JPS6322797B2 - - Google Patents

Info

Publication number
JPS6322797B2
JPS6322797B2 JP7490082A JP7490082A JPS6322797B2 JP S6322797 B2 JPS6322797 B2 JP S6322797B2 JP 7490082 A JP7490082 A JP 7490082A JP 7490082 A JP7490082 A JP 7490082A JP S6322797 B2 JPS6322797 B2 JP S6322797B2
Authority
JP
Japan
Prior art keywords
dicarboxylic acids
liquid
fermentation
mixed solvent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7490082A
Other languages
Japanese (ja)
Other versions
JPS58193694A (en
Inventor
Hitoshi Matsuda
Akio Watanabe
Ei Taoka
Seiichi Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO RESEARCH CENTER CO
Original Assignee
BIO RESEARCH CENTER CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO RESEARCH CENTER CO filed Critical BIO RESEARCH CENTER CO
Priority to JP7490082A priority Critical patent/JPS58193694A/en
Publication of JPS58193694A publication Critical patent/JPS58193694A/en
Publication of JPS6322797B2 publication Critical patent/JPS6322797B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は発酵法で埗られる長鎖ゞカルボン酞又
は長鎖オキシカルボン酞類以䞋これらをゞカル
ボン酞類ず略称するを含む発酵液培逊液か
らゞカルボン酞類を分離、回収するための凊理法
に関する。 䞊蚘ゞカルボン酞類は医薬、塗料、暹脂、銙
料、最滑油、挂癜剀、界面掻性剀䞊びに蟲薬等の
各皮化孊品の補造原料又は副原料ずしお、曎には
䞭間䜓ずしお広範囲な甚途が期埅される物質であ
る。 近幎、このようなゞカルボン酞類をノルマルパ
ラフむン、脂肪酞゚ステル類を䞻原料ずし埮生物
を利甚しお発酵法により生産する方法、䟋えば特
公昭38−15608、特公昭45−24392、特公昭48−
26238、特公昭50−19630䞊びに特公昭56−44716
等が提案されおおり、それらの実斜化も詊みられ
おいる。 又発酵法で埗られる䞊蚘カルボン酞類を含む発
酵液からゞカルボン酞類を分離、回収あるいは粟
補する方法ずしお特公昭28−6172、特開昭56−
15963、特開昭56−15694、特開昭56−15695䞊び
に特開昭55−24606等が提案されおいる。 而しお、発酵法で埗られるゞカルボン酞類を含
む発酵液発酵ブロスからゞカルボン酞類を分
離、回収するには、䞀般に該発酵液からアルカリ
性領域䞋で菌䜓を陀去した埌、(1)発酵液に硫酞又
はその他の鉱酞等を加え酞性領域䞋で長鎖ゞカル
ボン酞類を析出、分離する、(2)発酵液䞭のゞカル
ボン酞類をカルシりム塩のような氎に䞍溶性な塩
に圢成しお析出、分離する、(3)発酵液に無機塩類
を添加しおゞカルボン酞類をアルカリ塩ずしお塩
析しお分離する、(4)発酵液に有機無機塩を接觊さ
せおゞカルボン酞類を抜出又は溶解しお分離す
る、及び(5)発酵液をむオン亀換暹脂等で凊理しお
ゞカルボン酞類を分離する等の方法に分けられ
る。 本発明は、公知な発酵法により埗られる䞊蚘ゞ
カルボン酞類を含む発酵液から有機無機塩を甚い
おゞカルボン酞類を溶解しお分離する方法におい
お、発酵液䞭のゞカルボン酞を有機溶剀䞭に有効
に溶解させ、次いで析出させおゞカルボン酞類を
発酵液から高収率で分離、回収し埗る方法を提䟛
するこずを目的ずする。 本発明者は発酵法により埗られる䞊蚘ゞカルボ
ン酞類を含む発酵液培逊液に特定な皮の混
合溶剀を加枩䞋で接觊させるこずにより、発酵液
䞭のゞカルボン酞類は䞊蚘混合溶剀䞭に有効に溶
解抜出し埗るこず、及び次いで該混合溶剀を
冷华するこずによりゞカルボン酞を高収率で析出
し埗るこずの知芋を埗お本発明なすに至぀た。 以䞋本発明を詳しく説明する。 本発明の特城は、䞊蚘ゞカルボン酞類を含む発
酵液又はその凊理液に、芳銙族炭化氎玠の100容
量郚ず、アルコヌル、ケトン及びアルデヒドから
なる矀から遞択される含酞玠有機化合物の〜30
容量郚ずからなる混合溶剀を加枩䞋で接觊させお
ゞカルボン酞類を混合溶剀䞭に溶解抜出し、
生成する混合溶剀局を分離した埌冷华しお䞊蚘ゞ
カルボン酞類を析出させお分離、回収するこずに
ある。 䞊蚘ゞカルボン酞類を含む発酵液から溶剀を甚
いおゞカルボン酞を分離する手法での問題点は、
