JPS63222819A - Manufacture of polyurethane foam - Google Patents

Manufacture of polyurethane foam

Info

Publication number
JPS63222819A
JPS63222819A JP62057417A JP5741787A JPS63222819A JP S63222819 A JPS63222819 A JP S63222819A JP 62057417 A JP62057417 A JP 62057417A JP 5741787 A JP5741787 A JP 5741787A JP S63222819 A JPS63222819 A JP S63222819A
Authority
JP
Japan
Prior art keywords
foaming
tank
polyurethane foam
pulling
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057417A
Other languages
Japanese (ja)
Inventor
Sadao Kumasaka
貞男 熊坂
Satomi Tada
多田 郷見
Osamu Fujii
修 藤井
Koretoshi Katsuki
是利 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Industry Corp
Original Assignee
Human Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Industry Corp filed Critical Human Industry Corp
Priority to JP62057417A priority Critical patent/JPS63222819A/en
Priority to CA000541369A priority patent/CA1290895C/en
Priority to US07/070,774 priority patent/US4988271A/en
Priority to AU75357/87A priority patent/AU608520B2/en
Priority to SU874202955A priority patent/RU1797573C/en
Priority to KR1019870007469A priority patent/KR910000312B1/en
Priority to CN87104799A priority patent/CN1020560C/en
Priority to AT87110096T priority patent/ATE81065T1/en
Priority to DE8787110096T priority patent/DE3782019T2/en
Priority to EP87110096A priority patent/EP0273099B1/en
Publication of JPS63222819A publication Critical patent/JPS63222819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the polyurethane foam slab of super low density with flat top surface by lifting, with the foaming rise, the cylindrical pulling-up jig capable of rising and lowering along the side wall of a foaming tank, when the foaming is carried out under reduced pressure-atmosphere by reducing the pressure in a pressure reduction chamber. CONSTITUTION:Foaming stock solution is expanded by its foaming action, and is brought in contact with the inner surface of a pulling-up jig 12. The pressure in a pressure reduction chamber is reduced to a prescribed degree, and the pulling-up jig 12 is drawn up at the same speed as the rise speed from the time when said solution is brought in contact with the inner surface of the pulling-up jig 12. Consequently, even if the liquid surface of the foaming stock solution rises by its expansion, the portion being in contact with the pulling-up jig 12 with rectangular cylindrical shape at the vicinity of the rising point does not receive any frictional resistance. Accordingly, the height of a slab is not shortened by obstruction of foaming at the peripheral edge of the slab, and the polyurethane foam slab with flat top surface is obtained. Consequently, the polyurethane foam slab of super low density with flat top surface may be obtained, can then there is no risk of the occurrence of scorch phenomenon or a fire and its yield is heightened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリウレタンフォームの製造方法に関し、特に
頂面が平坦で超低密度のポリウレタンフォームの製造方
法に関わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyurethane foam, and particularly to a method for producing polyurethane foam with a flat top surface and an ultra-low density.

[従来の技術と問題点1 周知の如く、ポリウレタンフォームは広範囲の用途に使
用されており、その目的とする用途に応じて低密度量か
ら高密度量にわたる種々の製品が製造されている。
[Prior Art and Problem 1] As is well known, polyurethane foams are used in a wide range of applications and are manufactured in a variety of products ranging from low-density to high-density quantities depending on the intended use.

ポリウレタンフォーム製造する際に製品の密度の調整す
る手段としては、発泡剤(主に水)や発泡助剤(トリク
ロロモノフルオロメタン、メチレンクロライド等の低沸
点溶剤)の添加量を増減する方法が従来行われている。
The conventional method for adjusting the density of a product when manufacturing polyurethane foam is to increase or decrease the amount of blowing agents (mainly water) and blowing aids (low boiling point solvents such as trichloromonofluoromethane and methylene chloride). It is being done.

従って、低密度のポリウレタンフォームを製造する場合
には、発泡倍率が^くなるように多くの水を使用して発
泡を行なっている。
Therefore, when manufacturing low-density polyurethane foam, foaming is performed using a large amount of water to increase the foaming ratio.

ところで、ポリウレタンフォームの製造における発泡作
用は有機イソシアネートと水との反応で生成する炭酸ガ
スによるものであるため、従来の製造方法では目的とす
る製品の密度に応じて原料のウレタンフオームを製造す
るために発泡剤である水の添加量を多くしなけれならず
、次のような問題点を生じていた。
By the way, the foaming effect in the production of polyurethane foam is due to carbon dioxide gas generated by the reaction between organic isocyanate and water, so in conventional production methods, the raw material urethane foam is produced according to the density of the desired product. However, it was necessary to add a large amount of water as a blowing agent, which caused the following problems.

■多最の水とイソシアネートとを反応させることになる
ため、発泡体の内部温度が反応熱で著しく高くなり、い
わゆるスコーチ(焼けによる変色)を生じ易い。従って
、スコーチ防止剤を添加しなければならない。
(2) Since most of the water and isocyanate are reacted, the internal temperature of the foam becomes extremely high due to the heat of reaction, which tends to cause so-called scorch (discoloration due to burning). Therefore, scorch inhibitors must be added.

■水の添加比率はポリオール100!1部に対して6〜
711部が上限であるが、このような低密度発泡体では
上記の問題点が顕著に瑛れ、火災発生の危険もある。
■Addition ratio of water is 6 to 100 parts of polyol.
The upper limit is 711 parts, but such low-density foams significantly exacerbate the above-mentioned problems and pose a risk of fire.

