the width of the magnetic film (5) becomes narrower, the shape magnetic anisotropy increases, so the overall magnetic The direction of anisotropy is inclined from the trunk width direction, that is, the width direction of the magnetic film, to a direction perpendicular thereto. As a result, the movement of the magnetic walls (54) and (55) is included in the magnetic head operation, causing an increase in Barkhausen noise and a decrease in S/H.
This is disadvantageous in terms of signal processing.

これに対して前記特開昭57−203979号公開公報
に開示された磁性膜では、第5図に示すように非磁性中
間層(10)を介在させて高透磁率の2Nの磁性層(1
1)と(12)とを積層した構造をとることによって上
下両磁性層(11)及び(12)の磁化方向を、Ml及
びM2の矢印で示すように互いに反平行状態とすること
によって磁壁の発生を回避するようにして磁気記録媒体
からの磁場が磁化困難軸方向り、aに加わるようにして
磁気ヘッド動作が回転磁化過程によって行われるように
して再生時におけるバルクハウゼンノイズの低減化を図
るようにしている。
On the other hand, in the magnetic film disclosed in JP-A-57-203979, a non-magnetic intermediate layer (10) is interposed as shown in FIG.
By adopting a structure in which 1) and (12) are laminated, the magnetization directions of both the upper and lower magnetic layers (11) and (12) are made antiparallel to each other as shown by the arrows Ml and M2. To avoid Barkhausen noise during reproduction, the magnetic field from the magnetic recording medium is oriented in the direction of the hard magnetization axis and applied to a, so that the magnetic head operation is performed by a rotational magnetization process, thereby reducing Barkhausen noise during reproduction. That's what I do.

このような積層構造による磁性膜を用いた薄膜磁気ヘッ
ドにおいては、第4図に示した単層構造のものにおいて
の実効トランク幅Wtが信号磁界Hsの印加力向と直交
する方向に磁化が向けられた中央部の限定された幅狭の
領域となるに比し、その実効トラック幅が拡大されると
いう利益がある。
In a thin-film magnetic head using a magnetic film with such a laminated structure, the effective trunk width Wt of the single-layer structure shown in FIG. The advantage is that the effective track width is enlarged compared to the limited narrow width area in the center of the track.

ところが、このような2層磁性層の積層構造による磁性
膜を用いた場合においても、その磁気記録媒体上のトラ
ック幅がより狭小化される伴い磁性膜(5)の狭小化が
なされると、これに伴って形状異方性が支配的になりそ
の全体としての磁気異方性の方向はやはりトランク幅方
向から傾いてくる。
However, even when using a magnetic film with such a laminated structure of two magnetic layers, as the track width on the magnetic recording medium becomes narrower, the magnetic film (5) becomes narrower. Along with this, the shape anisotropy becomes dominant, and the direction of the overall magnetic anisotropy also tilts away from the trunk width direction.

その結果磁気記録媒体から得られる信号磁界IIsによ
って磁壁が発生しバルクハウゼンノイズが生じてくると
いう問題点がある。
As a result, there is a problem in that domain walls are generated by the signal magnetic field IIs obtained from the magnetic recording medium, resulting in Barkhausen noise.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述したようにMR効果素子に対して磁気媒体
からの信号磁束を導く導磁路としての磁性膜を有するM
R効果型磁気ヘッドにおいて、その磁性膜におけるバル
クハウゼンノイズを狭トラツク幅化によっても効果的に
改善し、実効トランク幅の改善、したがって再生出力特
性の向上を図る。
As described above, the present invention provides an M
In an R effect type magnetic head, Barkhausen noise in the magnetic film is effectively improved by narrowing the track width, thereby improving the effective trunk width and, therefore, the reproduction output characteristics.

c問題点を解決するための手段〕 本発明においては第1図に示すようにMR効果素子(1
)と、このMR効果素子(1)に信号磁束を導く磁性薄
膜(2)を有する磁気抵抗効果型磁気ヘッドにおいて、
その磁性薄膜(2)を、特に第2図に示すように非磁性
中間層(lO)を介して2層の磁性層(11)及び(1
2)が積層された積層構造とし、これら2層の磁性層(
11)及び(12)の少くとも一方にトラック幅方向と
ほぼ直交する方向に電流iを通ずる。
Means for Solving Problem c] In the present invention, as shown in FIG.
), and a magnetoresistive head having a magnetic thin film (2) that guides a signal magnetic flux to the MR effect element (1),
The magnetic thin film (2) is interposed between two magnetic layers (11) and (1
2) has a laminated structure, and these two magnetic layers (
A current i is passed through at least one of (11) and (12) in a direction substantially perpendicular to the track width direction.