䜿甚する溶剀の単䜍量の発酵液からゞカルボン酞
類を効率良く溶解抜出し、䞔぀析出せしめ埗
るこず、実質䞊発酵液には䞍溶性であるこず、及
び䞊蚘ゞカルボン酞の抜出に際し発酵液䞭に混圚
しおいる各皮原料物質、菌䜓及び副生成物等がゞ
カルボン酞類に随䌎しお溶剀䞭に抜出し難いこず
等の芁件を満たす必芁があるこずである。 本発明者は䞊述したような芋地から、埓来䞊蚘
ゞカルボン酞類の抜出に甚いられるこずが知られ
おいる、トル゚ン、キシレン、゚チルベンれン等
の芳銙族炭化氎玠䞊びにその他の有機溶剀に぀い
お怜蚎した結果、䞊蚘芳銙族炭化氎玠ず、アルコ
ヌル、ケトン及びアルデヒドからなる矀から遞択
される含酞玠有機化合物ずの混合物を溶剀ずしお
甚い、この混合溶剀を発酵液に加枩䞋で接觊させ
る堎合、前掲の芁件を満し埗るこずが分぀た。す
なわち、䞊蚘混合溶剀を加枩䞋、奜たしくは70〜
100℃の加枩䞋で䞊蚘発酵液ず接觊させるずき発
酵液からのゞカルボン酞類の抜出胜力が芳銙族炭
化氎玠単独を甚いるずきに比范し顕著に向䞊し
埗、加うるに溶剀の䜿甚量発酵液䞭のゞカルボ
ン酞類含量に察する溶剀の䜿甚単䜍量も䜎枛す
るこずが可胜ずなる。たた、回収したゞカルボン
酞類の品質も含酞玠有機化合物単独を甚いた堎合
に比し向䞊し埗る。 本発明で䜿甚する芳銙族炭化氎玠ずしおはベン
れン、トル゚ン、―キシレン、―キシレン、
―キシレン、゚チルベンれン、トリメチルベン
れン類、プロピルベンれン類、゚チルトル゚ン類
を䟋瀺し埗、又これらは皮以䞊の混合物であ぀
おもよい。 又、これら芳銙族炭化氎玠ず混合しお甚いるア
ルコヌルずしおは、分子䞭に炭玠原子を個以䞊
を有するものが奜たしく、ブタノヌル、む゜ブタ
ノヌル、ペンタノヌル、む゜プンタノヌル、ヘキ
サノヌル、む゜ヘキサノヌル、シクロヘキサノヌ
ル、ヘプタノヌル、む゜ヘプタノヌル、オクタノ
ヌル及びむ゜オクタノヌルを䟋瀺でき、これらの
皮以䞊であ぀おもよい。又、ケトンずしおは、
同䞀分子内に炭玠原子を個以䞊を有するものが
奜たしく、―ブタノンメチル゚チルケトン、
―ペンタノン、―ペンタノン、―ヘキサノ
ン、―ヘキサノン、―ヘプタノン、―ヘプ
タノン、―ヘプタノン、及びメチルむ゜ブチル
ケトン炭玠原子が偎鎖を有する化合物を䟋瀺
し埗、これらの皮以䞊の混合物であ぀おもよ
い。曎に、アルデヒドずしおは、同䞀分子内に炭
玠原子を個以䞊有するものが奜たしく、ヘキサ
ナヌル、ヘプタナヌル、オクタナヌルを䟋瀺で
き、これらの皮以䞊の混合物であ぀おもよい。 本発明で甚いる混合溶剀は、䞊掲の芳銙族炭化
氎玠の100容量郚ず、䞊掲のアルコヌル、ケトン
もしくはアルデヒドの各〜40容量郚奜たしくは
〜30容量郚ずからなる混合物ずしお適甚する。 因みに、䞀般的にアルコヌル、ケトンもしくは
アルデヒド等の含酞玠化合物を芳銙族溶剀100容
量郚に察しお40容量郚を超えお混入するず、発酵
液からゞカルボン酞類を抜出する際に発酵液䞭ぞ
の溶剀の溶解による逞散量が増加するず共に冷华
時にゞカルボン酞類の析出量の枛少を招き、䞀方
容量郚より少ないずゞカルボン酞類の溶剀局ぞ
の抜出量が枛少するので実甚的でなくなる。 本発明においお䞊述した混合溶剀を䞊蚘発酵液
に接觊させる際には、発酵液䞭のゞカルボン酞の
含有率、混合溶剀の組成、接觊時の枩床及び以埌
の溶剀局の冷华枩床により倉化するも、䞀般には
発酵により埗た発酵液培逊液そのたたか又は
該発酵液から予め菌䜓その他の䞍溶物を過等の
手法で陀去した液発酵液の凊理液ずいうの
100容量郚に察しお30〜200容量郚を接觊させるず
よい。 この接觊はバツチ方匏、連続方匏、平流䞊びに
向流方匏等のいずれであ぀おもよく、その方匏を
問わない。又、接觊は加枩䞋で行うものであ぀お
通垞70〜100℃の枩床䞋で行うが奜たしい。この
際、接觊枩床が䜎くなるに䌎いゞカルボン酞類の
混合溶剀ぞの溶解抜出量が少くなり、䞀方高
くなりすぎるず氎分もしくは溶剀の蒞発等による
熱損倱が増加するだけでゞカルボン酞類の混合溶
剀ぞの溶解量の増加はみられない。 なお、䞊蚘接觊時での加枩による枩床䞊昇に䌎
぀お混合溶剀の䞀郚が発酵液局に溶解する珟象が
若干みられるが、䞊蚘接觊埌の冷华によ぀お溶剀
局は発酵液局ず分離するので問題はない。 本発明では、䞊蚘接觊埌静眮しおおくずゞカル
ボン酞類を抜出した混合溶剀局が分離するので、
該溶剀局を発酵液から分別し、次いで冷华するず
ゞカルボン酞類が析出しおくる。この冷华に際し
おは枩床を䞊蚘接觊時の枩床より15〜50℃、奜た
しくは10〜40℃䜎䞋するように冷华するずよい。 このようにしお析出したゞカルボン酞類は固液
分離の手法で分離、回収し、その際埗られる混合
溶剀は加枩しお前述の発酵液又はその凊理液ず接
觊させるべく埪環しお繰返しゞカルボン酞類の抜
出に䜿甚する。 なお、本発明においお、発酵しお埗られるゞカ
ルボン酞類含有発酵液培逊液そのたたで混合
溶剀ず接觊させる堎合には、䞀般にゞカルボン酞
類を抜出した溶剀局ず発酵液局ずの間に菌䜓を含
む゚マルゞペン局を圢成するので、溶剀局を冷华
しおゞカルボン酞類を溶解させるに先立぀お䞊蚘
゚マルゞペン局を砂過等の手法にかけおそれか
ら菌䜓を陀去するこずが必芁である。 次に、参考ずしお本発明でいう長鎖ゞカルボン
酞類䞊びに長鎖オキシカルボン酞に぀いお説明す
るず、長鎖ゞカルボン酞類は炭玠数10個以䞊を有
するものであ぀お、䟋えばデカン二酞、りンデカ