■有機イソシアネート、トリクロロモノフルオロメタン
等の使用量が増大するためガスロスが高くなり、参画り
が低下する。
■As the amount of organic isocyanate, trichloromonofluoromethane, etc. used increases, gas loss increases and participation decreases.

また、上記ポリウレタンフォームは、例えば第4図に示
す如く、大型の容器(発泡槽)1にポリウレタン発泡原
液を注入し、これを発泡ライズさせ、キュアさせること
によりポリウレタンフォームスラブ2を製造している。
Furthermore, as shown in FIG. 4, for example, the polyurethane foam slab 2 is manufactured by pouring a polyurethane foaming stock solution into a large container (foaming tank) 1, foaming it, and curing it. .

この場合、発泡槽1の内面を図示しない離型紙で覆って
発泡操作を行なうのが普通である。かかるバッチ式製造
方法によれば、比較的狭い場所でも実施できるという特
徴を有する。また、この方法では、発泡槽1の形状を変
化させることで任意形状のスラブを製造できるという長
所がある。
In this case, the foaming operation is usually performed with the inner surface of the foaming tank 1 covered with release paper (not shown). This batch-type manufacturing method has the feature that it can be carried out even in a relatively narrow space. Furthermore, this method has the advantage that by changing the shape of the foaming tank 1, slabs of arbitrary shapes can be manufactured.

しかしながら、従来のバッチ式製造方法によれば、発泡
槽1にポリウレタン発泡原液を攪拌して注入すると、発
泡反応が進行し、除徐に液面が上昇(ライズ)する。そ
の際、発泡反応が進行するに伴ってライズする原液の粘
度も上昇するから、発泡槽1に接触している付近では発
泡槽内面との摩擦抵抗により発泡が阻害されてしまう。
However, according to the conventional batch-type manufacturing method, when the polyurethane foaming stock solution is stirred and poured into the foaming tank 1, the foaming reaction proceeds and the liquid level gradually rises. At this time, as the foaming reaction progresses, the viscosity of the rising stock solution also increases, so foaming is inhibited near the area where it contacts the foaming tank 1 due to frictional resistance with the inner surface of the foaming tank.

このため、発泡完了後のポリウレタンフォームスラブ2
は、第5図に示すように、スラブの中央で高く周縁部で
低い形状となり、平坦な頂面が得られない。
For this reason, the polyurethane foam slab 2 after foaming is completed.
As shown in FIG. 5, the slab has a shape that is high at the center and low at the periphery, making it impossible to obtain a flat top surface.

その結果、第5図に二点鎖線で示したように、得られた
スラブ2の凸状頂部を所定の寸法になるまで切除しなけ
ればならず、廃棄部分を生じたり工程が増大する等の問
題があった。
As a result, as shown by the two-dot chain line in FIG. 5, the convex top of the obtained slab 2 must be cut off to a predetermined size, resulting in waste parts and an increase in the number of steps. There was a problem.

本発明は上記事情に鑑みてなされたもので、発泡時、発
泡槽を減圧雰囲気でしかも筒状引上げ冶具を利用するこ
とにより、頂部が平坦でしかも超低密度なポリウレタン
フォームスラブが得られるポリウレタンフォームの製造
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a polyurethane foam that can obtain a polyurethane foam slab with a flat top and ultra-low density by using a cylindrical pulling jig in a foaming tank in a reduced pressure atmosphere during foaming. The purpose is to provide a manufacturing method for.

[問題点を解決するための手段] 本発明は、発泡槽を予め減圧室に収納し、前記発泡槽の
中にポリウレタンフォーム発泡原液を攪拌混合して注入
した後、前記減圧室内を減圧して減圧雰囲気下で発泡さ
せる際、両端が開放されかつ壁面を前記発泡槽側壁面に
沿って昇降自在な筒状引上げ治具を、発泡上昇にあわせ
て上昇させることを要旨とする。
[Means for Solving the Problems] The present invention includes storing a foaming tank in advance in a vacuum chamber, stirring and mixing and injecting a polyurethane foam foam stock solution into the foaming tank, and then reducing the pressure in the vacuum chamber. When foaming is carried out under a reduced pressure atmosphere, a cylindrical lifting jig whose both ends are open and whose wall surface can be raised and lowered along the side wall surface of the foaming tank is raised in accordance with the rise of foaming.

本発明における発泡槽は、平坦な底面と該底面に対して
垂直な側壁を有し、かつ上部が開放されている筒状のも
のであれば、その具体的な形状は問わない。即ち、角筒
形であっても円筒形であってもよい。他方、本発明にお
ける筒状引上げ治具は、上記筒状発泡容器の横断面形状
に対応した筒状体となる。
The specific shape of the foaming tank in the present invention is not limited as long as it has a cylindrical shape with a flat bottom, side walls perpendicular to the bottom, and an open top. That is, it may be prismatic or cylindrical. On the other hand, the cylindrical lifting jig in the present invention is a cylindrical body corresponding to the cross-sectional shape of the cylindrical foam container.