この磁性膜(2)における非磁性中間Jif(10)の
厚さtは例えば5≦t≦1000人に選定して両磁性層
(11)及び(12)間に交換相互作用よりもクーロン
相互作用が支配的に生じかつ磁気ギャップとしては充分
無視できる厚さに選定する。
The thickness t of the non-magnetic intermediate Jif (10) in this magnetic film (2) is selected to be, for example, 5≦t≦1000, so that the Coulomb interaction is stronger than the exchange interaction between the two magnetic layers (11) and (12). The thickness is selected to be such that it occurs predominantly and can be sufficiently ignored as a magnetic gap.

〔作用〕[Effect]

上述したように本発明においては、その磁性膜+2)と
して非磁性中間!(1,0)を介して磁性層(11)及
び(12)が積層された構造としたことによって冒頭に
述べたようなバルクハウゼンノイズの改善が図られる。
As mentioned above, in the present invention, the magnetic film +2) is a non-magnetic intermediate! By adopting a structure in which the magnetic layers (11) and (12) are laminated with (1,0) interposed therebetween, the Barkhausen noise as described at the beginning can be improved.

加えて、これに通電を行ったことによって、これを幅狭
として狭トラツク化を図った場合においても電流iの通
電によって、第2図に示すように、両磁性層(11)及
び(12)にはトラック幅方向に沿う方向の磁界旧が生
じ、これによって互いに反平行の磁化M1及びM2が磁
性層(11)及び(12)に生じさせるので、これによ
ってトラック幅の狭小化に伴う形状異方性の影響が実質
的に解消されてバルクハウゼンノイズの発生が効果的に
回避される。また、形状異方性による有効トラック幅の
狭小化も回避される。
In addition, by energizing this, even when the width is narrowed to create a narrow track, both magnetic layers (11) and (12) are energized by applying current i, as shown in FIG. A magnetic field along the track width direction is generated in the magnetic layers (11) and (12), which causes magnetizations M1 and M2 that are antiparallel to each other to occur in the magnetic layers (11) and (12). The directional effects are substantially eliminated and the occurrence of Barkhausen noise is effectively avoided. Furthermore, narrowing of the effective track width due to shape anisotropy is also avoided.

〔実施例〕〔Example〕

第1図を参照して本発明による薄膜磁気ヘッドの一例を
さらに詳細に説明する。図中(20)はこの薄膜磁気ヘ
ッドを全体として示す。(21)は磁気ディスク、磁気
シート、磁気テープ等の磁気記録媒体で、(22)はこ
れとの対接ないしは対向面を示す。この例では、基板(
3)例えばMn −Zn系フェライトあるいはNi−Z
n系フェライト等の磁性基板を用意し、この磁性基板(
3)が導電性を有する場合には、その表面にSiO2あ
るいはAl2O3等の薄い絶縁膜(4)を蒸着、スパッ
タリング等によって形成し、これの上に例えば磁気媒体
との対接ないしは対向面(22)から所要の距離後退し
た位置に例えばトランク幅方向に沿って延在する帯状の
MR効果素子filにバイアス磁界を与えるバイアス磁
界発生用導体(5)を被着形成する。この導体(5)は
例えば全面蒸着、スパッタリング等によって導電層を形
成しフォトリソグラフィによって所要のパターンに形成
し得る。
An example of the thin film magnetic head according to the present invention will be explained in more detail with reference to FIG. In the figure, (20) shows this thin film magnetic head as a whole. (21) is a magnetic recording medium such as a magnetic disk, a magnetic sheet, or a magnetic tape, and (22) represents a surface that is in contact with or faces the magnetic recording medium. In this example, the board (
3) For example, Mn-Zn ferrite or Ni-Z
A magnetic substrate such as n-type ferrite is prepared, and this magnetic substrate (
3) is electrically conductive, a thin insulating film (4) of SiO2 or Al2O3 is formed on its surface by vapor deposition, sputtering, etc., and on top of this a thin insulating film (4) of SiO2 or Al2O3, etc. For example, a bias magnetic field generating conductor (5) for applying a bias magnetic field to the band-shaped MR effect element fil extending along the trunk width direction is deposited at a position set back a required distance from ). This conductor (5) can be formed into a desired pattern by forming a conductive layer by, for example, full-surface vapor deposition or sputtering, and by photolithography.