ン二酞、デデカン二酞、トリデカン二酞ブラシ
ル酞、テトラデカン二酞、ペンタデカン二酞、
ヘキサデカン二酞タプシン酞、ヘプタデカン
二酞、オクタデカン二酞のような飜和ゞカルボン
酞及びデセン二酞、りンデセン二酞、ドれセン二
酞、トリデセン二酞、テトラデセン二酞、ペンタ
デセン二酞、ヘキサデセン二酞、オクタデセン二
酞のような䞍飜和ゞカルボン酞を包含するもので
ある。たた、長鎖ゞカルボン酞類は炭玠数10個以
䞊を有するものであ぀お、䟋えばω―ヒドロキシ
アルカン酞、ω―メトキシアルカン酞、ωω―
―ゞヒドロキシアルカン酞及びα――ヒドロ
キシ―αω―アルカン二酞等を包含するもので
ある。これらの長鎖ゞカルボン酞類䞊びに長鎖オ
キシカルボン酞類は、䟋えば、特公昭56−44716
号公報に開瀺された方法に埓぀お、発酵法により
有利に補造される。 以䞊述べたように、本発明によるず、発酵法に
より埗られる長鎖ゞカルボン酞又は長鎖オキシカ
ルボン酞類を含む発酵液又はその凊理液から溶剀
を甚いおこれらのゞカルボン酞を極めお効率よく
分離、回収できるようになる。 以䞋に実斜䟋を瀺しお本発明及びその効果を具
䜓的に説明する。なお、各実斜䟋䞭のは特蚘し
ない限り重量を衚わす。本実斜䟋における長鎖ゞ
カルボン酞を含む発酵液は、特公昭56−44716号
公報に蚘茉された方法に準拠しお補造した。 実斜䟋  キダンダむダ・トロピカリスに属するBR―
254菌株特公昭56−44716号公報参照を甚いお
ノルマルパラフむンを発酵させお埗られたトリデ
カン二酞を含む発酵液に2N―NaOH氎溶液を加
えおPHを11ずし、菌䜓を別埌2N―H2SO4氎溶
液を加えおPH3.5のスラリヌ液トリデカン二酞
含有率玄98250mlを調補した。 該スラリヌ液250mlに゚チルベンれン83.4mlず
―ヘキサナヌル16.6mlからなる混液100mlを加
え、80℃で撹拌䞋に混合しお接觊させ、埗られた
䞊柄液溶剀局を分取した。䞊柄液䞭に含たれ
る懞濁物を80℃で別埌、40℃に冷华、静眮埌生
成した固圢物を別しお―ペンタンで掗浄し也
燥秀量した結果17.3の固圢物を埗た。この固圢
物の䞀郚をメチル゚ステル化埌ガスクロマトグラ
フむヌで枬定した結果その玔床は98.9であ぀
た。又固圢物䞭の蛋癜質含有率をロヌリヌ法
Lawrymethod牛血枅アルブミン盞圓量で枬
定した結果0.01以䞋であ぀た。又前述ず同様に
しお調補したスラリヌ液の各250mlに比范ずしお
゚チルベンれン100ml䞊びに―ヘキサナヌル100
mlをそれぞれ単独で加えお同様の操䜜を行぀た堎
合の固圢物の収量は倫々4.5䞊びに13.9であ
぀た。倫々の固圢物䞭のトリデカン二酞のガスク
ロマトグラフむヌによる玔床は98.9䞊びに99.0
であり、蛋癜質含有率は0.01以䞋䞊びに0.27
であ぀た。 曎に、比范ずしお前述ず同様にしお調補したス
ラリヌ液250mlをそのたた別蒞留氎で掗浄した
堎合の固圢物の収量は23.9であり、固圢物のト
リデカン二酞の玔床は96.5蛋癜質含有率は
0.67であ぀た。 䞊述のように、溶剀を単独で甚いた堎合は発酵
液䞭のトリデカン二酞の収量が䜎く、䞀方溶剀を
䜿甚しないずきはトリデカン二酞の玔床が䜎いこ
ずが分る。 曎に、䞊蚘混合溶剀を甚いた堎合、単独溶剀を
甚いた堎合に比范しおトリデカン二酞の収率及び
品質の点で優れおいる。 実斜䟋  実斜䟋ず同様にしお調補したトリデカン二酞
を含むスラリヌ液100mlの各々に゚チルベンれン
56mlず―ヘキサノヌルmlからなる混液䞊びに
゚チルベンれン57mlず―ヘキサノヌルmlから
なる混液をそれぞれ加え80℃で撹拌埌、各䞊柄液
を分離しお40℃に冷华埌、実斜䟋ず同様にしお
固圢物を回収した結果玔床98.7蛋癜質含有率
0.01のトリデカン二酞8.7䞊びに玔床98.6
蛋癜質含有率0.01のトリデカン二酞8.9をそれ
ぞれ埗た。 次に比范ずしお䞊蚘ず同様にしお埗たトリデカ
ン二酞を含むスラリヌ100mlの各々に゚チルベン
れン40ml䞊びに160mlを単独でそれぞれ加え80℃
で撹拌埌、䞊柄液を分離しお40℃に冷华埌実斜䟋
ず同様にしお固圢物を回収した結果では固圢物
の収量は倫々1.8䞊びに7.5であ぀た。 䞊蚘䟋にみられるように゚チルベンれンず―
ヘキサノヌルずの混液を溶剀ずしお甚いるずこれ
らを単独で甚いた堎合に比し、トリデカン二酞の
収量が著しく向䞊する。 実斜䟋  トリデカン二酞含有率玄110からなる陀
菌発酵液100mlをPH3.0に調敎埌、80℃で゚チルベ
ンれン41.7mlず―ヘキサノン8.3mlからなる混
液ず混合し撹拌しお埗られ䞊柄局を分離埌、40℃
に冷华させお埗られた固圢分を分離掗浄也燥埌秀
量した結果10.3の固圢分を埗た。次に、比范ず
しお、䞊蚘同様にしお埗た陀菌発酵液100mlの
各々に、PHをそれぞれ3.0に調敎埌、゚チルベン
れン50ml䞊びに―ヘキサノン50mlをそれぞれ単
独で加え䞊蚘同様な手順で固圢分を埗た。各固圢
分の収量はそれぞれ2.1䞊びに7.9であ぀た。 又、䞊述のようにしお埗た陀菌発酵液100mlの
各々にPHを3.0に調敎埌、゚チルベンれン54.6ml
ず―ヘキサノン5.4mlからなる混液䞊びに゚チ
ルベンれン60mlの単独をそれぞれ加え䞊蚘ず同様
な手順で固圢分を埗た。各固圢分の収量はそれぞ
れ10.4䞊びに2.3であ぀た。 なお、䞊蚘各固圢分のトリデカン二酞の玔床は