本発明において、ポリウレタンフォーム発泡原液は、ポ
リエーテルポリオール、ポリエステルポリオールなどの
ポリオールと、トリレンジイソシアネートなどの有機イ
ソシアネート、アミン触媒、錫触媒、発泡剤(水)、整
泡剤(シリコーン油)、その他顔料、充填剤等が要求さ
れる特性に応じて適宜に組合われて使用される。
In the present invention, the polyurethane foam foaming stock solution includes polyols such as polyether polyols and polyester polyols, organic isocyanates such as tolylene diisocyanate, amine catalysts, tin catalysts, blowing agents (water), foam stabilizers (silicone oil), and others. Pigments, fillers, etc. are used in appropriate combinations depending on the required properties.

本発明において所定の減圧雰囲気を得る形態としては、
例えば発泡槽を別途容易した減圧室内に収容して発泡さ
せるようにすればよい。しかるに、バッチ式のプロセス
の方が適用し易い。
In the present invention, the form of obtaining a predetermined reduced pressure atmosphere is as follows:
For example, a foaming tank may be accommodated in a vacuum chamber prepared separately for foaming. However, batch-type processes are easier to apply.

本発明における常圧からの減圧量と減圧の時期は、配合
処方即ち目的の密度、物性等により異なる。しかるに、
前記減圧量は 100〜500膳−日gの範囲にあるこ
とが好ましい。また、減圧の時期はライス開始と同時に
開始しても良く、ライス途中より開始しても良い。
In the present invention, the amount of pressure reduction from normal pressure and the timing of pressure reduction vary depending on the formulation, ie, the desired density, physical properties, etc. However,
The amount of pressure reduction is preferably in the range of 100 to 500 grams per day. Moreover, the timing of depressurization may be started at the same time as the start of rice, or may be started in the middle of rice.

[作用] 本発明によれば、発泡の際、両端が開放されかつ壁面が
前記発泡槽側壁面に沿って昇降自在な筒状引上げ治具を
、発泡上昇にあわせて上昇させることにより、接触面に
おける摩擦抵抗の発生が回避される。従って、接触部分
における発泡の阻害が防止され、平坦なポリウレタンフ
ォームスラブが得られる。
[Function] According to the present invention, during foaming, a cylindrical lifting jig whose both ends are open and whose wall surface can be raised and lowered along the side wall surface of the foaming tank is raised in accordance with the rise of foaming, thereby increasing the contact surface. The generation of frictional resistance is avoided. Therefore, inhibition of foaming in the contact area is prevented, and a flat polyurethane foam slab is obtained.

その際、前記筒状引上げ治具は発泡原液のライズ開始前
に予め下げておき、手動又は自動にてライス開始点から
ライスに合せて引上げてもよいし、ライス開始後少しし
てからライズに合せて引上げてもよい。
At that time, the cylindrical lifting jig may be lowered in advance before the foaming stock solution starts to rise, and then manually or automatically pulled up from the rice starting point in line with the rice, or it may be raised a little after the rice starts. It may also be raised together.

また、本発明においては、発泡作用が減圧下で行われる
ため、その作用が増強される。即ち、気泡の形成は発泡
原液中で生成した炭酸ガスの逃散力に依存し、この逃散
力は雰囲気圧に対する生成した炭酸ガス蒸気圧の相対的
な大きさで決まる。
Further, in the present invention, since the foaming action is performed under reduced pressure, the foaming action is enhanced. That is, the formation of bubbles depends on the escape power of the carbon dioxide gas generated in the foaming stock solution, and this escape force is determined by the relative magnitude of the vapor pressure of the generated carbon dioxide gas with respect to the atmospheric pressure.

従って、生成した炭酸ガスの全槽が同一でその分圧が同
じであっても、雰囲気圧力が低ければその逃散力は大き
くなる。しかも生成した炭酸ガスが気化し易いから、生
成嬶が同じでも発泡に有効に作用する比率が向上する。
Therefore, even if all the tanks of generated carbon dioxide gas are the same and their partial pressures are the same, if the atmospheric pressure is low, the escape force will be large. Moreover, since the generated carbon dioxide gas is easily vaporized, the ratio of effective foaming is improved even if the amount of carbon dioxide gas generated is the same.

こうして同一処方の発泡原液を用いた場合にも、生成す
る炭酸ガスの気化効率を向上し、かつその発泡作用を増
強することによって発泡倍率を高め、超低密度例えば5
〜10Ka/m3のポリウレタンフォームが得られる。
In this way, even when a foaming stock solution with the same formulation is used, the foaming ratio is increased by improving the vaporization efficiency of the generated carbon dioxide gas and reinforcing its foaming action, and the foaming ratio is increased with ultra-low density, e.g.
A polyurethane foam of ~10 Ka/m3 is obtained.

[実施例] 以下、本発明の一実施例を第1図〜第3図を参照して説
明する。ここで、第1図は本発明に係るポリウレタンフ
ォームの製造装置の説明図、第2図は同装置に係る発泡
槽の斜視図、第3図(A)〜(D)は同装置の作用を示
す説明図である。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3. Here, FIG. 1 is an explanatory diagram of a polyurethane foam manufacturing apparatus according to the present invention, FIG. 2 is a perspective view of a foaming tank according to the same apparatus, and FIGS. 3 (A) to (D) show the operation of the same apparatus. FIG.

