JPS63228084A - Reliability evaluating method for semiconductor device - Google Patents

Reliability evaluating method for semiconductor device

Info

Publication number
JPS63228084A
JPS63228084A JP6152487A JP6152487A JPS63228084A JP S63228084 A JPS63228084 A JP S63228084A JP 6152487 A JP6152487 A JP 6152487A JP 6152487 A JP6152487 A JP 6152487A JP S63228084 A JPS63228084 A JP S63228084A
Authority
JP
Japan
Prior art keywords
deterioration
voltage
drain
electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6152487A
Other languages
Japanese (ja)
Other versions
JP2617928B2 (en
Inventor
Yoshiro Nakada
義朗 中田
Tomoyuki Morii
森井 知行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6152487A priority Critical patent/JP2617928B2/en
Publication of JPS63228084A publication Critical patent/JPS63228084A/en
Application granted granted Critical
Publication of JP2617928B2 publication Critical patent/JP2617928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate and evaluate the hot carrier deterioration of a MOSFET nearly in an actual operation state by sweeping a voltage applied to a gate while applying a constant voltage to a drain, and conducting a test. CONSTITUTION:The source electrode 2 and substrate electrode 3 of the MOSFET 1 to be tested are grounded and a drain voltage of, for example, 7V is applied to the drain electrode 4 from an external power source 6. Then while a pulse generator 7 applies a rectangular or triangular wave pulse with sweep width of 0-7V to the gate electrode 5, hot carrier deterioration is evaluated. Consequently, a secular change can be evaluated in deterioration mode close to the actual operation and the acceleration of the deterioration is increased by one digit with the same drain voltage as compared with DC stress.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MO8型電界効果トランジスタの実動作によ
り近い状態での経時劣化を加速評価するための新規な信
頼性評価方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel reliability evaluation method for accelerated evaluation of aging deterioration of an MO8 field effect transistor in a state closer to actual operation.

従来の技術 MO8型電界効果トランジスタ(MOSFET)は、素
子の微細化により高密度・高集積化される反面、信頼性
上の様々な問題を生ずる。中でも動作時におけるドレイ
ン近傍の高電界領域で加速さし高エネルギーを得たホッ
トキャリアにより引き起こされるホットキャリア劣化は
、素子の微細化を進める上で非常に重要な問題となって
いる。
Conventional MO8 type field effect transistors (MOSFETs) have become highly dense and highly integrated due to miniaturization of elements, but on the other hand, various reliability problems arise. Among these, hot carrier deterioration caused by hot carriers that are accelerated and have high energy in the high electric field region near the drain during operation has become a very important problem in advancing the miniaturization of devices.

従来このホットキャリアの評価には、ドレイン電圧一定
のもとてゲートに基板電流が最大となるようなドレイン
電圧の約半分の電圧(例えばドレイン電圧を7vとしだ
時ゲート電圧は3.5V)を印加して評価を行っていた
。この方法による試験回路を第6図に示す。ストレスは
、試験に供せられたn−chMO8FKTのゲート6と
ドレイン4にそれぞれ前述の所定のDC電圧を印加して
行う。
Conventionally, to evaluate hot carriers, a voltage that is about half the drain voltage (for example, when the drain voltage is 7 V, the gate voltage is 3.5 V) is used to maximize the substrate current to the gate with the drain voltage constant. was applied and evaluated. A test circuit using this method is shown in FIG. Stress is performed by applying the aforementioned predetermined DC voltage to the gate 6 and drain 4 of the n-ch MO8FKT subjected to the test, respectively.

劣化の評価はこのようなストレス印加とその前後に行う
デバイスの特性の測定とを繰り返すことにより特性の経
時劣化を評価する。
Deterioration is evaluated by repeating such application of stress and measurement of device characteristics before and after the application of stress.