いずれも98.8〜99.0であり、蛋癜質含有率は
―ヘキサノンの堎合を陀いおいずれも0.01以
䞋であ぀た。―ヘキサノン単独では0.12であ
぀た。 䞊蚘䟋にみられるように、゚チルベンれンず
―ヘキサノンずの混液を溶剀ずしお甚いた堎合は
これらを単独で甚いた堎合に比しトリデカン二酞
の収量が著しく高い。 実斜䟋  トリデカン二酞含有率玄110からなる陀
菌発酵液100mlをPHを3.0に調敎埌80℃で
トリメチルベンれン33.4mlず―ペンタノヌル
6.6mlからなる混液ず混合し撹拌しお埗られる䞊
柄液を分離埌、40℃に冷华しお生成する固圢分を
分離し、掗浄也燥埌秀量した結果9.0であ぀
た。 又、䞊蚘陀菌発酵液100mlの各々に、同様の操
䜜でトリメチルベンれン45.5mlず―
ベンタノヌル4.5mlの混液䞊びにトリ
メチルベンれン50ml単独をそれぞれ甚いた堎合埗
られた固圢分の収量はそれぞれ9.7䞊びに2.7
であ぀た。 実斜䟋  テトラデセン―を基質ずしお奜気的条件䞋に
発酵させお埗た発酵液をPH11で陀菌埌、硫酞でPH
4.0に調敎したスラリヌ液の100mlに―
トリメチルベンれン60mlず―ヘキサノヌルml
からなる混液を80℃で撹拌䞋に混合し、静眮埌埗
られた䞊柄局を分離埌、60℃に冷华しお析出した
固圢分を別し掗浄埌秀量した結果3.4の収量
であ぀た。この固圢分の200mgを分取しお゚ヌテ
ルに溶解しおメチル化し、぀いでトリメチルシリ
ル化埌ガスクロマトグラフむヌで分析した結果
1314―ゞヒドロキシテトラデカン酞62.4テ
トラデカン二酞13.414―メトキシテトラデカ
ン酞9.914―ヒドロキシテトラデカン酞6.8
13―ヒドロキシテトラデカン二酞5.3そ
の他2.2からな぀おいた。 䞊蚘析出した固圢分を分離埌の液䞊蚘混合
溶剀の40mlを甚いお䞊述ず同䞀のスラリヌ液60
mlず80℃で混合し、埗られた䞊柄局を分離埌60℃
に冷华した結果2.4の固圢分を埗た。 実斜䟋  発酵法より埗られた15――ペンタデカン
二酞の含有率61からなる陀菌発酵液PH
3.5の各液に䞋蚘衚に瀺す各皮溶剀をそれぞれ
80℃の枩床䞋で接觊せしめ、生成する溶剀局を分
離埌、40℃に冷华しおペンタデカン二酞の固圢分
をそれぞれ析出させた。 各固圢分の収量は䞋蚘衚のずおりである。
The present invention relates to a treatment method for separating and recovering dicarboxylic acids from a fermentation liquid (culture liquid) containing long-chain dicarboxylic acids or long-chain oxycarboxylic acids (hereinafter referred to as dicarboxylic acids) obtained by a fermentation method. The dicarboxylic acids mentioned above are substances that are expected to have a wide range of uses as raw materials or sub-raw materials for manufacturing various chemical products such as pharmaceuticals, paints, resins, fragrances, lubricants, bleaches, surfactants, and agricultural chemicals, as well as as intermediates. be. In recent years, methods have been developed to produce such dicarboxylic acids by fermentation using normal paraffin and fatty acid esters as main raw materials and using microorganisms, such as JP-B No. 38-15608, JP-B No. 45-24392, JP-B No. 48-
26238, Special Publication Showa 50-19630 and Special Publication No. 56-44716
etc. have been proposed, and attempts are being made to implement them. In addition, as a method for separating, recovering or purifying dicarboxylic acids from the fermentation liquid containing the above-mentioned carboxylic acids obtained by the fermentation method, Japanese Patent Publication No. 28-6172 and Japanese Patent Application Laid-open No. 1983-1999 are disclosed.