図中の11は、平坦な底面を有しかつ上部が開放された
大型の発泡槽である。この発泡槽11は、図示する如く
角形で、断面矩形の発泡空間を有している。この発泡槽
11の中には、両端が開放された矩形の筒状引上げ治具
12が、発泡槽11のIIl壁内面に沿って摺動可能に
設けられている。この矩形の筒状引上げ治具12の材質
としては、ステンレス、鉄、ブリキ等の鋼板や、ポリエ
ステル、ポリカーボネート、メラミンなどのプラスチッ
ク等のプラスチック板、あるいは木板等が使用できるが
、表面に離型剤を塗布するか、あるいは離型性フィルム
を貼着して用いるのが望ましい。
11 in the figure is a large foaming tank with a flat bottom and an open top. The foaming tank 11 is square as shown, and has a foaming space with a rectangular cross section. Inside the foaming tank 11, a rectangular cylindrical lifting jig 12 with both ends open is provided so as to be slidable along the inner surface of the IIl wall of the foaming tank 11. The rectangular cylindrical pulling jig 12 may be made of a steel plate such as stainless steel, iron, or tin, a plastic plate such as polyester, polycarbonate, or melamine, or a wooden board. It is preferable to use it by coating or pasting a releasable film.

前記引上げ治具12の上端開口部には、略中央部を横切
る補強バー13が設けられている。また、前記治具12
には引上げワイヤ14・・・が連結され、該ワイヤ14
の他端は上方に配設された引上げ回転軸15a、15b
に設けた巻取りロール16・・・に連結されている。前
記引上げ回転軸15a。
A reinforcing bar 13 is provided at the upper end opening of the lifting jig 12 and extends approximately across the center thereof. In addition, the jig 12
A pulling wire 14... is connected to the wire 14.
The other end is a pulling rotation shaft 15a, 15b arranged above.
It is connected to a winding roll 16 provided at. The pulling rotation shaft 15a.

15bには夫々スプロケット17.17が軸着され、両
スプロケット間にはスプロケットチェーン18が巻回張
設されている。また、一方の引上げ回転軸15aには駆
動モータ19が連結され、前記回転軸15aを回転駆動
する。モータ19を駆動させて一方の引上げ回転軸15
aを回転させると、スプロケット機構を介して他方の引
上げ回転軸15t)も等速で回転される。従って、ワイ
ヤ14・・・はロール16に等速で轡取り、あるいは巻
かれる結束、筒状引上げ治具12は自在に昇降できる°
ようになっている。前記発泡槽11の側壁には、発泡原
液導入口20が開口され、この導入口20に開閉自在な
扉21が設けられている。なお、引上げ回転軸15a、
15bは図示しない軸受で支承され、該軸受は発泡槽1
1の外壁に固定されている。更に、前記発泡槽11はコ
ロ22上に載εされている。
Sprockets 17 and 17 are pivotally attached to each of the sprockets 15b, and a sprocket chain 18 is wound and tensioned between both sprockets. Further, a drive motor 19 is connected to one of the pulling rotation shafts 15a to rotationally drive the rotation shaft 15a. By driving the motor 19, one of the pulling rotation shafts 15
When rotating a, the other pulling rotation shaft 15t) is also rotated at the same speed via the sprocket mechanism. Therefore, the wires 14 are tied up or wound around the rolls 16 at a constant speed, and the cylindrical pulling jig 12 can be freely raised and lowered.
It looks like this. A foaming stock solution inlet 20 is opened in the side wall of the foaming tank 11, and a door 21 that can be opened and closed is provided in the inlet 20. In addition, the pulling rotation shaft 15a,
15b is supported by a bearing (not shown), and the bearing is connected to the foaming tank 1.
It is fixed to the outer wall of 1. Further, the foaming tank 11 is placed on a roller 22.

前記発泡槽11は、減圧室23内に収容されている。こ
の減圧室23の上部には、N磁弁24を介装した送気管
25が連結されている。また、減圧室23の下部には電
磁弁26を介装した吸気管27が連結され、該吸気管2
7は真空ポンプ(図示せず)に連結されている。前記減
圧v21の側部には発泡原液導入口28が前記発泡原液
導入口20に対応して位置に開口され、前記導入028
には開閉自在な扉29が設けられている。また、前記減
圧室21の側壁には、前記発泡槽11を出入するための
横開きm30が設けられている。なお、図中の31は発
泡槽11を搬送させるためのコンベア、32は減圧室2
1に付設されたゲージである。
The foaming tank 11 is housed in a reduced pressure chamber 23. An air supply pipe 25 having an N magnetic valve 24 interposed therein is connected to the upper part of the decompression chamber 23 . Further, an intake pipe 27 having a solenoid valve 26 interposed therein is connected to the lower part of the decompression chamber 23.
7 is connected to a vacuum pump (not shown). A foaming stock solution inlet 28 is opened on the side of the reduced pressure v21 at a position corresponding to the foaming stock solution introduction port 20, and the foaming stock solution inlet 28 is opened at a position corresponding to the foaming stock solution introduction port 20.
is provided with a door 29 that can be opened and closed. Furthermore, a side wall opening m30 for entering and exiting the foaming tank 11 is provided on the side wall of the decompression chamber 21. In addition, 31 in the figure is a conveyor for conveying the foaming tank 11, and 32 is a decompression chamber 2.
This is a gauge attached to 1.