そして、この導体(5)を覆って同様の絶縁[!1iI
(41を被着形成し、例えばこの導体(5)上に絶縁膜
(2)を介してMR効果素子(1)を配置形成する。
This conductor (5) is then covered with similar insulation [! 1iI
(41), and for example, the MR effect element (1) is arranged and formed on this conductor (5) with an insulating film (2) interposed therebetween.

(2F)と後方磁性膜(2B)とを配置する。(2F) and a rear magnetic film (2B) are arranged.

前方磁性膜(2F)は、その前方端面が磁気記録媒体と
の対接ないしは対向面(22)に臨み、後方端が素子(
11の前方端に積層されて磁気的に結合されるように帯
状に配置される。
The front end surface of the front magnetic film (2F) faces the magnetic recording medium or facing surface (22), and the rear end faces the element (2F).
11 and arranged in a strip shape so as to be stacked and magnetically coupled to each other.

後方磁性膜(2B)は、その前方端が素子(1)の後方
端に積層されて磁気的に結合され、後方端が導体(5)
の配置部より後方において磁性の基板(3)と磁気的に
密に結合するように、例えば基板(3)上の絶縁膜(4
)に窓あけが行われ、これを通じて、後方磁性膜(2B
)の後方端が基板(3)に直接的に連接するように帯状
に形成し得る。
The rear magnetic film (2B) has its front end laminated and magnetically coupled to the rear end of the element (1), and its rear end is layered with the conductor (5).
For example, the insulating film (4) on the substrate (3) is arranged so as to be closely magnetically coupled with the magnetic substrate (3) at the rear of the arrangement part.
), and through this, the rear magnetic film (2B
) may be formed into a strip shape such that its rear end is directly connected to the substrate (3).

前方磁性膜(2F)の前方端と基板C2との間には例え
ば絶縁膜(4)による非磁性ギャップスペーサ(6)の
介在によって所要のギャップ長を有する作動磁気ギャッ
プgが形成されるようにする。
A working magnetic gap g having a required gap length is formed between the front end of the front magnetic film (2F) and the substrate C2 by interposing a non-magnetic gap spacer (6) made of, for example, an insulating film (4). do.

磁性膜(2F)及び(2B)は、第2図で説明したよう
に所要の厚さt例えばt=100人の非磁性中間層(l
O)を介して導電性軟磁性層(11)及び(12)が積
層された構造とする。非磁性中間層(10)は例えば5
i02+ Ta205. Al2O3等の無機物絶縁非
磁性層あるいはTjI Mo、 Au+ 4g等の非磁
性金属層によって形成し得る。また、磁性層(11)及
び(12)は軟磁性体例えばパーマロイすなわちFe−
Ni合金あるいはセンダストすなわちFe−Al−3層
合金あるいは軟磁性アモルファス例えばCo系アモルフ
ァス例えばCo、 Fe−Ni等のメタルと、B。
The magnetic films (2F) and (2B) have the required thickness t, for example, t=100 non-magnetic intermediate layers (l
The structure is such that conductive soft magnetic layers (11) and (12) are laminated with O) interposed therebetween. The non-magnetic intermediate layer (10) is, for example, 5
i02+ Ta205. It can be formed by an inorganic insulating nonmagnetic layer such as Al2O3 or a nonmagnetic metal layer such as TjI Mo or Au+4g. The magnetic layers (11) and (12) are made of soft magnetic material such as permalloy or Fe-
Ni alloy or sendust, ie, Fe-Al-trilayer alloy, or soft magnetic amorphous, such as Co-based amorphous, metal such as Co, Fe-Ni, etc., and B.