15963, JP-A-56-15694, JP-A-56-15695, JP-A-55-24606, etc. have been proposed. Therefore, in order to separate and recover dicarboxylic acids from a fermentation liquid (fermentation broth) containing dicarboxylic acids obtained by a fermentation method, generally, after removing bacterial cells from the fermentation liquid in an alkaline region, (1) fermentation Add sulfuric acid or other mineral acids to the fermentation solution to precipitate and separate long-chain dicarboxylic acids in an acidic environment. (2) Form the dicarboxylic acids in the fermentation solution into water-insoluble salts such as calcium salts and precipitate them. (3) adding inorganic salts to the fermentation liquor and salting out the dicarboxylic acids as an alkali salt to separate them; (4) bringing the fermentation liquor into contact with an organic-inorganic salt to extract or dissolve the dicarboxylic acids. (5) separating dicarboxylic acids by treating the fermentation liquid with an ion exchange resin, etc. The present invention provides a method for dissolving and separating dicarboxylic acids from a fermentation liquor containing dicarboxylic acids obtained by a known fermentation method using an organic inorganic salt, in which dicarboxylic acids in the fermentation liquor are effectively dissolved in an organic solvent. An object of the present invention is to provide a method capable of separating and recovering dicarboxylic acids from a fermentation liquid in a high yield by separating the dicarboxylic acids and then precipitating them. The present inventor has discovered that the dicarboxylic acids in the fermentation liquid are dissolved in the mixed solvent by contacting the fermentation liquid (culture liquid) containing the dicarboxylic acids obtained by the fermentation method with two specific mixed solvents under heating. The present invention was achieved based on the knowledge that dicarboxylic acids can be effectively dissolved (extracted) and that dicarboxylic acids can be precipitated in high yield by subsequently cooling the mixed solvent. The present invention will be explained in detail below. A feature of the present invention is that 100 parts by volume of an aromatic hydrocarbon and 3 to 30 parts by volume of an oxygen-containing organic compound selected from the group consisting of alcohols, ketones, and aldehydes are added to the fermentation liquid containing the dicarboxylic acids or the treated liquid thereof.
A mixed solvent consisting of parts by volume is brought into contact with each other under heating to dissolve (extract) dicarboxylic acids into the mixed solvent,
The purpose is to separate and recover the resulting mixed solvent layer by cooling it to precipitate the dicarboxylic acids. The problems with the method of separating dicarboxylic acids from the fermentation liquor containing dicarboxylic acids using a solvent are as follows:
The solvent used can efficiently dissolve (extract) and precipitate dicarboxylic acids from a unit amount of fermentation liquor, be substantially insoluble in the fermentation liquor, and be free from being mixed in the fermentation liquor when the dicarboxylic acids are extracted. It is necessary to satisfy requirements such as that various raw materials, bacterial cells, by-products, etc., which are used in the production process, are difficult to extract into a solvent along with dicarboxylic acids. From the above-mentioned viewpoint, the present inventor investigated aromatic hydrocarbons such as toluene, xylene, ethylbenzene, etc. and other organic solvents, which are conventionally known to be used for the extraction of the above-mentioned dicarboxylic acids, and found that the above-mentioned aromatic When a mixture of a group hydrocarbon and an oxygen-containing organic compound selected from the group consisting of alcohols, ketones and aldehydes is used as a solvent, and this mixed solvent is brought into contact with the fermentation liquor under heating, the above requirements are met. I found out that I can get it. That is, the above mixed solvent is heated, preferably 70 to
When brought into contact with the above fermentation liquor under heating at 100°C, the ability to extract dicarboxylic acids from the fermentation liquor can be significantly improved compared to when aromatic hydrocarbons alone are used, and in addition, the amount of solvent used (fermentation liquor) is significantly improved. It is also possible to reduce the unit amount of solvent used relative to the content of dicarboxylic acids in the liquid. Furthermore, the quality of the recovered dicarboxylic acids can also be improved compared to when the oxygen-containing organic compound alone is used. Aromatic hydrocarbons used in the present invention include benzene, toluene, o-xylene, m-xylene,
Examples include p-xylene, ethylbenzene, trimethylbenzenes, propylbenzenes, and ethyltoluenes, and mixtures of two or more of these may be used. Moreover, the alcohol used in mixture with these aromatic hydrocarbons is preferably one having 4 or more carbon atoms in the molecule, such as butanol, isobutanol, pentanol, isopuntanol, hexanol, isohexanol, cyclohexanol. , heptanol, isoheptanol, octanol and isooctanol, and two or more of these may be used. Also, as a ketone,
Those having 4 or more carbon atoms in the same molecule are preferred, such as 2-butanone (methyl ethyl ketone),
Examples include 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, and methyl isobutyl ketone (a compound in which a carbon atom has a side chain), and these two It may be a mixture of more than one species. Further, the aldehyde preferably has 6 or more carbon atoms in the same molecule, and examples include hexanal, heptanal, and octanal, and a mixture of two or more of these may be used. The mixed solvent used in the present invention is applied as a mixture consisting of 100 parts by volume of the aromatic hydrocarbon listed above and 2 to 40 parts by volume each of the alcohol, ketone or aldehyde listed above, preferably 3 to 30 parts by volume. . Incidentally, generally speaking, if more than 40 parts by volume of oxygen-containing compounds such as alcohols, ketones, or aldehydes are mixed into 100 parts by volume of an aromatic solvent, the solvent may be mixed into the fermentation liquor when dicarboxylic acids are extracted from the fermentation liquor. The amount of dicarboxylic acids dissipated by dissolution increases, and the amount of dicarboxylic acids precipitated during cooling decreases. On the other hand, if it is less than 2 parts by volume, the amount of dicarboxylic acids extracted into the solvent layer decreases, making it impractical. In the present invention, when the above-mentioned mixed solvent is brought into contact with the fermentation liquor, although it varies depending on the content of dicarboxylic acid in the fermentation liquor, the composition of the mixed solvent, the temperature at the time of contact, and the subsequent cooling temperature of the solvent layer, In general, the fermentation liquid (culture liquid) obtained by fermentation is used as it is, or the liquid obtained by removing bacterial cells and other insoluble matter from the fermentation liquid using an excessive method (referred to as a treated fermentation liquid) is used.
It is preferable to contact 30 to 200 parts by volume per 100 parts by volume. This contact may be carried out by any of the batch method, continuous method, straight flow method, counter current method, etc., and the method does not matter. Further, the contacting is preferably carried out under heating, usually at a temperature of 70 to 100°C. At this time, as the contact temperature decreases, the amount of dicarboxylic acids dissolved (extracted) in the mixed solvent decreases, while if it becomes too high, heat loss due to moisture or solvent evaporation increases, and the dicarboxylic acids are dissolved in the mixed solvent. No increase in the amount of solubility was observed. Note that as the temperature rises due to heating during the above-mentioned contact, there is a slight phenomenon in which a portion of the mixed solvent dissolves in the fermentation liquid layer, but the solvent layer is separated from the fermentation liquid layer by cooling after the above-mentioned contact. So there is no problem. In the present invention, the mixed solvent layer from which the dicarboxylic acids have been extracted will separate if left to stand after the above-mentioned contact.
When the solvent layer is separated from the fermentation liquor and then cooled, dicarboxylic acids precipitate out. During this cooling, the temperature is preferably 15 to 50°C, preferably 10 to 40°C lower than the temperature at the time of contact. The dicarboxylic acids precipitated in this way are separated and recovered using a solid-liquid separation method, and the mixed solvent obtained at this time is heated and circulated to contact with the fermentation liquid or its treatment liquid to repeatedly separate the dicarboxylic acids. Used for extraction. In addition, in the present invention, when the dicarboxylic acid-containing fermentation liquid (culture liquid) obtained by fermentation is brought into contact with the mixed solvent as is, bacterial cells are generally placed between the solvent layer from which the dicarboxylic acids have been extracted and the fermentation liquid layer. Since an emulsion layer containing the dicarboxylic acids is formed, it is necessary to remove the microbial cells from the emulsion layer by sand filtering or the like before cooling the solvent layer and dissolving the dicarboxylic acids. Next, for reference, the long chain dicarboxylic acids and long chain oxycarboxylic acids in the present invention will be explained. Long chain dicarboxylic acids have 10 or more carbon atoms, such as decanedioic acid, undecanedioic acid, dedecanedioic acid, etc. diacid, tridecanedioic acid (brassyl acid), tetradecanedioic acid, pentadecanedioic acid,
Saturated dicarboxylic acids such as hexadecanedioic acid (thapsic acid), heptadecenedioic acid, octadecanedioic acid and decenedioic acid, undecenedioic acid, dozecenedioic acid, tridecenedioic acid, tetradecenedioic acid, pentadecenedioic acid, hexadecenedioic acid, It includes unsaturated dicarboxylic acids such as octadecenedioic acid. Furthermore, long-chain dicarboxylic acids have 10 or more carbon atoms, such as ω-hydroxyalkanoic acid, ω-methoxyalkanoic acid, ω,ω-
These include 1-dihydroxyalkanoic acid and α-1-hydroxy-α,ω-alkanedioic acid. These long chain dicarboxylic acids and long chain oxycarboxylic acids are, for example,
It is advantageously produced by a fermentation method according to the method disclosed in the publication. As described above, according to the present invention, it is possible to very efficiently separate and recover long-chain dicarboxylic acids or long-chain oxycarboxylic acids using a solvent from a fermentation liquid containing long-chain dicarboxylic acids or long-chain oxycarboxylic acids obtained by a fermentation method, or from a treated liquid thereof. become able to. EXAMPLES The present invention and its effects will be specifically explained below with reference to Examples. In addition, % in each example represents weight unless otherwise specified. The fermentation liquid containing long-chain dicarboxylic acid in this example was produced according to the method described in Japanese Patent Publication No. 56-44716. Example 1 BR belonging to Candida tropicalis
A 2N-NaOH aqueous solution was added to the fermentation liquid containing tridecanedioic acid obtained by fermenting normal paraffin using the 254 strain (see Japanese Patent Publication No. 56-44716) to adjust the pH to 11, and after separating the bacterial cells, the 2N -H 2 SO 4 aqueous solution was added to prepare 250 ml of a slurry liquid (tridecanedioic acid content: approximately 98 g/) with a pH of 3.5. 100 ml of a mixture of 83.4 ml of ethylbenzene and 16.6 ml of 1-hexanal was added to 250 ml of the slurry, mixed and brought into contact with each other under stirring at 80°C, and the resulting supernatant liquid (solvent layer) was separated. After separating the suspended matter contained in the supernatant at 80°C, cooling to 40°C and standing still, the formed solid was separated, washed with n-pentane, and dried and weighed to obtain 17.3 g of solid. A portion of this solid was methyl esterified and measured by gas chromatography, and the purity was found to be 98.9%. The protein content in the solid material was measured by the Lawry method (cow serum albumin equivalent) and was found to be less than 0.01%. For comparison, 100 ml of ethylbenzene and 100 ml of 1-hexanal were added to each 250 ml of the slurry liquid prepared in the same manner as above.
When the same operation was carried out by adding ml of each separately, the yields of solid matter were 4.5 g and 13.9 g, respectively. The purity of tridecanedioic acid in each solid by gas chromatography is 98.9% and 99.0%.
%, and the protein content is 0.01% or less and 0.27
It was %. Furthermore, for comparison, when 250 ml of the slurry liquid prepared in the same manner as described above was directly washed with separately distilled water, the yield of solid matter was 23.9 g, the purity of tridecanedioic acid in the solid matter was 96.5%, and the protein content was
It was 0.67%. As mentioned above, when a solvent is used alone, the yield of tridecanedioic acid in the fermentation broth is low, while when no solvent is used, the purity of tridecanedioic acid is low. Furthermore, when the above mixed solvent is used, the yield and quality of tridecanedioic acid are superior to those when a single solvent is used. Example 2 Ethylbenzene was added to each of 100 ml of a slurry containing tridecanedioic acid prepared in the same manner as in Example 1.
A mixture of 56 ml and 4 ml of 1-hexanol and a mixture of 57 ml of ethylbenzene and 3 ml of 1-hexanol were added and stirred at 80°C. The supernatants were separated and cooled to 40°C, followed by the same procedure as in Example 1. As a result of collecting the solid matter, the purity was 98.7%, and the protein content was 98.7%.
8.7 g of 0.01% tridecanedioic acid and 98.6% purity,
8.9 of tridecanedioic acid with a protein content of 0.01% were obtained, respectively. Next, for comparison, 40 ml and 160 ml of ethylbenzene were individually added to 100 ml of the slurry containing tridecanedioic acid obtained in the same manner as above, and the mixture was heated to 80°C.
After stirring, the supernatant liquid was separated and cooled to 40° C., and solid matter was recovered in the same manner as in Example 1. As a result, the yields of solid matter were 1.8 g and 7.5 g, respectively. As seen in the above example, ethylbenzene and 1-
When a mixture with hexanol is used as a solvent, the yield of tridecanedioic acid is significantly improved compared to when these are used alone. Example 3 After adjusting 100 ml of a sterilized fermented liquid containing about 110 g of tridecanedioic acid to pH 3.0, it was mixed with a mixture of 41.7 ml of ethylbenzene and 8.3 ml of 2-hexanone at 80°C and stirred. After separating the clear layer, 40℃
The solid content obtained by cooling was separated, washed, dried, and weighed to obtain 10.3 g of solid content. Next, for comparison, after adjusting the pH to 3.0, 50 ml of ethylbenzene and 50 ml of 2-hexanone were added to each of 100 ml of the sterilized fermented liquid obtained in the same manner as above, and the solid content was obtained by the same procedure as above. Ta. The yields of each solid content were 2.1 g and 7.9 g, respectively. Also, after adjusting the pH to 3.0, add 54.6 ml of ethylbenzene to each 100 ml of the sterilized fermented liquid obtained as described above.
A mixed solution consisting of 2-hexanone (5.4 ml) and 60 ml of ethylbenzene alone were added to obtain a solid content in the same manner as above. The yields of each solid were 10.4 g and 2.3 g, respectively. The purity of tridecanedioic acid in each of the solid components was 98.8% to 99.0%, and the protein content was 0.01% or less in all cases except for 2-hexanone. 2-hexanone alone was 0.12%. As seen in the example above, ethylbenzene and 2
- When a mixture with hexanone is used as a solvent, the yield of tridecanedioic acid is significantly higher than when these are used alone. Example 4 After adjusting the pH of 100 ml of a sterilized fermented liquid containing about 110 g of tridecanedioic acid to 3.0, it was heated at 80°C for 1,3 hours.
33.4ml of 5-trimethylbenzene and 1-pentanol
The supernatant obtained by mixing and stirring with 6.6 ml of a mixed solution was separated, cooled to 40°C, the resulting solid content was separated, washed and dried, and then weighed, and the result was 9.0 g. In addition, 45.5 ml of 1,3,5 trimethylbenzene and 1-
When using a mixed solution of 4.5 ml of bentanol and 50 ml of 1,3,5-trimethylbenzene alone, the solid yields obtained were 9.7 g and 2.7 g, respectively.
It was hot. Example 5 Fermentation liquid obtained by fermenting tetradecene-1 as a substrate under aerobic conditions was sterilized at PH11, and then PH was adjusted with sulfuric acid.
1,3,5- to 100ml of slurry liquid adjusted to 4.0.
60ml of trimethylbenzene and 6ml of 1-hexanol
The mixture consisting of the following was mixed under stirring at 80°C, left to stand, the resulting supernatant layer was separated, cooled to 60°C, the precipitated solid content was separated, washed, and weighed. The yield was 3.4g. Ta. 200mg of this solid was separated, dissolved in ether, methylated, trimethylsilylated, and analyzed by gas chromatography.
13,14-dihydroxytetradecanoic acid 62.4%, tetradecanedioic acid 13.4%, 14-methoxytetradecanoic acid 9.9%, 14-hydroxytetradecanoic acid 6.8%
%, 13-hydroxytetradecanedioic acid 5.3%, and other 2.2%. Using 40 ml of the solution after separating the precipitated solids (the above mixed solvent), 60 mL of the same slurry solution as above was used.
ml at 80°C and separate the resulting supernatant layer at 60°C.
As a result, 2.4 g of solid content was obtained. Example 6 A sterilized fermented liquid (PH
Add various solvents shown in the table below to each solution in 3.5).
They were brought into contact at a temperature of 80°C, the resulting solvent layer was separated, and then cooled to 40°C to precipitate the solid content of pentadecanedioic acid. The yield of each solid content is shown in the table below.

【衚】 䞊蚘衚にみられるように、本発明により混合溶
剀を甚いた堎合は溶剀単独を甚いた堎合に比し、
ペンタデカン二酞の収量が向䞊する。
[Table] As seen in the above table, when a mixed solvent is used according to the present invention, compared to when a solvent alone is used,
The yield of pentadecanedioic acid is improved.

Claims (1)

【特蚱請求の範囲】  発酵法により埗られる長鎖ゞカルボン酞又は
長鎖オキシカルボン酞類を含む発酵液又はその凊
理液から䞊蚘カルボン酞類を分離回収するに圓
り、該発酵液又はその凊理液に、芳銙族炭化氎玠
100容量郚ず、アルコヌル、ケトン及びアルデヒ
ドからなる矀から遞択される含酞玠有機化合物
乃至30容量郚ずからなる混合溶剀を加枩䞋で接觊
させおゞカルボン酞類を混合溶剀䞭に溶解抜
出し、生成する溶剀局を分離した埌冷华しお䞊
蚘ゞカルボン酞類を析出させ、析出したゞカルボ
ン酞類を分離、回収するこずを特城ずする長鎖ゞ
カルボン酞又は長鎖オキシカルボン酞類を含む発
酵液の凊理法。  䞊蚘含酞玠有機化合物が炭玠数個以䞊のア
ルコヌルである特蚱請求の範囲第項蚘茉の凊理
法。  䞊蚘含酞玠有機化合物が炭玠数個以䞊のケ
トンである特蚱請求の範囲第項に蚘茉の凊理
法。  䞊蚘含酞玠有機化合物が炭玠数個以䞊のア
ルデヒドである特蚱請求の範囲第項蚘茉の凊理
法。  䞊蚘発酵液又はその凊理液に70乃至100℃の
枩床で䞊蚘混合溶剀を接觊させる特蚱請求の範囲
第項蚘茉の凊理法。  䞊蚘発酵液又はその凊理液に䞊蚘混合溶剀を
接觊させお生成する混合溶剀局を接觊枩床より10
乃至50℃䜎い枩床に冷华する特蚱請求の範囲第
項又は第項に蚘茉の凊理法。  析出したゞカルボン酞類を分離、回収した埌
の液分を混合溶剀ずしお䞊蚘醗酵液又はその凊理
液ずの接觊に埪環䜿甚する特蚱請求の範囲第項
に蚘茉の凊理法。
[Scope of Claims] 1. In separating and recovering the above-mentioned carboxylic acids from a fermentation liquid containing long-chain dicarboxylic acids or long-chain oxycarboxylic acids obtained by a fermentation method, or a treated liquid thereof, the fermentation liquid or its treated liquid contains: aromatic hydrocarbons
100 parts by volume and 3 oxygen-containing organic compounds selected from the group consisting of alcohols, ketones and aldehydes.
The dicarboxylic acids were dissolved (extracted) in the mixed solvent by contacting with a mixed solvent consisting of 30 parts by volume under heating, and the resulting solvent layer was separated and cooled to precipitate the dicarboxylic acids. A method for treating a fermentation liquid containing long-chain dicarboxylic acids or long-chain oxycarboxylic acids, which comprises separating and recovering dicarboxylic acids. 2. The treatment method according to claim 1, wherein the oxygen-containing organic compound is an alcohol having 4 or more carbon atoms. 3. The treatment method according to claim 1, wherein the oxygen-containing organic compound is a ketone having 4 or more carbon atoms. 4. The treatment method according to claim 1, wherein the oxygen-containing organic compound is an aldehyde having 6 or more carbon atoms. 5. The treatment method according to claim 1, wherein the mixed solvent is brought into contact with the fermentation liquid or its treatment liquid at a temperature of 70 to 100°C. 6. The mixed solvent layer produced by contacting the above fermentation liquid or its treated liquid with the above mixed solvent is heated to a temperature of 10% above the contact temperature.
Claim 1 of cooling to a temperature lower than 50°C
or the treatment method described in paragraph 5. 7. The treatment method according to claim 1, wherein the liquid after separating and recovering the precipitated dicarboxylic acids is recycled as a mixed solvent for contact with the fermentation liquid or its treatment liquid.
JP7490082A 1982-05-04 1982-05-04 Process for treating fermentation liquid containing long-chain dicarboxylic acid or long-chain hydroxycarboxylic acid Granted JPS58193694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7490082A JPS58193694A (en) 1982-05-04 1982-05-04 Process for treating fermentation liquid containing long-chain dicarboxylic acid or long-chain hydroxycarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7490082A JPS58193694A (en) 1982-05-04 1982-05-04 Process for treating fermentation liquid containing long-chain dicarboxylic acid or long-chain hydroxycarboxylic acid

Publications (2)

Publication Number Publication Date
JPS58193694A JPS58193694A (en) 1983-11-11
JPS6322797B2 true JPS6322797B2 (en) 1988-05-13

Family

ID=13560717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7490082A Granted JPS58193694A (en) 1982-05-04 1982-05-04 Process for treating fermentation liquid containing long-chain dicarboxylic acid or long-chain hydroxycarboxylic acid

Country Status (1)

Country Link
JP (1) JPS58193694A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965035B (en) * 2013-01-30 2016-01-27 䞊海凯赛生物技术研发䞭心有限公叞 The process for purification of long-chain biatomic acid
CN104844442A (en) * 2014-02-18 2015-08-19 䞊海凯赛生物技术研发䞭心有限公叞 Method for preparing mixed acid from solvent mother liquor

Also Published As

Publication number Publication date
JPS58193694A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
JP3854765B2 (en) Method for purifying long-chain dicarboxylic acids
EP0804607B1 (en) Lactic acid production, separation and/or recovery process
JP2003511360A (en) Method for producing purified lactic acid solution
WO2001027064A1 (en) Continuous process for preparing lactic acid
CN108017535A (en) A kind of method that long-chain biatomic acid is extracted from zymotic fluid
Zhao et al. Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method
CA2932376C (en) Method for preparing and isolating carboxylic esters
US6509179B1 (en) Continuous process for preparing lactic acid
JP2014070031A (en) Method for producing long-chain dicarboxylic acid
JPS6322797B2 (en)
EP0220855B1 (en) Process for recovering 4,4' dihydroxydiphenyl sulfone from an isomer mixture
US10221120B2 (en) Separation of organic acids from mixtures containing ammonium salts of organic acids
WO1993015040A1 (en) Preparation of optically active aliphatic carboxylic acids
WO2006006414A1 (en) Method for producing 2-adamantanone
JP2789045B2 (en) Novel industrial process for the production of sodium parahydroxymandelic acid
EP0623107A1 (en) Preparation of optically active aliphatic carboxylic acids.
JP2001505581A (en) Method for recovering ascorbic acid
CN111138286A (en) Method for treating mixture containing long-chain dibasic acid
JPS6156146A (en) Preparation of macrocyclic ketone
JP2004509091A (en) Process for purifying α-hydroxy acids on an industrial scale
JPH0710805A (en) Production of hydroxycarboxylic acid ester
EP0623106A1 (en) Preparation by flotation of optically active aliphatic carboxylic acids
JP2729285B2 (en) Purification method of sorbic acid
JP2014070030A (en) Method for producing long-chain dicarboxylic acid
JP4286364B2 (en) Method for producing L-threo-3- (3,4-dihydroxyphenyl) serine derivative