前記減圧室21の近傍には、レール41が付設されてい
る。このレール41上には脚部に車輪42を設けた台車
43が載置され、押出しシリンダ44の伸縮により発泡
槽11に対して接近したり後退できるようになっている
。前記台車43には、回動軸45が水平に張設され、匍
記回肋軸45には円筒形の混合攪拌槽46が枢軸固定さ
れている。前記回動軸45は、図示しないモータ及び変
則ギアにより回動駆動されるようになっており、これに
より混合攪拌槽46は図中矢印で示す方向に回動傾斜さ
れるようになっている。混合攪拌槽46の内部にはその
軸方向に攪拌羽根47が設けられ、この攪拌羽根47は
混合攪拌槽46の下に付設されたモータ48により回転
駆動されるようになっている。また、前記混合攪拌槽4
6の側面下端部には、発泡液吐出i!49が斜下方に向
けて延設されている。このR泡原液吐出管49と前記混
合撹拌槽46とは、両者の境界部分に設けられた′R磁
弁50を介して連通されている。更に、混合攪拌槽46
の上部には有機イソシアネート成分の計量タンク51が
配置され、該計量タンク51は配管52を介して有機イ
ソシアネート供給源に連結されている。前記計量タンク
51の下端には原料供給管53が設けられ、該原料供給
管53と計量タンク51の間にはi[弁54が設けられ
ている。また、原料供給管53には例えばポリオールや
触媒等、イソシアネート成分以外のポリウレタンフォー
ム原料供給配管55が連結されている。
A rail 41 is attached near the decompression chamber 21. A cart 43 having wheels 42 on its legs is placed on this rail 41, and can approach or retreat from the foaming tank 11 by expanding and contracting the extrusion cylinder 44. A rotating shaft 45 is stretched horizontally on the cart 43, and a cylindrical mixing and stirring tank 46 is pivotally fixed to the rotating shaft 45. The rotation shaft 45 is rotatably driven by a motor and an irregular gear (not shown), so that the mixing and stirring tank 46 is rotatably tilted in the direction indicated by the arrow in the figure. A stirring blade 47 is provided inside the mixing and stirring tank 46 in the axial direction thereof, and this stirring blade 47 is rotationally driven by a motor 48 attached below the mixing and stirring tank 46 . In addition, the mixing stirring tank 4
At the lower end of the side of 6, there is a foaming liquid discharge i! 49 extends diagonally downward. This R foam stock solution discharge pipe 49 and the mixing stirring tank 46 are communicated with each other via an 'R magnetic valve 50 provided at the boundary between the two. Furthermore, a mixing stirring tank 46
A metering tank 51 for the organic isocyanate component is disposed in the upper part of the container, and the metering tank 51 is connected to an organic isocyanate supply source via a pipe 52. A raw material supply pipe 53 is provided at the lower end of the measuring tank 51, and an i valve 54 is provided between the raw material supply pipe 53 and the measuring tank 51. Further, the raw material supply pipe 53 is connected to a polyurethane foam raw material supply pipe 55 for materials other than isocyanate components, such as polyols and catalysts.

前記有機イソシアネート成分計量タンク51にはポリウ
レタンフォーム原料の洗浄溶剤供給管56が付設され、
この供給管56は洗浄溶剤タンク57に連結されている
。また、洗浄溶剤廃液受け58が設置され、この廃液受
け58はポンプ59を介して前記洗浄溶剤タンク57に
連結されている。
A cleaning solvent supply pipe 56 for polyurethane foam raw materials is attached to the organic isocyanate component measuring tank 51,
This supply pipe 56 is connected to a cleaning solvent tank 57. Further, a cleaning solvent waste liquid receiver 58 is installed, and this waste liquid receiver 58 is connected to the cleaning solvent tank 57 via a pump 59.

次に、上記構造の製造装置の作用について説明する。Next, the operation of the manufacturing apparatus having the above structure will be explained.

まず、第3図(A)に示すように、引上げ治具12を所
定の位置まで下した状態で、発泡槽11の内面を離型紙
で1い、また矩形筒状引上げ治具12の内面にも離型紙
を貼着し又は離型剤を塗布しておく。次に、発泡槽11
を第1図に示す如く減圧室21内に収容した後(M!!
弁24.26は閉状態)、押出しシリンダ44を伸縮さ
せ、混合撹拌槽46を発泡槽11から後退させた状態で
ポリウレタンフォーム発泡原液の調整を行なう。即ち、
配管52から計量タンク51内に有機イソシアネート成
分を供給して計量した後、電磁弁54を開くことにより
、この所定量のイソシアネート成分を原料供給管53か
ら混合撹拌槽46内に投入する。同時に、配管55から
ポリオール成分及び触媒等の他の原料を混合撹拌槽46
内に投入する。つづいて、攪拌羽根47を回転させ、均
一に混合する。
First, as shown in FIG. 3(A), with the lifting jig 12 lowered to a predetermined position, the inner surface of the foaming tank 11 is lined with release paper, and the inner surface of the rectangular cylindrical lifting jig 12 is covered with release paper. Also, attach release paper or apply a release agent. Next, the foaming tank 11
After being accommodated in the decompression chamber 21 as shown in Fig. 1 (M!!
With the valves 24 and 26 closed), the extrusion cylinder 44 is expanded and contracted, and the mixing stirring tank 46 is retreated from the foaming tank 11, and the polyurethane foam foaming stock solution is adjusted. That is,
After the organic isocyanate component is supplied into the measuring tank 51 from the piping 52 and measured, the electromagnetic valve 54 is opened to introduce a predetermined amount of the isocyanate component into the mixing tank 46 from the raw material supply pipe 53. At the same time, other raw materials such as the polyol component and catalyst are mixed from the pipe 55 into the stirring tank 46.
Put it inside. Subsequently, the stirring blade 47 is rotated to mix uniformly.

次いで、押出しシリンダ54を伸張駆動させることによ
り混合撹拌槽46を図示の位置まで前進させ、発泡原液
吐出管49の先端を発泡原液導入口28.20から発泡
槽11内に挿入する。その際、1129.21は発泡原
液吐出管49で押されて容易に開くようになっている。
Next, the mixing and stirring tank 46 is advanced to the illustrated position by driving the extrusion cylinder 54 to extend, and the tip of the foaming stock solution discharge pipe 49 is inserted into the foaming tank 11 from the foaming stock solution inlet 28,20. At that time, 1129.21 is pushed by the foaming stock solution discharge pipe 49 so that it can be easily opened.

つづいて、!を磁弁50を開くことにより混合攪拌槽4
6内で調整された発泡原液を吐出管49を通して発泡槽
11内に注入する。その際、必要に応じて回動軸45を
回転させ、混合攪拌槽46を前傾させることにより発泡
原液の流出を促進する。
Continuing! By opening the magnetic valve 50, the mixing tank 4
The foaming stock solution adjusted in the foaming tank 6 is injected into the foaming tank 11 through the discharge pipe 49. At this time, the rotating shaft 45 is rotated as necessary to tilt the mixing and stirring tank 46 forward to promote outflow of the foaming stock solution.

この後、押出しシリンダ44を収縮駆動させることによ
り混合撹拌槽46を後退させ、m528゜20を夫々間
じる。次に、発泡原液が発泡作用により膨張してライズ
し、第3図(B)に示すように、引上げ治具12の内面
に接触する。ここで、ライズが開始してから吸気管27
の?!を磁弁26を開き、減圧室21を真空ポンプに連
結させて減圧至内を所定の發だけ減圧した。次いで、上
記の如(引上げ治具12の内面に接触した時点から、引
上げ治具12をライス速度と同じ速度で上方に引上げて
いく。この結果、発泡原液の膨張で液面が上昇しても、
序章付近で矩形筒状引上げ治具12に接触している部分
は回答摩擦抵抗を受けない。
Thereafter, the extrusion cylinder 44 is driven to contract, thereby causing the mixing and stirring tank 46 to move backward, thereby allowing m528°20. Next, the foaming stock solution expands and rises due to the foaming action, and comes into contact with the inner surface of the lifting jig 12, as shown in FIG. 3(B). Here, after the rise starts, the intake pipe 27
of? ! The magnetic valve 26 was opened, the pressure reduction chamber 21 was connected to a vacuum pump, and the pressure inside the vacuum chamber was reduced by a predetermined amount. Next, as described above (from the point of contact with the inner surface of the pulling jig 12, the pulling jig 12 is pulled upward at the same speed as the rice speed. As a result, even if the liquid level rises due to expansion of the foaming stock solution, ,
The portion in contact with the rectangular cylindrical lifting jig 12 near the prologue is not subjected to any frictional resistance.

従って、従来の発泡槽で発泡あせたときのようにスラブ
周縁部で発1泡が阻害されて高さが低くなることはなく
、頂面が平坦なポリウレタンフォームスラブが得られる
Therefore, unlike when foaming in a conventional foaming tank, foaming is inhibited at the peripheral edge of the slab and the height is not reduced, a polyurethane foam slab with a flat top surface can be obtained.

一方、上記のように発泡槽11の中でポリタンフオーム
スラブの発泡成形が行われている間に、発泡W111か
ら後退した混合攪拌槽46及びイソシアネート成分計量
タンク51では、次のようにして内面に付着しているポ
リウレタン発泡原液の洗浄が行われる。即ち、ポンプ5
9が駆動し、洗浄溶剤タンク57内に洗浄溶剤が供給さ
れ、更に混合陽拌槽46に洗浄溶剤が満たされる。つづ
いて、攪拌羽根47を回すことにより、混合攪拌槽46
の内壁に付着している発泡原液を溶解した後、電磁弁5
0を開いて洗浄溶剤を排出する。洗浄溶剤を排出する際
、吐出管49の内壁に付着している発泡原液も溶解され
る。こうして排出された洗浄溶剤は廃液受け58に貯溜
された後、ポンプ59で洗浄溶剤タンク57に送られ再
利用される。
On the other hand, while the polytan foam slab is being foam-molded in the foaming tank 11 as described above, in the mixing stirring tank 46 and the isocyanate component measuring tank 51, which have retreated from the foaming W 111, the inner surface is formed as follows. The adhered polyurethane foaming solution is washed away. That is, pump 5
9 is driven, the cleaning solvent is supplied into the cleaning solvent tank 57, and the mixing tank 46 is further filled with the cleaning solvent. Next, by rotating the stirring blade 47, the mixing stirring tank 46
After dissolving the foaming stock solution adhering to the inner wall of the solenoid valve 5,
0 to drain the cleaning solvent. When the cleaning solvent is discharged, the foaming stock solution adhering to the inner wall of the discharge pipe 49 is also dissolved. The cleaning solvent discharged in this manner is stored in a waste liquid receiver 58 and then sent to a cleaning solvent tank 57 by a pump 59 to be reused.