C,St等のメタロイドとの合金、あるいはCOもしく
はFe−Niメタルと肘、 Zr、 Nb+ Ta、 
W等のメタル−メタルCo系アモルファスによって形成
し得る。
Alloy with metalloid such as C, St, or CO or Fe-Ni metal, Zr, Nb + Ta,
It can be formed from a metal-metal Co-based amorphous material such as W.

これら磁性層(11)、非磁性中間層(10)及び上層
磁性Ji!1(12)は、それぞれ順次全面的にスパッ
タリング、蒸着等によって積層被着し、フォトリソグラ
フィによって所要のパターンに形成し得る。
These magnetic layer (11), non-magnetic intermediate layer (10) and upper magnetic layer Ji! 1 (12) can be sequentially deposited over the entire surface by sputtering, vapor deposition, etc., and formed into a desired pattern by photolithography.

前方磁性膜(2F)の前端部と後方磁性膜(2B)の後
方端部にはそれぞれこれら磁性膜(2F)及び(2B)
の少くとも各一方の磁性N(12)または(11)に電
流iを通ずる通電用電極(31)と(32)とを電気的
に連結被着し、更に磁性膜(2F)及び(2B)間の互
いの対向端間に電気的に両者を連結する連結導体(33
)を設け、両電極(21)及び(22)間に電流を供給
する。この場合、前方電極(21)は、アース側とし、
このようにすることによって面(21)に他物が接触し
た場合に電池作用によって腐食が生じることがないよう
にすることが望ましい。
These magnetic films (2F) and (2B) are located at the front end of the front magnetic film (2F) and the rear end of the rear magnetic film (2B), respectively.
Electrical connection electrodes (31) and (32) for passing current i through at least one magnetic N (12) or (11) are electrically connected and deposited, and further magnetic films (2F) and (2B) A connecting conductor (33
) is provided to supply a current between both electrodes (21) and (22). In this case, the front electrode (21) is on the ground side,
By doing so, it is desirable to prevent corrosion from occurring due to battery action when another object comes into contact with the surface (21).

尚、この磁性膜(2F)及び(2B)において非磁性中
間層(10)が導電性を有するとか、両磁性層(11)
及び(12)間の電気的絶縁性を保持できない程度に肉
薄となされる場合には、電極(21)及び(22)間の
通電によって両磁性層(11)及び(12)に同時に同
方向への通電例えば図示のように後方端から前方端に向
う電流iの通電を行うことができるが、非磁性中間層(
10)が絶縁性材で且つその厚さが大であって磁性層(
11)及び(12)間の電気的絶縁が図られる場合には
、例えば電極(21)及び(22)の被着下における非
磁性中間層に窓開けを予め行って下層の磁性層(11)
上に上層の磁性層(12)が電気的に連接して被着され
るようになしておくことが望ましい。
In addition, in these magnetic films (2F) and (2B), the non-magnetic intermediate layer (10) has conductivity, or both magnetic layers (11)
and (12), if the thickness is so thin that electrical insulation cannot be maintained between the electrodes (21) and (22), both magnetic layers (11) and (12) are simultaneously moved in the same direction by applying current between the electrodes (21) and (22). For example, as shown in the figure, a current i can be passed from the rear end to the front end.
10) is an insulating material and has a large thickness, and the magnetic layer (
When electrical insulation between 11) and 12 is to be achieved, for example, a window is formed in advance in the non-magnetic intermediate layer under the electrodes 21 and 22, so that the lower magnetic layer 11
It is desirable that an upper magnetic layer (12) be deposited thereon in electrical connection.

