JPS63232432A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS63232432A
JPS63232432A JP62067404A JP6740487A JPS63232432A JP S63232432 A JPS63232432 A JP S63232432A JP 62067404 A JP62067404 A JP 62067404A JP 6740487 A JP6740487 A JP 6740487A JP S63232432 A JPS63232432 A JP S63232432A
Authority
JP
Japan
Prior art keywords
exposure
less
alignment
wavelength
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62067404A
Other languages
Japanese (ja)
Other versions
JP2570730B2 (en
Inventor
Shinji Minegishi
慎治 峰岸
Minoru Takeda
実 武田
Yukiyasu Sugano
菅野 幸保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62067404A priority Critical patent/JP2570730B2/en
Publication of JPS63232432A publication Critical patent/JPS63232432A/en
Application granted granted Critical
Publication of JP2570730B2 publication Critical patent/JP2570730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a pattern with high accuracy by conducting alignment and exposure in a state in which a film mainly comprising nitrogen and titanium and having thickness of 42 nm or less is formed under a photoresist layer. CONSTITUTION:Alignment and exposure are performed under the state in which a film mainly comprising nitrogen and titanium and thickness of 42 nm or less is formed under a photoresist layer. That is, it is preferable that reflectivity at the time of alignment extends over 20% or more and it is desirable that reflectivity at the time of exposure inversely extends over 20% or less in reduction projection exposure. Since He-Ne laser beams having a wavelength of 633 nm are used as beams for alignment and the G beams of an ultrahigh pressure mercury lamp having a wavelength of 436 nm as beams for exposure, the thickness of a TiON film satisfying both conditions of reflectivity of 20% or more to beams having the wavelength of 633 nm and reflectivity of 20% or less to beams having the wavelength of 436 nm is brought to 42 nm or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フォトレジスト層の位置合せ及び露光を行っ
てフォトレジスト層にパターンを形成するパターン形成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a pattern forming method for forming a pattern on a photoresist layer by aligning and exposing the photoresist layer.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様なパターン形成方法において、窒素
とチタンとを主成分とし厚さが42nm以下である膜を
フォトレジスト層の下に形成した状態で位置合せと露光
とを行うことによって、高精度のパターン形成を行うこ
とができる様にしたものである。
The present invention uses the above-described pattern forming method by performing alignment and exposure with a film containing nitrogen and titanium as main components and having a thickness of 42 nm or less formed under the photoresist layer. This allows highly accurate pattern formation.

〔従来の技術〕[Conventional technology]

半導体装置の配線等の微細パターンは、フォトリソグラ
フィ及びエツチングによって形成される。
Fine patterns such as wiring of semiconductor devices are formed by photolithography and etching.

ところが、AIの様に反射率の高い物質で配線等を形成
しようとすると、フォトリソグラフィにおいて、AIに
よる反射のためにフォトレジスト層にハレーシコンが発
生する。従ってこの様な場合には、高精度のパターンを
形成することができない。
However, when attempting to form wiring or the like using a material with a high reflectance such as AI, dielectric condensation occurs in the photoresist layer due to reflection by the AI during photolithography. Therefore, in such a case, a highly accurate pattern cannot be formed.

このために特開昭61−185928号公報には、反射
防止機能を有すると共にAI等にパターンを形成した後
にこのパターンを損うことな(除去可能な膜として窒素
とチタンとを主成分とする膜を1000人程度0厚さで
レジスト層の下に形成した状態でレジスト層を露光する
様にしたパターン形成方法が開示されている。
For this reason, Japanese Patent Application Laid-Open No. 61-185928 discloses a film that has an anti-reflection function and that does not damage the pattern after forming a pattern on AI etc. (a removable film containing nitrogen and titanium as main components) A pattern forming method is disclosed in which the resist layer is exposed to light after a film is formed under the resist layer to a thickness of about 1,000.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、半導体装置を微細加工して高集積化させるた
めに、レジスト層の露光を縮小投影露光によって行う様
になってきている。
Incidentally, in order to microfabricate semiconductor devices and increase their integration, the exposure of the resist layer has come to be performed by reduction projection exposure.