洗浄が終了すると、記述したのと同様にして次の発泡原
料の調整が行われる。また、減圧室23内を最初の状態
に戻した後、減圧室23の横開き扉30を開け、発泡槽
11をコロ18を利用して外に出し、代わりに別の発泡
槽が図示の位置に設置される。こうして、上記と同様の
操作を繰返すことにより連続してポリウレタンフォーム
スラブの製造を行なうことができる。
When the cleaning is completed, the next foaming material is prepared in the same manner as described. After returning the inside of the decompression chamber 23 to its initial state, the side door 30 of the decompression chamber 23 is opened, the foaming tank 11 is taken out using the rollers 18, and another foaming tank is placed in its place at the position shown in the figure. will be installed in In this way, polyurethane foam slabs can be continuously manufactured by repeating the same operations as above.

しかして、本発明によれば、ポリウレタンフォーム原液
を攪拌台してこれを発泡槽11内に注入した後、減圧!
内を所定の圧まで減圧して発泡させる際、上述した構造
の筒状引上げ治具12を発泡上昇にあわせて上昇させる
ため、前記治具12の使用により頂面が平坦なポリウレ
タンフォームスラブが得られ、しかも所定の減圧下で発
泡させることにより炭酸ガスの気化効率が高められて発
泡作用が増強され、このスラブを超低密度例えば5〜l
0KO/m3にできる。また、同じ配合処方の原液を用
いて密度の異なる種々のポリウレタンフォームスラブを
得ることができるとともに、スコーチ現象が生じたり火
災発生の危険もない。
According to the present invention, after the polyurethane foam stock solution is poured into the foaming tank 11 using a stirring table, the pressure is reduced!
When foaming is performed by reducing the pressure inside the foam to a predetermined pressure, the cylindrical lifting jig 12 having the above-described structure is raised in accordance with the rise of foaming, so that by using the jig 12, a polyurethane foam slab with a flat top surface can be obtained. Moreover, by foaming under a predetermined reduced pressure, the vaporization efficiency of carbon dioxide gas is increased and the foaming action is enhanced, and this slab is made into an ultra-low density, e.g.
Can be made to 0KO/m3. In addition, polyurethane foam slabs of various densities can be obtained using the same stock solution with no scorch phenomenon or fire hazard.

なお、上記実施例で述べたポリウレタンフォームの製造
装置の構造も上述した構造のものに勿論限定されない。
Note that the structure of the polyurethane foam manufacturing apparatus described in the above embodiments is of course not limited to the structure described above.

また、上記実施例では、減圧室内を減圧させる手段とし
て吸気管の電磁弁を開いて真空ポンプにより吸引したが
、これに限らず、例えば吸気管を予め減圧された減圧タ
ンクにつないで減圧室内を減圧してもよい。
Furthermore, in the above embodiment, the solenoid valve of the intake pipe was opened and suction was carried out by a vacuum pump as a means for reducing the pressure inside the decompression chamber, but the invention is not limited to this. The pressure may be reduced.

[発明の効果] 以上詳述した如く本発明によれば、従来と比べ頂面が平
坦で超低密度のポリウレタンフォームスラブを得ること
ができとともに、スコーチ現象もなく火災発生の危険も
ない歩留りの高いポリウレタンフォームの製造方法を提
供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to obtain a polyurethane foam slab with a flat top surface and an ultra-low density compared to the conventional one, and also to achieve a high yield without scorch phenomenon and no risk of fire outbreak. A method for producing high quality polyurethane foam can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係丁号レタンフオームの製造i置の説
明図、第2図は同装置に係る発泡槽の斜視図、第3図は
同装置の作用の説明図、第4図は従来のバッチ式製造方
法の説明図、第5図は従来方法6られるポリウレタンフ
ォームスラブの斜視図である。 11・・・発泡槽、12・・・筒状引上げ治具、13・
・・パー、 14・・・引上げワイヤ、 15a。 15b・・・引上げ回転軸、16・・・巻取りロール、
17・・・スプロケット、18・・・スプロケットチェ
ーン、19.48・・・モータ、20.28・・・発泡
原液導入口、21.29・・・酢、24.26.50゜
54・・・電磁弁、30・・・横開き扉、41・・・レ
ール、42・・・車輪、43・・・台車、44・・・押
出しシリンダ、45・・・回動軸、46・・・混合攪拌
槽、47・・・攪拌羽根、49・・・発泡原液吐出管、
51・・・計量タンク、52・・・配管、53・・・原
料供給管、55・・・原料供給配管、56・・・洗浄溶
剤供給管、57・・・洗浄溶剤タンク、58・・・洗浄
溶剤廃液受け、59・・・ポンプ。
Fig. 1 is an explanatory diagram of the manufacturing process of the present invention's retin foam, Fig. 2 is a perspective view of a foaming tank related to the device, Fig. 3 is an explanatory diagram of the operation of the device, and Fig. 4 is An explanatory diagram of a conventional batch-type manufacturing method, FIG. 5 is a perspective view of a polyurethane foam slab produced by conventional method 6. 11... Foaming tank, 12... Cylindrical pulling jig, 13.
... Par, 14... Pulling wire, 15a. 15b... Pulling rotation shaft, 16... Winding roll,
17... Sprocket, 18... Sprocket chain, 19.48... Motor, 20.28... Foaming stock solution inlet, 21.29... Vinegar, 24.26.50°54... Solenoid valve, 30... Side opening door, 41... Rail, 42... Wheel, 43... Dolly, 44... Extrusion cylinder, 45... Rotating shaft, 46... Mixing stirring Tank, 47... Stirring blade, 49... Foaming stock solution discharge pipe,
51...Measuring tank, 52...Piping, 53...Raw material supply pipe, 55...Raw material supply pipe, 56...Cleaning solvent supply pipe, 57...Cleaning solvent tank, 58... Cleaning solvent waste liquid receiver, 59...pump.