しかし実際の集積回路ではこのようなゲート電圧がドレ
イン電圧の約半分の状態は、過渡時において一瞬存在す
るだけで実動作時の劣化とは同一とは言えない。実際に
第6図に示したようなCMOSインバータ回路のゲート
8に立ち上がりの異なるパルスを印加してn−chMO
SFET 1の劣化を評価したところ、基板電流の総発
生量が同一になる点でDCストレスと比較すると第7図
に示すようにDCストレスに比ベパルスを印加した方が
劣化が大きくなる。またこの差はパルスの立ち上がりが
急峻なほど顕著となる。
However, in an actual integrated circuit, such a state in which the gate voltage is approximately half the drain voltage exists only momentarily during a transient period, and cannot be said to be the same as deterioration during actual operation. Actually, by applying pulses with different rises to the gate 8 of the CMOS inverter circuit as shown in FIG.
When the deterioration of SFET 1 was evaluated, the deterioration was greater when compared to DC stress in that the total amount of substrate current generated was the same, as shown in FIG. 7, when a comparative pulse was applied to DC stress. Moreover, this difference becomes more pronounced as the rise of the pulse becomes steeper.

発明が解決しようとする問題点 以上述べたように従来のホットキャリア劣化評価法では
ドレイン電圧一定のもとて劣化が最も顕著であるような
ゲート電圧を印加することにより経時劣化の評gffJ
を行うため実動作での劣化と異なるという問題があった
Problems to be Solved by the Invention As described above, in the conventional hot carrier deterioration evaluation method, evaluation of aging deterioration is performed by applying a gate voltage at which the deterioration is most significant while keeping the drain voltage constant.
There was a problem that the deterioration was different from that in actual operation.

問題点を解決するための手段 本発明は、上記問題点全解決するためドレインに一定の
電圧を印加した状態で、ゲートに印加する電圧をスウィ
ーブさせながらホットキャリア劣化の評価を行う。
Means for Solving the Problems In order to solve all of the above problems, the present invention evaluates hot carrier deterioration while sweeping the voltage applied to the gate while applying a constant voltage to the drain.

作用 本発明は、上記した方法により実動作に近い状態でMO
S型電界効果トランジスタのホットキャリア劣化の加速
評価を行うことができる。
Effect of the present invention is to perform MO in a state close to actual operation by the method described above.
Accelerated evaluation of hot carrier deterioration of S-type field effect transistors can be performed.

実施例 本発明の特許請求の範囲にもとづく具体的な実施例を図
面を用いて説明する。第1図は本発明の方法により、n
−chMOSFIcTのホットキャリア評価を行うだめ
の回路図を示す。試験に供せられるn−chMOSFE
T 1のソース電極2及び基板電極3はグランドに接続
し、ドレイン電極4には外部電源6により例えば7vの
ドレイン電圧(VD)を印加する。ゲート電極6にはパ
ルスジェネレータ7により第2図a及びbに示したよう
な例えばスウィープ(掃印)幅がO〜7vの鋸波あるい
は三角波状のパルスを印加する。本実施例では、n−c
hMOSFETとしてチャンネル長LOμm1チャンネ
ル幅20μm1ゲート電極はポリSi、表面保護膜とし
てプラズマ窒化膜を用いたトランジスタを使用した。
Embodiments Specific embodiments based on the claims of the present invention will be described with reference to the drawings. FIG. 1 shows that by the method of the present invention, n
- A circuit diagram for hot carrier evaluation of chMOSFIcT is shown. n-chMOSFE used for testing
The source electrode 2 and substrate electrode 3 of T 1 are connected to the ground, and a drain voltage (VD) of, for example, 7 V is applied to the drain electrode 4 from an external power source 6 . A pulse generator 7 applies to the gate electrode 6 a sawtooth or triangular wave pulse having a sweep width of 0 to 7V as shown in FIGS. 2a and 2b, for example. In this example, n-c
As an hMOSFET, a transistor was used in which a channel length was LO μm, a channel width was 20 μm, a gate electrode was made of poly-Si, and a plasma nitride film was used as a surface protection film.

この方法により評価したデバイスの劣化前後のサブスレ
ッシュホールド特性を第3図乙に示す。
The subthreshold characteristics of the device evaluated by this method before and after deterioration are shown in Figure 3B.

同図すはドレインにTV、ゲートに3.6vを印加した
ときの結果、同図CはCMOSインバータ回路を構成し
立ち上がり5onsのパルスストレスを印加したときの
結果である。いずれの結果も基板電流総発生量が同じ点
での劣化を示している。
The figure shows the result when TV is applied to the drain and 3.6V to the gate, and the figure C shows the result when a CMOS inverter circuit is configured and a pulse stress of 5 ounces is applied. Both results show deterioration at the point where the total amount of substrate current generation is the same.