この縮小投影露光では、ウェハ上に形成されているレジ
スト層の全面をステップアンドリピートを繰り返して露
光する。従って、縮小投影露光では精密な位置合せ露光
をしなければならず、そのために、ウェハ上の合せマー
クからウェハの位置を検出してマスクの投影像とウェハ
との位置合せを行う。
In this reduction projection exposure, the entire surface of the resist layer formed on the wafer is exposed by repeating step-and-repeat steps. Therefore, in reduction projection exposure, precise alignment exposure must be performed, and for this purpose, the position of the wafer is detected from alignment marks on the wafer to align the projected image of the mask with the wafer.

ところでウェハ上の合せマークの検出は、露光に用いる
光とは別の光、つまりレジスト層を感光させない波長の
光でウェハを照射し、その反射光を検出することによっ
て行う。従ってこの場合は、露光の場合とは逆に、ウェ
ハ等の反射率が高い方が好ましい。
By the way, alignment marks on a wafer are detected by irradiating the wafer with light different from the light used for exposure, that is, with light of a wavelength that does not expose the resist layer, and detecting the reflected light. Therefore, in this case, contrary to the case of exposure, it is preferable that the reflectance of the wafer or the like is high.

しかし、上述の従来例の様に窒素とチタンとを主成分と
する膜を1000人程度0厚さで形成すると、位置合せ
用の光に対するウェハ等の反射率が低く、ウェハ上の合
せマークを高精度で検出することができない。従って、
ウェハの位置合せを高精度に行って高精度のパターン形
成を行うということができない。
However, if a film mainly composed of nitrogen and titanium is formed with a thickness of about 1,000 as in the conventional example described above, the reflectance of the wafer, etc. to the alignment light is low, and the alignment mark on the wafer is cannot be detected with high precision. Therefore,
It is not possible to form a pattern with high precision by aligning the wafer with high precision.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるパターン形成方法は、窒素とチタンとを主
成分とし厚さが42nm以下である膜をフォトレジスト
層の下に形成した状態で位置合わせと露光とを行うこと
を特徴としている。
The pattern forming method according to the present invention is characterized in that alignment and exposure are performed while a film containing nitrogen and titanium as main components and having a thickness of 42 nm or less is formed under a photoresist layer.

〔作用〕[Effect]

本発明によるパターン形成方法では、位置合せ用の光に
対しては反射率が20%以上となり、露光用の光に対し
ては反射率が20%以下となる。
In the pattern forming method according to the present invention, the reflectance for alignment light is 20% or more, and the reflectance for exposure light is 20% or less.

〔実施例〕〔Example〕

以下、半導体装置のAt配線の形成に適用した本発明の
一実施例を説明するが、この実施例の説明に先立って、
本発明に至る実験結果をまず説明する。
An embodiment of the present invention applied to the formation of At wiring in a semiconductor device will be described below, but prior to the explanation of this embodiment,
First, the experimental results leading to the present invention will be explained.

この実験では、まず、厚さ1.0μmのAl−5ill
を表面に形成したSi基板をバッチ式スパッタリング装
置内に配し、真空排気及び加熱ベーキングを行った後に
、Ar65cc/分、Nt6Tcc/分及び0!1.5
 c c 7分を導入してTiのスパッタリングを行っ
た。
In this experiment, we first used Al-5ill with a thickness of 1.0 μm.
The Si substrate with the surface formed on it was placed in a batch type sputtering device, and after vacuum evacuation and heating baking, Ar65cc/min, Nt6Tcc/min and 0!1.5
Ti was sputtered by introducing c c for 7 minutes.

そしてこのスパッタリングによって、厚さが夫夫30.
50.58及び80nmである4種類のTi0NをAl
−5i膜上に形成した。第2図は、これら4種類のTi
0N膜の反射率スペクトルを示している。この様に反射
率が波長によって変わるのは、光の干渉によるためであ
ると考えられる。
As a result of this sputtering, the thickness was reduced to 30 mm.
Al
-5i film. Figure 2 shows these four types of Ti.
The reflectance spectrum of the 0N film is shown. This change in reflectance depending on wavelength is thought to be due to light interference.

ところで縮小投影露光では、位置合せ時の反射率が20
%以上であるのが好ましく、露光時の反射率は逆に20
%以下であるのが好ましいことを、本願の発明者が経験
的に見い出した。
By the way, in reduction projection exposure, the reflectance during alignment is 20
It is preferable that the reflectance at the time of exposure is 20% or more.
The inventor of the present application has empirically found that it is preferably less than %.

第1図は、第2図において、高波長側及び低波長側で反
射率が20%である波長を破線で示し、反射率が最低で
ある波長を実線で示している。従って、2本の破線の間
の領域では反射率が20%以下であり、それ以外の領域
では反射率が20%以上である。
In FIG. 1, in FIG. 2, the wavelengths at which the reflectance is 20% on the high wavelength side and the low wavelength side are shown by broken lines, and the wavelengths at which the reflectance is the lowest are shown by solid lines. Therefore, in the region between the two broken lines, the reflectance is 20% or less, and in the other regions, the reflectance is 20% or more.

一方、現在の縮小投影露光装置では、位置合せ用の光と
して波長が633r++wであるHe −Neレーザ光
が、また露光用の光として波長が436nmである超高
圧水銀灯のG線が、夫々広範囲に用いられている。
On the other hand, in the current reduction projection exposure apparatus, He-Ne laser light with a wavelength of 633r++w is used as alignment light, and G-line of an ultra-high pressure mercury lamp with a wavelength of 436nm is used as exposure light, both over a wide range. It is used.

従って第1図から、波長633nmの光に対する反射率
が20%以上で且つ波長436nmの光に対する反射率
が20%以下という両方の条件を満足するTiONMの
厚さは42nm以下であるということが分る。
Therefore, from FIG. 1, it can be seen that the thickness of TiONM that satisfies both conditions of having a reflectance of 20% or more for light with a wavelength of 633 nm and a reflectance of 20% or less for light with a wavelength of 436 nm is 42 nm or less. Ru.

そこで本発明の一実施例として、波長436n@の光に
対する反射率が略20%である厚さ50nwのTi0N
膜上でフォトレジスト層のパターニングを行った。その
結果11幅11000n以下のパターニングが、基板側
からの反射光の影響を受けることなく良好に形成された
Therefore, as an embodiment of the present invention, a Ti0N film having a thickness of 50nw and having a reflectance of approximately 20% for light with a wavelength of 436n@
A photoresist layer was patterned on the film. As a result, a pattern with a width of 11,000 nm or less was successfully formed without being affected by reflected light from the substrate side.

なお、He −Cdレーザ光等の様にHe −Neレー
ザ光よりも短波長の光を位置合せ用の光として使用し、
またエキシマレーザ光等の様に超高圧水銀灯のG線より
も短波長の光を露光用の光として使用する露光装置にお
いても、Ti0N膜の厚さを20nm以下の領域まで含
めて適当に選択することによって位置合せ及び露光の何
れをも良好に行えることが、第1図から容易に分る。
Note that light with a shorter wavelength than He-Ne laser light, such as He-Cd laser light, is used as alignment light.
In addition, even in exposure equipment that uses light with a wavelength shorter than the G-line of an ultra-high pressure mercury lamp as exposure light, such as excimer laser light, the thickness of the Ti0N film must be appropriately selected, including a range of 20 nm or less. It can be easily seen from FIG. 1 that both alignment and exposure can be performed satisfactorily by this method.

〔発明の効果〕〔Effect of the invention〕

本発明によるパターン形成方法では、位置合せ用の光に
対しては反射率が20%以上となり、露光用の光に対し
ては反射率が20%以下となるので、位置合せ及び露光
の何れをも高精度に行うことができて、高精度のパター
ン形成を行うことができる。
In the pattern forming method according to the present invention, the reflectance for alignment light is 20% or more, and the reflectance for exposure light is 20% or less. It is also possible to perform highly accurate pattern formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はTi0N膜の膜厚、波長及び反射率
の関係を示すグラフである。
FIGS. 1 and 2 are graphs showing the relationship between the film thickness, wavelength, and reflectance of the TiON film.

Claims (1)

【特許請求の範囲】 フォトレジスト層とこのフォトレジスト層に形成すべき
パターンとの位置合せ及び前記フォトレジスト層の露光
を行って前記フォトレジスト層に前記パターンを形成す
るパターン形成方法において、 窒素とチタンとを主成分とし厚さが42nm以下である
膜を前記フォトレジスト層の下に形成した状態で前記位
置合せと前記露光とを行うことを特徴とするパターン形
成方法。
[Claims] A pattern forming method in which the pattern is formed on the photoresist layer by aligning a photoresist layer and a pattern to be formed on the photoresist layer and exposing the photoresist layer to light, comprising: A pattern forming method characterized in that the alignment and the exposure are performed in a state where a film containing titanium as a main component and having a thickness of 42 nm or less is formed under the photoresist layer.
JP62067404A 1987-03-20 1987-03-20 Pattern forming method Expired - Lifetime JP2570730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62067404A JP2570730B2 (en) 1987-03-20 1987-03-20 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067404A JP2570730B2 (en) 1987-03-20 1987-03-20 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS63232432A true JPS63232432A (en) 1988-09-28
JP2570730B2 JP2570730B2 (en) 1997-01-16

Family

ID=13343968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067404A Expired - Lifetime JP2570730B2 (en) 1987-03-20 1987-03-20 Pattern forming method

Country Status (1)

Country Link
JP (1) JP2570730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240234A (en) * 1990-02-19 1991-10-25 Matsushita Electron Corp Semiconductor device
US5910021A (en) * 1994-07-04 1999-06-08 Yamaha Corporation Manufacture of semiconductor device with fine pattens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185928A (en) * 1985-02-14 1986-08-19 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185928A (en) * 1985-02-14 1986-08-19 Nippon Telegr & Teleph Corp <Ntt> Pattern forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240234A (en) * 1990-02-19 1991-10-25 Matsushita Electron Corp Semiconductor device
US5910021A (en) * 1994-07-04 1999-06-08 Yamaha Corporation Manufacture of semiconductor device with fine pattens
US6137175A (en) * 1994-07-04 2000-10-24 Yamaha Corporation Semiconductor device with multi-layer wiring
US6187689B1 (en) 1994-07-04 2001-02-13 Yamaha Corporation Manufacture of semiconductor device with fine patterns

Also Published As

Publication number Publication date
JP2570730B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
KR100890665B1 (en) Dual layer reticle blank and manufacturing process
EP0501178B1 (en) Bilayer metallization cap for photolithography
EP1412817B1 (en) Damascene extreme ultraviolet lithography (euvl) photomask and method of making
US7446873B2 (en) Reflective alignment grating
EP0037708B1 (en) Method of forming patterns
JP2001022051A (en) Reticle and production of semiconductor device
US5589303A (en) Self-aligned opaque regions for attenuating phase-shifting masks
EP0134789A1 (en) Bilevel ultraviolet resist system for patterning substrates of high reflectivity.
JPH06163365A (en) Manufacture of semiconductor device
JPS63232432A (en) Pattern formation
JPH0567049B2 (en)
JP3326709B2 (en) Pattern formation method
US7005219B2 (en) Defect repair method employing non-defective pattern overlay and photoexposure
JP2797362B2 (en) Semiconductor device pattern forming method
JP2768670B2 (en) Pattern formation method
JPH0664337B2 (en) Photomask for semiconductor integrated circuit
JPH01189923A (en) Manufacture of semiconductor device
EP0559934A1 (en) Method and apparatus for deep UV image reversal patterning
JPS5821740A (en) Photomask for projection exposure
KR100476378B1 (en) How to remove resist pattern formed by top surface image process
KR100853461B1 (en) Method for forming patterns in semiconductor device using ArF light source
JPH0235707A (en) Alignment method
JPH05281702A (en) Production of phase shift mask
JPH05165195A (en) Glass mask and manufacture of semiconductor device by using this glass mask
JPH0360008A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term