そして、このように基板(1)上に導体(5)及び、磁
性薄膜(5F)  (5B)及びMR効果素子(1)、
給電電極(31)及び(32)が形成された薄膜磁気ヘ
ッド本体を覆って例えばガラス等の接着剤(34)を介
して例えば磁性材よりなる上部基板(35)を接合して
両基板(35)及び(3)間において薄膜磁気ヘッド本
体の保護、さらにある場合は磁気遮蔽効果を得る。
Then, on the substrate (1), the conductor (5), the magnetic thin film (5F) (5B), and the MR effect element (1),
An upper substrate (35) made of a magnetic material, for example, is bonded to the main body of the thin film magnetic head on which the power supply electrodes (31) and (32) are formed, through an adhesive (34) such as glass, and both substrates (35) are bonded together. ) and (3), the thin film magnetic head body is protected and, in some cases, a magnetic shielding effect is obtained.

またMR効果素子(1)についても例えば非磁性中間層
(40)が介在され、少くとも一方がMR効果を有する
2層の磁性N (41)及び(42)の積層構造とする
こともできる。
The MR effect element (1) may also have a laminated structure of two magnetic layers N (41) and (42), at least one of which has an MR effect, with a non-magnetic intermediate layer (40) interposed therebetween.

また、磁気記録媒体との対接ないしは対向面(22)は
、基板(3)から上部基板(35)に差し渡って研磨さ
れて形成される。そして、この磁気記録媒体との対接面
ないしは対向面(22)に摺接ないしは対向して、第1
図において紙面に沿う方向に例えば図の上方から下方に
もくしはその逆方向に磁気ディスク、磁気シート、磁気
テープ等の磁気記録媒体(21)が相対的に移行するよ
うになされる。
Further, the surface (22) that faces or faces the magnetic recording medium is formed by polishing the entire area from the substrate (3) to the upper substrate (35). Then, a first
In the figure, a magnetic recording medium (21) such as a magnetic disk, a magnetic sheet, a magnetic tape, etc. is relatively moved in a direction along the plane of the paper, for example, from the top to the bottom of the figure, or in the opposite direction.

このような構成によれば、磁性薄膜(2F>−MR効果
素子(1)−磁性薄膜(2B)一基板(3)−作動磁気
ギャップピー磁性薄膜(2F)の閉磁路が形成され、磁
気記録媒体(21)からの信号磁束が少くとも磁性薄膜
(2F)及び(2B)を通じてMR効果素子(1)に与
えられる磁気ヘッドが構成される。
According to such a configuration, a closed magnetic path of magnetic thin film (2F>-MR effect element (1) - magnetic thin film (2B) - one substrate (3) - operating magnetic gap magnetic thin film (2F) is formed, and magnetic recording A magnetic head is configured in which a signal magnetic flux from a medium (21) is applied to an MR effect element (1) through at least magnetic thin films (2F) and (2B).

(+51)及び(+ 52)はMR効果素子(1)の前
後両端に設けられた電極で、これら電極(+51)及び
(+52)間にセンス電流が与えられる。
(+51) and (+52) are electrodes provided at both the front and rear ends of the MR effect element (1), and a sense current is applied between these electrodes (+51) and (+52).

尚、第1図の例では、両磁性薄膜(2F)及び(2B)
間に両者を電気的に連結する導体(33)を設けた場合
であるが、成る場合は、第3図に示すようにMR効果素
子(1)によって両磁性薄膜(2F)及び(2B)間の
電気的接続をも行うようにして、MR効果素子(1)の
電極(+51)及び(+52>を省略し、磁性薄膜(2
F)及び(2B)の電極(31)及び(32)間に素子
(11へのセンス電流を通じ、これによって磁性薄膜(
2F)及び(2B)への通電を兼ねるようにすることも
できる。
In the example of FIG. 1, both magnetic thin films (2F) and (2B)
This is a case where a conductor (33) is provided between the two to electrically connect them, but in this case, as shown in FIG. The electrodes (+51) and (+52> of the MR effect element (1) are omitted, and the magnetic thin film (2
A sense current to the element (11) is passed between the electrodes (31) and (32) of F) and (2B), thereby causing the magnetic thin film (
2F) and (2B) may also be used for energizing.

尚、第3図において第1図と対応する部分には同一符号
を付して重複説明を省略する。
In FIG. 3, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and redundant explanation will be omitted.