本発明の方法による劣化とCのパルスストレスの劣化ト
は共にサブスレッシュホールドスウィングSの劣化がみ
られよく似た劣化を示していることがわかる。従って本
発明の方法が実動作と非常に近い劣化モードで劣化が引
き起こっていると考えられる。
It can be seen that the deterioration caused by the method of the present invention and the deterioration caused by the pulse stress of C both show deterioration in the subthreshold swing S, and are very similar. Therefore, it is considered that the method of the present invention causes deterioration in a deterioration mode that is very similar to the actual operation.

また第4図は本方法による劣化と従来例に示したDCス
トレス試験による閾匝亀圧変動の経時変化を示したもの
である。同じ時間で比較したとき本方法のゲート電圧を
スウィープした方がDCストレスに比べ1桁程度劣化が
加速されていることが分かる。
Further, FIG. 4 shows the deterioration caused by this method and the change over time in the threshold pressure fluctuation caused by the DC stress test shown in the conventional example. When compared at the same time, it can be seen that sweeping the gate voltage in this method accelerates the deterioration by about one order of magnitude compared to DC stress.

発明の効果 以上述べたように、本発明の方法によれば、従来性われ
ていたDCストレスによるホントキャリア劣化に比ベゲ
ートを圧をスウィーブして試験することにより次のよう
な効果が得られる。
Effects of the Invention As described above, according to the method of the present invention, the following effects can be obtained by testing the real carrier deterioration due to DC stress, which has been conventionally known, by sweeping the pressure.

■ 実動作と非常に近い劣化モードでの経時劣化評価が
可能となる。
■ It is possible to evaluate deterioration over time in a deterioration mode that is very similar to actual operation.

■ DCCストンスに比べ同じドレイン電圧のもとでは
劣化の加速性が1桁程度大きくなる。
■ Compared to DCC STONES, the acceleration of deterioration is about one order of magnitude greater under the same drain voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に用いるホットキャリア
評価装置の構成図、第2図は本実施例方法において被測
定MOSFET  のゲートに印加するスウィープ電圧
波形を示す波形図、第3図は評価したFEでの劣化前後
のサブスレッシュホールド特性を示す特性図、第4図は
本実施例方法による劣化状況を従来方法による劣化状況
と比較して示す特性図、第6図は従来のホットキャリア
評価装置の構成図、第6図はCMOSインバータ回路に
パルス’&印加してホットキャリア評価を行うための回
路図、第7図は第6図の回路に立ち上がりの異なるパル
スを印加したときの基板電流総発生量と劣化量の関係を
示す特性図である。−11・・・・・・試験に供せられ
たn−chMOSFET。 6・・・・・・外部電源、7・・・・・・パルスジェネ
レータ。 l −試験に供亡ら七た n−chMO5FE丁 6−外部1 ;*。 7− パルスジエネし・−り 第1図 V。 第2図 1(α) ecvJ (b) V&(VJ 第3図 ゲー ト 電 )jミ (V) 第4図 l0zfO3IO4 ストレス時間 (秒う l ・−試裁に供でら枳た n−ChMO5FET 6−外@ DCI源 第 5 図 第7図
FIG. 1 is a block diagram of a hot carrier evaluation device used in the method of one embodiment of the present invention, FIG. 2 is a waveform diagram showing the sweep voltage waveform applied to the gate of the MOSFET to be measured in the method of this embodiment, and FIG. A characteristic diagram showing the subthreshold characteristics before and after deterioration in the evaluated FE. Fig. 4 is a characteristic diagram showing the deterioration situation by the method of this embodiment compared with the deterioration situation by the conventional method. Fig. 6 is a characteristic diagram showing the deterioration situation by the conventional method. The configuration diagram of the evaluation device, Figure 6 is a circuit diagram for performing hot carrier evaluation by applying pulse '& to a CMOS inverter circuit, and Figure 7 is a circuit diagram of the circuit when pulses with different rising edges are applied to the circuit in Figure 6. FIG. 3 is a characteristic diagram showing the relationship between the total amount of current generation and the amount of deterioration. -11... n-ch MOSFET used in the test. 6... External power supply, 7... Pulse generator. l - Tested n-ch MO5FE Ding 6-External 1 ;*. 7- Pulse Generating Figure 1 V. Fig. 2 1 (α) ecvJ (b) V & (VJ Fig. 3 Gate voltage) j Mi (V) Fig. 4 l0zfO3IO4 Stress time (seconds ul ・- n-ChMO5FET assembled for trial use 6 -Outside @ DCI source Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims] MOS型電界効果トランジスタの動作時における特性の
経時劣化の評価をするに際し、ドレイン電極に一定の電
圧を印加した状態で、ゲート電極に印加する電圧を掃印
することにより半導体装置の経時劣化を評価するように
してなる半導体装置の信頼性評価方法。
When evaluating the aging deterioration of characteristics during operation of a MOS field effect transistor, evaluate the aging deterioration of a semiconductor device by sweeping the voltage applied to the gate electrode while applying a constant voltage to the drain electrode. A method for evaluating the reliability of a semiconductor device.
JP6152487A 1987-03-17 1987-03-17 Semiconductor device reliability evaluation method Expired - Fee Related JP2617928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6152487A JP2617928B2 (en) 1987-03-17 1987-03-17 Semiconductor device reliability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6152487A JP2617928B2 (en) 1987-03-17 1987-03-17 Semiconductor device reliability evaluation method