Claims (1)

【特許請求の範囲】[Claims] 発泡槽を予め減圧室に収納し、前記発泡槽の中にポリウ
レタンフォーム発泡原液を攪拌混合して注入した後、前
記減圧室内を減圧して減圧雰囲気下で発泡させる際、両
端が開放されかつ壁面を前記発泡槽側壁面に沿って昇降
自在な筒状引上げ治具を、発泡上昇にあわせて上昇させ
ることを特徴とするポリウレタンフォームの製造方法。
A foaming tank is stored in a vacuum chamber in advance, and after agitating and mixing a polyurethane foam stock solution into the foaming tank and injecting the foaming solution into the foaming tank, the interior of the vacuum chamber is depressurized and foaming is performed under a reduced pressure atmosphere. A method for producing polyurethane foam, characterized in that a cylindrical lifting jig that can be raised and lowered along the side wall surface of the foaming tank is raised in accordance with the rise of foaming.
JP62057417A 1986-12-15 1987-03-12 Manufacture of polyurethane foam Pending JPS63222819A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62057417A JPS63222819A (en) 1987-03-12 1987-03-12 Manufacture of polyurethane foam
CA000541369A CA1290895C (en) 1986-12-25 1987-07-06 Method and an apparatus for producing polyurethane foam
US07/070,774 US4988271A (en) 1986-12-25 1987-07-07 Apparatus for producing polyurethane foam
AU75357/87A AU608520B2 (en) 1986-12-25 1987-07-08 A method and an apparatus for producing polyurethane foam
SU874202955A RU1797573C (en) 1987-03-12 1987-07-10 Method for manufacture of plates from low-density polyurethane foam
KR1019870007469A KR910000312B1 (en) 1986-12-15 1987-07-11 Method and apparatus for producing polyurethane foam
CN87104799A CN1020560C (en) 1986-12-25 1987-07-13 Method and apparatus for producing low density polyurethane foam
AT87110096T ATE81065T1 (en) 1986-12-25 1987-07-13 METHOD AND DEVICE FOR PRODUCTION OF POLYURETHANE FOAM.
DE8787110096T DE3782019T2 (en) 1986-12-25 1987-07-13 METHOD AND DEVICE FOR PRODUCING POLYURETHANE FOAM.
EP87110096A EP0273099B1 (en) 1986-12-25 1987-07-13 A method and an apparatus for producing polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057417A JPS63222819A (en) 1987-03-12 1987-03-12 Manufacture of polyurethane foam

Publications (1)

Publication Number Publication Date
JPS63222819A true JPS63222819A (en) 1988-09-16

Family

ID=13055070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057417A Pending JPS63222819A (en) 1986-12-15 1987-03-12 Manufacture of polyurethane foam

Country Status (1)

Country Link
JP (1) JPS63222819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510841A (en) * 2008-01-31 2011-04-07 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method and apparatus for manufacturing slabstock foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510841A (en) * 2008-01-31 2011-04-07 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method and apparatus for manufacturing slabstock foam

Similar Documents

Publication Publication Date Title
CA1290895C (en) Method and an apparatus for producing polyurethane foam
US5804113A (en) Method and device for the continuous manufacture of slabstock polyurethane foam within a predetermined pressure range
US5182313A (en) Method and apparatus for forming articles made of polyurethane
JPH07164454A (en) Method for continuously producing polyurethane slab stok foam and device therefor
US4243617A (en) Flexible foam rebonding process and apparatus
JPS625774B2 (en)
JPH08512252A (en) Apparatus and method for manufacturing polyurethane articles
JP2003011161A (en) Method for supplying resin material to injection molding machine, apparatus therefor, and foamed molded article
JPS63222819A (en) Manufacture of polyurethane foam
JPH068262A (en) Method for continuously controlling polyurethane foam in foam number
JPS63222820A (en) Manufacture of polyurethane foam
JPS62164709A (en) Production of polyurethane foam
JPS63222816A (en) Manufacture of polyurethane foam
JPH0327779Y2 (en)
EP3921129A1 (en) Method for producing foamed flat moldings and mold for carrying out said method
JPS63222811A (en) Batch-type manufacture of polyurethane foam
RU1797573C (en) Method for manufacture of plates from low-density polyurethane foam
JP4716702B2 (en) OA roller manufacturing method
JP2005023204A (en) Method and apparatus for producing polyurethane-based foam
JPS61102239A (en) Continuous batch type manufacturing device of urethane foam slab
JPS63160809A (en) Batch type forming equipment for urethane foam slab
JPS61225011A (en) Apparatus for continuous batchwise preparation of urethane foam slab
JP2004323863A (en) Preparing process of polyurethane foam
JPH0324883B2 (en)
JPH0393516A (en) Preparation of polyurethane foam