また、図示した各側においては、磁性薄膜(2F)及び
(2B)を構成する両磁性層(11)及び(12)に対
してそれぞれ通電を行った場合であるが、一方の磁性層
(11)または(12)についてのみその通電を行って
他の磁性層(12)または(11)においてトラック幅
方向に磁化を発生させ、この磁化による磁界によて反平
行の磁化が通電された方の磁性層に生ずるようにするこ
ともできる。
Furthermore, on each side shown in the figure, the case is that both the magnetic layers (11) and (12) constituting the magnetic thin films (2F) and (2B) are respectively energized, but one magnetic layer (11) is energized. ) or (12) is energized to generate magnetization in the track width direction in the other magnetic layer (12) or (11), and the magnetic field caused by this magnetization causes antiparallel magnetization of the energized one. It can also be made to occur in the magnetic layer.

また、上述したように本発明においては、磁性薄膜(2
F)及び(2B)を少くとも対の磁性7!(11)及び
(12)によって形成した場合であるが、ある場合はそ
れぞれ非磁性中間層を介在させた3層構造とし、中央の
磁性層についてその厚さを大にして両側の磁性層との間
に互いに反平行の磁界が生ずるような構成とすることも
できるなど3層構造以上の磁性層によって構成すること
も考えられる。
Further, as mentioned above, in the present invention, a magnetic thin film (2
F) and (2B) at least as a pair of magnetic 7! (11) and (12), but in some cases, a three-layer structure with a non-magnetic intermediate layer is used, and the thickness of the central magnetic layer is increased to form a layer with the magnetic layers on both sides. It is also conceivable to construct a structure with three or more magnetic layers, such as a structure in which mutually antiparallel magnetic fields are generated between them.

さらに磁性膜(2F)及び(2B)を構成する磁性層(
11)及び(12)としては同一材料の磁性材料すなわ
ち熱膨張率が同等のものを用いることが望ましく、この
ようにするときは積層体によって熱膨張率の差に基づく
熱歪による特性変化あるいは剥離等が回避される。
Furthermore, the magnetic layer (
For 11) and (12), it is preferable to use magnetic materials of the same material, that is, materials with the same coefficient of thermal expansion.When doing so, the laminate may suffer from changes in properties or peeling due to thermal strain due to the difference in coefficient of thermal expansion. etc. are avoided.

また、本発明は上述の例に限らず、MR効果素子に磁気
記録媒体からの信号磁束を供給する導磁路の少くとも一
部を構成する磁性薄膜を有する各種MR効果型磁気ヘッ
ド、例えば上述の例のように作動磁気ギャップgによら
ず、磁性薄膜の、磁気記録媒体との対接ないしは対向面
に臨む前方端面から磁気記録媒体からの記録信号磁界を
拾ってMR効果素子(1)に導く構成を採るMR効果型
磁気ヘッド等に適用することもできる。
Further, the present invention is not limited to the above-mentioned examples, but also applies to various MR effect type magnetic heads having a magnetic thin film that constitutes at least a part of a magnetic guide path that supplies signal magnetic flux from a magnetic recording medium to an MR effect element, such as the above-mentioned As in the example, the recording signal magnetic field from the magnetic recording medium is picked up from the front end face of the magnetic thin film facing the magnetic recording medium or facing the magnetic recording medium, regardless of the operating magnetic gap g, and is transmitted to the MR effect element (1). The present invention can also be applied to an MR effect type magnetic head or the like that adopts a structure in which the magnetic field is guided.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明においては、MR効果型磁気ヘッ
ドにおいてその導磁路の少くとも一部を構成する磁性薄
膜(2F)及び(2B)を、非磁性中間層(10)を介
して磁性層(11)及び(12)が積層された構成とす
ると共に特にこれに通電を行ってこの通電によって発生
する磁界によって形状磁気異方性による影響を回避する
磁化が生ずるようにしたのでバルクハウゼンノイズをト
ラック幅の狭小化においても充分小とすることができ、
S/Nの向上をはかって信号処理上有利性を図ることが
できる。
As described above, in the present invention, the magnetic thin films (2F) and (2B) constituting at least a part of the magnetic path in the MR effect magnetic head are connected to the magnetic layer through the nonmagnetic intermediate layer (10). (11) and (12) are laminated, and they are particularly energized so that the magnetic field generated by this energization generates magnetization that avoids the effects of shape magnetic anisotropy, thereby reducing Barkhausen noise. Even when the track width is narrowed, it can be made sufficiently small.
By improving the S/N ratio, it is possible to obtain advantages in signal processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図はそれぞれ本発明によるMR効果型磁
気ヘッドの各側の路線的拡大断面図、第2図はその磁性
薄膜の一例を示す拡大斜視図、第4図及び第5図は従来
の磁気ヘッドにおける磁性薄膜の説明に供する路線的拡
大斜視図である。 +11はMR効果素子、(2F)及び(2B)は磁性膜
、(10)はその非磁性中間層、(11)及び(12)
は磁性層である。
1 and 3 are respectively enlarged linear cross-sectional views of each side of the MR effect type magnetic head according to the present invention, FIG. 2 is an enlarged perspective view showing an example of the magnetic thin film, and FIGS. 4 and 5 are FIG. 2 is an enlarged perspective view illustrating a magnetic thin film in a conventional magnetic head. +11 is an MR effect element, (2F) and (2B) are magnetic films, (10) is its nonmagnetic intermediate layer, (11) and (12)
is the magnetic layer.

Claims (1)

【特許請求の範囲】 磁気抵抗効果素子と、該磁気抵抗効果素子に信号磁束を
導く磁性薄膜を有する磁気抵抗効果型磁気ヘッドにおい
て、 上記磁性薄膜は、非磁性中間層を介して2層の磁性層よ
り構成され、 上記2層の磁性層の少くとも一方にトラック幅方向とほ
ぼ直交する方向に電流を通ずるようにしたことを特徴と
する磁気抵抗効果型磁気ヘッド。
[Scope of Claims] A magnetoresistive magnetic head having a magnetoresistive element and a magnetic thin film that guides a signal magnetic flux to the magnetoresistive element, wherein the magnetic thin film has two magnetic layers with a nonmagnetic intermediate layer interposed therebetween. 1. A magnetoresistive magnetic head comprising a plurality of magnetic layers, characterized in that a current is passed through at least one of the two magnetic layers in a direction substantially perpendicular to the track width direction.
JP8031287A 1987-03-31 1987-03-31 Magnetoresistance type magnetic head Pending JPS63244408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8031287A JPS63244408A (en) 1987-03-31 1987-03-31 Magnetoresistance type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8031287A JPS63244408A (en) 1987-03-31 1987-03-31 Magnetoresistance type magnetic head

Publications (1)

Publication Number Publication Date
JPS63244408A true JPS63244408A (en) 1988-10-11

Family

ID=13714746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8031287A Pending JPS63244408A (en) 1987-03-31 1987-03-31 Magnetoresistance type magnetic head

Country Status (1)

Country Link
JP (1) JPS63244408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959809A (en) * 1994-07-29 1999-09-28 Fujitsu Limited Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959809A (en) * 1994-07-29 1999-09-28 Fujitsu Limited Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
JP2001176028A (en) Thin film magnetic head and method of producing the same
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH064832A (en) Combine thin film magnetic head
JPH087229A (en) Magnetoresistance effect type magnetic head
JPS63244408A (en) Magnetoresistance type magnetic head
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JP2668925B2 (en) Magnetoresistive magnetic head
JPH08235542A (en) Magnetic reluctance effect element
JPS63244407A (en) Thin film magnetic head
JP2508475B2 (en) Magnetoresistive magnetic head
JPH0473210B2 (en)
JPS60237609A (en) Magnetic head
JPS61182620A (en) Thin film magnetic head
JPS60157712A (en) Magneto-resistance effect type magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JPH07201019A (en) Magneto-resistance effect type head
JPH0375930B2 (en)
JPS63244307A (en) Magnetoresistance type magnetic head
JP3606988B2 (en) Magnetoresistive head
JPH0666188B2 (en) Soft magnetic laminated film
JPS59221824A (en) Magnetoresistance effect type magnetic head
JP2642923B2 (en) Magnetoresistive magnetic head
JPH02165408A (en) Magneto-resistance effect type magnetic head
JP2672105B2 (en) Magnetic head