Publications (2)

Publication Number Publication Date
JPS63228084A true JPS63228084A (en) 1988-09-22
JP2617928B2 JP2617928B2 (en) 1997-06-11

Family

ID=13173572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6152487A Expired - Fee Related JP2617928B2 (en) 1987-03-17 1987-03-17 Semiconductor device reliability evaluation method

Country Status (1)

Country Link
JP (1) JP2617928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877419A (en) * 1996-03-14 1999-03-02 Siemens Aktiengesellschaft Method for estimating the service life of a power semiconductor component
US6628134B1 (en) 1999-06-30 2003-09-30 Hyundai Electronics Industries Co., Ltd. DC stress supply circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877419A (en) * 1996-03-14 1999-03-02 Siemens Aktiengesellschaft Method for estimating the service life of a power semiconductor component
US6628134B1 (en) 1999-06-30 2003-09-30 Hyundai Electronics Industries Co., Ltd. DC stress supply circuit

Also Published As

Publication number Publication date
JP2617928B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
Karki et al. Effect of gate-oxide degradation on electrical parameters of power MOSFETs
Puschkarsky et al. Understanding and modeling transient threshold voltage instabilities in SiC MOSFETs
Bellens et al. Hot-carrier effects in n-channel MOS transistors under alternating stress conditions
US7573065B2 (en) Semiconductor device evaluation method
JPS63228084A (en) Reliability evaluating method for semiconductor device
CN103576065B (en) Test circuit of transistor threshold voltage
Garba-Seybou et al. Modeling hot carrier damage interaction between on and off modes for 28 nm AC RF applications
JPH0785098B2 (en) Semiconductor device reliability evaluation method
Wang et al. Time-dependent breakdown of ultra-thin SiO 2 gate dielectrics under pulsed biased stress
Ghosh et al. Studies of AC BTI stress in 4H SiC MOSFETs
Greason et al. Latent effects due to ESD in CMOS integrated circuits: Review and experiments
Sharma et al. A cycle-by-cycle HCD and BTI compact model to calculate FinFET based RO ageing using SPICE
Manić et al. Measurement of NBTI degradation in p-channel power VDMOSFETs
Zhu et al. Negative bias temperature instability of deep sub-micron p-MOSFETs under pulsed bias stress
Bellens et al. A new procedure for lifetime prediction of n-channel MOS-transistors using the charge pumping technique
Chen et al. Post-stress interface trap generation induced by oxide-field stress with FN injection
Zhu et al. Mechanism of dynamic NBTI of pMOSFETs
McCrory et al. Wafer level EDMR: Magnetic resonance in a probing station
Weber et al. Hot carrier stress effects in p-MOSFETs: physical effects relevant for circuit operation
KR100472004B1 (en) Semiconductor device
Tseng et al. Lateral nonuniformity effects of border traps on the characteristics of metal–oxide–semiconductor field-effect transistors subjected to high-field stresses
JPH0455772A (en) Testing method for semiconductor device
Yiin et al. Gate-charge measurements for irradiated N-channel DMOS power transistors
Wang et al. Phenomenon of Short-Time Threshold Voltage Shift and Its Application in Junction Temperature Estimation
Bellens et al. Influence of post-stress effects on the dynamic hot-carrier degradation behavior of passivated n-channel MOSFET's

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees