JPS6321473A - Defroster for refrigerator - Google Patents

Defroster for refrigerator

Info

Publication number
JPS6321473A
JPS6321473A JP16506286A JP16506286A JPS6321473A JP S6321473 A JPS6321473 A JP S6321473A JP 16506286 A JP16506286 A JP 16506286A JP 16506286 A JP16506286 A JP 16506286A JP S6321473 A JPS6321473 A JP S6321473A
Authority
JP
Japan
Prior art keywords
temperature
defrosting
compressor
electric compressor
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16506286A
Other languages
Japanese (ja)
Inventor
大越 四男
松本 説男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16506286A priority Critical patent/JPS6321473A/en
Publication of JPS6321473A publication Critical patent/JPS6321473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷凍サイクルの圧縮機の回転数を制御すること
によって貯蔵室内の温度を制御する冷蔵庫の除霜装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a defrosting device for a refrigerator that controls the temperature inside a storage chamber by controlling the rotation speed of a compressor in a refrigeration cycle.

(ロ)従来の技術 近来冷蔵庫では従来の所謂圧縮機の0N−OFF制御方
式に比して貯蔵室温度が安定し、又、頻繁な起動停止に
よる消費電力の削減が図れる圧縮機の回転数制御方式が
採用され始めている。これは例えば特開昭60−263
070号公報の如く圧縮機の回転数を貯蔵室の温度に応
じて変更し、温度変動に迅速に対応するものである。
(b) Conventional technology Modern refrigerators use compressor rotation speed control, which stabilizes storage room temperature and reduces power consumption due to frequent startup and shutdown, compared to the conventional compressor ON-OFF control system. The method is beginning to be adopted. For example, this is JP-A-60-263
As disclosed in Japanese Patent No. 070, the number of revolutions of the compressor is changed according to the temperature of the storage chamber to quickly respond to temperature fluctuations.

ここで従来より冷凍サイクルの冷却器の除霜は単位時間
当りの圧縮機の運転に対する着霜量が略一定であるとし
て例えば実公昭47−21482号公報の如く圧縮機の
運転時間を積算する時限装置により一定の積算にて除霜
を実行する様に構成していた。それによって一定量の着
霜で除霜が実行できるからである。
Conventionally, defrosting of a cooler in a refrigeration cycle is based on the assumption that the amount of frost formed with respect to the operation of the compressor per unit time is approximately constant. The device was configured to perform defrosting at a constant rate. This is because defrosting can be performed with a certain amount of frost.

しかし乍ら前述の如く圧縮機の回転数を変化きせる場合
には冷却器への着霜スピードも変化するため、圧縮機の
所定運転時間当りの着霜量が一定とならず、適正な着霜
量で除霜開始できない。
However, as mentioned above, when the rotation speed of the compressor is changed, the speed of frost formation on the cooler also changes, so the amount of frost formed per predetermined operating time of the compressor is not constant, and proper frost formation cannot be achieved. Unable to start defrosting due to volume.

これを解決するために特開昭60−147083号公報
では電荷蓄積素子を準備し、圧縮機の回転数に比例した
入力を該素子に与え、所定の蓄積にて除霜を開始する様
にしている。
In order to solve this problem, Japanese Patent Application Laid-Open No. 147083/1983 prepares a charge storage element, applies an input proportional to the rotational speed of the compressor to the element, and starts defrosting when a predetermined amount of charge is accumulated. There is.

(ハ)発明が解決しようとする問題点 以上の如き電荷蓄積素子を用いるものでは冷却器への着
霜スピードに応じて除霜開始タイミングが変更きれるの
で、一定の着霜量で除霜を開始きせる事が可能となるが
、斯かる電荷蓄積素子はコスト的に高く、又、経年変化
による絶縁劣化の問題があり、信頼性の低い除霜装置と
なる問題があった。
(c) Problems to be Solved by the Invention In devices using charge storage elements such as those described above, the defrosting start timing can be changed according to the speed of frost formation on the cooler, so defrosting starts with a constant amount of frost formation. However, such a charge storage element is expensive and has the problem of insulation deterioration due to aging, resulting in a defrosting device with low reliability.

(ニ)問題点を解決するための手段 本発明は斯かる問題点を解決するために成きれたもので
以下実施例に沿って本発明の詳細な説明する。
(d) Means for Solving the Problems The present invention has been achieved in order to solve these problems, and the present invention will be described in detail below with reference to Examples.

制御用電気回路(24)のマイクロコンピュータ(25
)はインバータ回路(37)によって冷凍室(F)の温
度(T、)に基づき電動圧縮機(20)の運転周波数(
回転数)を変更して温度(T、)を制御する。電動圧縮
機(20)の運転によって冷凍サイクルの冷却器(10
)には着霜が成長するが、これはヒータ(42)によっ
て除去する。マイクロコンピュータ(25〉はその機能
として時限手段(50)を有し、時限手段(50)は発
振手段(51)、カウンタ(52)、分周器(53)か
ら成り、カウンタ(52)の所定の積算にて除霜開始指
令(S)が発せられ、それによってマイクロコンピュー
タ(25)はヒータ(42)に通電する。この時マイク
ロコンピュータ(25)は電動圧縮機(20)の運転周
波数が30Hzより高い時はカウンタ(52)に発振手
段(51)のfoHzのパルスを入力し、30)!z以
下(停止中を除く)では分周器(53)を介したにf、
Hzのパルスを入力きせる。
Microcomputer (25) of control electric circuit (24)
) is the operating frequency of the electric compressor (20) (
The temperature (T, ) is controlled by changing the rotation speed). The cooler (10) of the refrigeration cycle is operated by the electric compressor (20).
), which is removed by the heater (42). The microcomputer (25) has a time limit means (50) as its function, and the time limit means (50) consists of an oscillation means (51), a counter (52), and a frequency divider (53), and the time limit means (50) consists of an oscillation means (51), a counter (52), and a frequency divider (53). A defrosting start command (S) is issued upon integration of , and the microcomputer (25) energizes the heater (42).At this time, the microcomputer (25) determines that the operating frequency of the electric compressor (20) is 30Hz. When it is higher, input the foHz pulse of the oscillation means (51) to the counter (52), 30)! Below z (excluding when stopped), f, via the frequency divider (53)
Input a Hz pulse.

(ホ)作用 本発明によれば電動圧縮機の回転数に応じてカウンタが
積算終了するまでの運転期間が変更きれる。
(E) Function According to the present invention, the operating period until the counter completes the integration can be changed in accordance with the rotational speed of the electric compressor.

(へ)実施例 図面に於いて実施例を説明する。第2図は実施例として
の冷凍冷蔵庫(1)を示している。(2)は断熱箱体で
あり、その庫内は断熱仕切壁(3)によって上下に区画
きれ、上方に第1室としての冷凍室(F)及び下方に第
2室としての冷蔵室(R)とが区画形成されている。(
6) 、 (7)は冷凍室(F)と冷蔵室(R)の前方
開口をそれぞれ別々に開閉自在に閉室する断熱扉である
。仕切壁(3)内には冷却室(8)が形成されており、
この内に冷凍サイクルに含まれる冷却器(10)が収納
設置きれる。冷却器(10)後方には冷却室(8)と両
室(F)(R)に連通ずるダクト(11)が形成されて
おり、このダクト(11)内に位置して設けた送風機(
12)にて冷却器(10)により冷却きれた空気即ち冷
気を吸引し、ダクト(11)内に強制的に吹き出す。(
12M)は送風機<12)を駆動するモータである。ダ
クト(11)に吹き出された冷気は冷凍室(F)へは吐
出口(14)より、冷蔵室(R)へは吐出口(15)よ
り吹き出されることになる。(17)は吐出口(15)
を開閉すべく冷蔵室(R)内に設けられたガス封入式ダ
ンパーサーモスタットで、冷蔵室(R)内の温度に基づ
きバッフル板(18)によって吐出口(15)を開閉し
、冷蔵室(R)の温度を例えば+7℃と+3°Cの間で
平均+5°Cに制御する。(19)はダンパーサーモス
タット(17〉の断熱カバーである。又(20)は冷凍
冷蔵庫(1)下部の機械室(21)内に設置され、冷凍
サイクルに含まれる電動圧縮機である。機械室(21)
内には同様に冷凍サイクルに含まれる凝縮器(22)と
、この凝縮器(22)及び前述の電動圧縮機(20)を
冷却するための送風機(23)が設置きれる。尚、(5
〉は扉(6)前面に取付けた操作パネルである。
(F) Embodiment An embodiment will be explained with reference to the drawings. FIG. 2 shows a refrigerator-freezer (1) as an example. (2) is an insulated box body, and the inside of the refrigerator is divided into upper and lower sections by an insulating partition wall (3), with a freezer compartment (F) serving as the first compartment at the top and a refrigerating compartment (R) serving as the second compartment at the bottom. ) are partitioned. (
6) and (7) are heat insulating doors that separately open and close the front openings of the freezer compartment (F) and the refrigerator compartment (R). A cooling chamber (8) is formed within the partition wall (3),
A cooler (10) included in the refrigeration cycle can be housed and installed within this. A duct (11) that communicates with the cooling chamber (8) and both chambers (F) and (R) is formed behind the cooler (10), and a blower (
At step 12), the air cooled by the cooler (10), that is, cold air, is sucked in and forcibly blown out into the duct (11). (
12M) is a motor that drives the blower <12). The cold air blown into the duct (11) is blown into the freezing compartment (F) through the discharge port (14) and into the refrigerator compartment (R) through the discharge port (15). (17) is the discharge port (15)
A gas-filled damper thermostat installed in the refrigerator compartment (R) to open and close the discharge port (15) with a baffle plate (18) based on the temperature in the refrigerator compartment (R). ) is controlled, for example, between +7°C and +3°C to an average of +5°C. (19) is the insulation cover of the damper thermostat (17). Also, (20) is the electric compressor installed in the machine room (21) at the bottom of the refrigerator-freezer (1) and included in the refrigeration cycle. Machine room (21)
Inside, a condenser (22), which is also included in the refrigeration cycle, and a blower (23) for cooling the condenser (22) and the electric compressor (20) described above can be installed. Furthermore, (5
〉 is an operation panel attached to the front of the door (6).

第1図は本発明の制御用電気回路(24)を示す。FIG. 1 shows the control electrical circuit (24) of the present invention.

(25)はマイクロコンピュータであり、A/D変換部
(26)(27)及び(28)とマイクr:y CP 
U (30)(7)機能を有する。(31)は冷凍室(
F)の温度(TF)を検出するセンサーであり、A/D
変換部(26)を介してマイクロCPU(30)に入力
される。 (32)は冷却器(10)の温度(T7)を
検出するセンサーであり、その出力は同様にA/D変換
部(27)を介してマイクロCP U (30)に入力
される。 (33)は冷凍室(F)の温度を設定する設
定スイッチで、A/D変換部(28〉を介してマイクロ
CPU(30)に入力きれる。マイクロCP U(30
)の出力はD/A変換器(36)を経てインバータ回路
(37)により電動圧縮機(2o)の駆動用三相同期モ
ータ(20M>の回転数を制御する。又、マイクロc 
P U(30)の出力はD/A変換器(38)を経てド
ライバ回路(39)によりモータ(12M)を制御する
。更にマイクロCP U(30)の出力はD/A変換器
(40)を介してドライバ回路(41)に入力きれ、こ
のドライバ回路(41)により冷却器(10)の除霜ヒ
ータ(42〉の通電制御をする。ヒータ(42)は冷却
器(10)と熱伝導的に設けられている。
(25) is a microcomputer, which includes A/D converters (26), (27) and (28) and a microphone r:y CP
Has U (30) (7) functions. (31) is the freezer compartment (
F) is a sensor that detects the temperature (TF) of A/D
The signal is input to the micro CPU (30) via the converter (26). (32) is a sensor that detects the temperature (T7) of the cooler (10), and its output is similarly input to the micro CPU (30) via the A/D converter (27). (33) is a setting switch for setting the temperature of the freezer compartment (F), which can be input to the micro CPU (30) via the A/D converter (28).
)'s output passes through a D/A converter (36) and an inverter circuit (37) to control the rotational speed of a three-phase synchronous motor (20M>) for driving the electric compressor (2o).
The output of the PU (30) passes through a D/A converter (38) and controls the motor (12M) by a driver circuit (39). Furthermore, the output of the micro CPU (30) can be input to the driver circuit (41) via the D/A converter (40), and this driver circuit (41) controls the defrosting heater (42) of the cooler (10). The heater (42) is provided to be thermally conductive with the cooler (10).

第3図は冷凍冷蔵庫(1)の冷凍サイクルの冷媒回路図
を示す。電動圧縮機(20)から吐出された高温高圧冷
媒は凝縮器(22)にて放熱して減圧器(47)にて減
圧きれて冷却器(10)に流入し、そこで蒸発して気化
熱を周囲より奪い、その後電動圧縮機(20)に吸引さ
れる。
FIG. 3 shows a refrigerant circuit diagram of the refrigeration cycle of the refrigerator-freezer (1). The high-temperature, high-pressure refrigerant discharged from the electric compressor (20) radiates heat in the condenser (22), is decompressed in the pressure reducer (47), and flows into the cooler (10), where it evaporates and releases heat of vaporization. It is taken from the surrounding area and then sucked into the electric compressor (20).

次に第4図の電動圧縮機(20)の運転周波数と冷凍室
(F)の温度(1’F)の関係を示すグラフを参照して
第1図の制御用電気回路(24〉のマイクロCPU(3
0)の動作を説明する。設定スイッチ(33)によって
設定きれる冷凍室(F)の温度(T、)を(rs)(こ
こでは−12℃から一22℃まで設定可能。)とすると
通常は図中実線の如く運転周波数を変更する。即ち、セ
ン寸−(31〉の感知する温度(T、)が現在高< (
TS+4)より高い時はインバータ回路によって電動圧
縮機(20)の運転周波数を最高回転数である120ト
とする。これによって冷凍室(F)の温度(T、)は急
速に低下する。これによって(TF)が(Ts+4)に
達すると、その時点から例えば3分間現状を維持し、そ
の後運転周波数を90H2に低下せしめる。これによっ
て温度(TF)の低下速度は鈍化する。この状態から更
に(TF)が(I’、+2)に達すると、その時点から
同様に3分間現状を維持してその後60Hzに低下せし
める。これによって温度(Tア)の低下速度は更に鈍化
する。その後(T、)に達したら同様、にその時点から
3分後に運転周波数を30H2に低下きせる。この様に
して温度(TF)は設定温度(T、)に漸近する形とな
り所謂オーバーシュートが低減きれる。
Next, referring to the graph showing the relationship between the operating frequency of the electric compressor (20) and the temperature (1'F) of the freezer compartment (F) in FIG. 4, CPU (3
The operation of 0) will be explained. If the temperature (T, ) of the freezer compartment (F) that can be set with the setting switch (33) is (rs) (here, it can be set from -12°C to -22°C), the operating frequency is normally set as shown by the solid line in the figure. change. That is, the temperature (T, ) sensed by the sensor dimension - (31〉) is currently high < (
TS+4), the inverter circuit sets the operating frequency of the electric compressor (20) to the maximum rotation speed of 120 t. As a result, the temperature (T, ) of the freezer compartment (F) rapidly decreases. As a result, when (TF) reaches (Ts+4), the current state is maintained for, for example, 3 minutes from that point, and then the operating frequency is lowered to 90H2. This slows down the rate of decrease in temperature (TF). When (TF) further reaches (I', +2) from this state, the current state is similarly maintained for 3 minutes from that point, and then the frequency is lowered to 60 Hz. This further slows down the rate of decrease in temperature (TA). After that, when (T, ) is reached, the operating frequency is similarly lowered to 30H2 3 minutes after that point. In this way, the temperature (TF) approaches the set temperature (T, ), and so-called overshoot can be reduced.

又、逆に運転周波数30H2から温度(T、)が上昇し
て(T、)に達したら、その時点から同様に3分間現状
を維持し、その後eonzに上昇せしめる。更に(Ts
+z)まで上昇したら、(Ts”2)に到達した時点か
ら3分後に90H2に加速する。<XS+4)に達した
時点からも同様に3分後に120Hzに上昇させる。こ
の様にマイクロCPU(30)は温度(T、)が(T、
+4)、(TS+2>、(T、)に到達した時点で運転
周波数を変更する指令をその内部で発生するが、その時
点から前述の如く3分間は周波数を変更しない。これは
3分間の内に変更する周波数が修正されても同様であり
、(rs+4)(Ts+z>(Ts)の何れかに到達し
てから3分後に修正後の周波数に変更する。これによっ
て電動圧縮機(20)の運転周波数の頻繁な変更が防止
きれ、モータ(20M)の劣化や騒音の拡大等が防止さ
れる。
Conversely, when the temperature (T,) increases from the operating frequency of 30H2 and reaches (T,), the current state is similarly maintained for 3 minutes from that point, and then the temperature is raised to eonz. Furthermore (Ts
+z), it accelerates to 90H2 3 minutes after reaching (Ts"2). Similarly, it increases to 120Hz 3 minutes after reaching <XS+4). In this way, the micro CPU (30 ) is the temperature (T, ) is (T,
+4), (TS+2>, (T,), a command to change the operating frequency is generated internally, but from that point on, the frequency will not be changed for 3 minutes as described above. The same applies even if the frequency to be changed to Frequent changes in the operating frequency can be prevented, and deterioration of the motor (20M) and expansion of noise can be prevented.

理想的には30H2の運転によって温度(T、)を設定
温度(T、)に維持できる様に各機器の容量を設定しで
あるが冷凍室(F)内の負荷が少なく、又、冷凍冷蔵庫
(1)周囲の温度が低い状況では30H2の運転でも温
度(T、)が低下する。この場合は(Ti−z>に達し
た時点でモータ(20t’りを停止せしめる。これによ
って冷凍室(F)内の過冷却を防止する。その後温度(
T、)が上昇して(’rs−z)に達したらその時点か
ら5分間停止したままとし、その後電動圧縮機(20)
を起動して30H2とする。これによって頻繁な起動停
止による電動圧縮機(20)の劣化を防止する。以上の
様に温度(TF)の設定温度からの差によって電動圧縮
機(20)の運転周波数を逐次変更するので温度(TF
)は設定温度(TS)(例えば−18°C)に略安定的
に制御される。尚、送風機(12)は電動圧縮機(20
)の運転中は継続運転される。又、周波数の変更は常に
第4図の如き段階を踏むものとは限らず、例えば現在温
度(TF)が(T5)にある状態から扉(6)の長期開
放等の原因により急激に上昇して(rs+4)になった
としたら、この場合もマイクロCPU(30)内部で周
波数変更指令が出きれてから3分後に周波数120H2
に向けて運転周波数を上昇させる。
Ideally, the capacity of each device should be set so that the temperature (T,) can be maintained at the set temperature (T, ) by 30H2 operation, but the load in the freezer compartment (F) is small, and the refrigerator-freezer (1) In situations where the ambient temperature is low, the temperature (T, ) decreases even during 30H2 operation. In this case, the motor (20t') is stopped when it reaches (Ti-z>. This prevents overcooling in the freezer compartment (F). Then, the temperature (
When T, ) rises and reaches ('rs-z), it remains stopped for 5 minutes from that point, and then the electric compressor (20)
Start up and set it to 30H2. This prevents deterioration of the electric compressor (20) due to frequent startup and stoppages. As mentioned above, since the operating frequency of the electric compressor (20) is successively changed depending on the difference between the temperature (TF) and the set temperature, the temperature (TF)
) is substantially stably controlled to a set temperature (TS) (for example, -18°C). In addition, the blower (12) is an electric compressor (20
) will continue to operate while it is in operation. Furthermore, the frequency change does not always take place in the steps shown in Figure 4; for example, the temperature (TF) may suddenly rise from the current temperature (T5) due to reasons such as leaving the door (6) open for a long period of time. In this case, the frequency will change to 120H2 3 minutes after the frequency change command is issued inside the micro CPU (30).
Increase the operating frequency towards

次にマイクロコンピュータ(25)による冷却器(10
)の除霜制御について説明する。第5図にマイクロコン
ピュータ(25)がその機能として有する時限手段(5
0)の機能ブロック図を示す。(51)は例えば周波数
f。Hzの発振パルスを出力する発振手段であり、その
発振パルスはアナログスイッチ(SWI)を介してカウ
ンタ(52)の入力端子(52a)に入力される。発振
手段(51)の出力は更に分周器(53)に入力きれて
周波数をにfoHzとされた後、アナログスイッチ(S
Wt)を介してカウンタ(52)の入力端子(52a)
に入力される。カウンタ(52)は入力端子(52a)
より入力される発振パルスをカウントし、所定の積算値
にて積算を終了し、出力端子(52b)より除霜開始指
令(S>を発生する。除重開始指令(S)は同時にカウ
ンタ(52)のリセット端子(52c)に入力筋れカウ
ンタ(52)をリセットする。カウンタ(52)は入力
端子(52g)に連続して周波数f。のパルスが入力さ
れた場合に積算開始から例えば8時間で積算を終了する
ものとする。
Next, the cooler (10) is controlled by the microcomputer (25).
) defrosting control will be explained. Figure 5 shows the timer means (5) that the microcomputer (25) has as its function.
0) is shown. (51) is, for example, the frequency f. This is an oscillation means that outputs an oscillation pulse of Hz, and the oscillation pulse is input to the input terminal (52a) of the counter (52) via an analog switch (SWI). The output of the oscillation means (51) is further input to the frequency divider (53) to set the frequency to foHz, and then the analog switch (S
Wt) to the input terminal (52a) of the counter (52)
is input. The counter (52) is an input terminal (52a)
The oscillation pulses input from the counter (52b) are counted, and the integration is finished at a predetermined integrated value, and a defrosting start command (S>) is generated from the output terminal (52b). ) is used to reset the input streak counter (52) to the reset terminal (52c) of the input terminal (52c).The counter (52) is reset for example 8 hours from the start of integration when pulses of frequency f. are continuously input to the input terminal (52g). The integration shall end at .

次に動作を説明する。マイクロコンピュータ(25)は
電動圧縮機(20)の停止中は何れのアナログスイッチ
(SW l) (SW x )も非導通とする。又、電
動圧縮機(20)の運転周波数が30Hzより高い時、
即ち、60Hz、  90Hz及び120Hzである期
間はアナログスイッチ(SWI>のみを導通し、又、3
0Hzの時はアナログスイッチ(SWt)のみを導通す
る。カウンタ(52)は発振パルスが入力きれてカウン
トするのでカウンタ(52)は電動圧縮機(20)の運
転中のみカウント動作を行う。即ち電動圧縮機(20)
の運転時間を積算することになる。又、電動圧縮機(2
0)の運転周波数がa続して60Hz、 90)1z又
は120Hzであった場合はアナログスイッチ(SWI
)のみが継続して導通されるため、電動圧縮機(20)
の運転時間が8時間となった時にカウンタ(52)は前
述の除霜開始指令(S)を発生する。マイクロコンピュ
ータ(25)は指令(S)が発せられた時点で電動圧縮
機(20)を停止し、ドライバ(41)によりヒータ(
42)に通電を開始する。除霜が進行して冷却器(10
)の温度(T、)が所定の除霜終了温度に上昇したらセ
ンサー(32)に基づきマイクロコンピュータ(25)
はそ、れを感知して、ヒータ(42)への通電を終了し
、再び電動圧縮機(20)を運転可能状態とする。
Next, the operation will be explained. The microcomputer (25) makes all the analog switches (SW l ) (SW x ) non-conductive while the electric compressor (20) is stopped. Moreover, when the operating frequency of the electric compressor (20) is higher than 30Hz,
That is, during periods of 60 Hz, 90 Hz, and 120 Hz, only the analog switch (SWI> is conductive, and 3
At 0Hz, only the analog switch (SWt) is conductive. Since the counter (52) counts when the oscillation pulses are inputted, the counter (52) performs the counting operation only while the electric compressor (20) is operating. i.e. electric compressor (20)
The driving time will be accumulated. In addition, electric compressor (2
If the operating frequency of 0) is 60Hz, 90) 1z or 120Hz, the analog switch (SWI
) is continuously conducted, so the electric compressor (20)
When the operating time reaches 8 hours, the counter (52) generates the above-mentioned defrosting start command (S). The microcomputer (25) stops the electric compressor (20) when the command (S) is issued, and the driver (41) turns on the heater (
42) Start energizing. As defrosting progresses, the cooler (10
) rises to the predetermined defrosting end temperature, the microcomputer (25)
Upon sensing the deflection, the heater (42) is energized and the electric compressor (20) is again put into an operable state.

一方、電動圧縮機(20)が例えば継続して30Hzで
運転された時はアナログスイッチ(SWt>のみが導通
し、カウンタ(52)には3A foHzの発振パルス
が入力きれるのでカウンタ(52)はその積算終了まで
に前述の2倍の16時間を要する様になる。即ちこの時
には電動圧縮機(20)の運転時間が16時間となった
時に除霜開始指令(S)が発せられ、除霜が開始される
ことになる。
On the other hand, when the electric compressor (20) is continuously operated at, for example, 30Hz, only the analog switch (SWt> is turned on, and the counter (52) can input all the 3A foHz oscillation pulses, so the counter (52) It will take 16 hours, twice as long as before, to complete the integration.In other words, at this time, when the electric compressor (20) has been operating for 16 hours, the defrost start command (S) is issued, and the defrost will be started.

又、電動圧縮機(20)がm続して運転されたが途中で
運転周波数が変更され、例えばカウンタ(52)の積算
開始から3時間は60Hzで運転されその後4時間30
Hzで運転きれ、更に3時間60Hzで運転された場合
は第6図に示ず如くカウンタ(52)に入力きれる発振
パルスの周波数がf。HzからにfoHzそして再びf
。Hzと切換わるため結果的にカウンタ(52〉が積算
終了するのは10時間後となる。
Also, the electric compressor (20) was operated continuously for m, but the operating frequency was changed midway through, for example, it was operated at 60 Hz for 3 hours from the start of the integration of the counter (52), and then at 30 Hz for 4 hours.
Hz, and if the operation is continued for 3 hours at 60 Hz, the frequency of the oscillation pulse that can be input to the counter (52) becomes f, as shown in FIG. from Hz to foHz and again f
. As a result, the counter (52) completes the integration after 10 hours.

冷却器(10)への着霜スピードは電動圧縮機(20)
の回転数即ち冷凍サイクルの冷却能力に略比例すると考
えられるので、以上の如く電動圧縮機(20)の回転数
が高い時は短い運転期間で除霜を開始し、回転数が低い
時は長い運転期間へと変更することにより、略一定の看
N量で冷却器(10)の除霜を開始する事ができる様に
なり、無駄な除霜による庫内の温度上昇を防止すると共
に、異常な着霜量の増大による冷却効率の低下を防止す
ることができる。しかも、この時電荷蓄積素子等は不要
であり、マイクロコンピュータ(25)の機能としての
時限手段(50)によって達成されるため、コストの低
減が図れると共に信頼性の高い除霜装置が構成される。
The frosting speed on the cooler (10) is determined by the electric compressor (20).
It is considered that the rotation speed of the electric compressor (20) is approximately proportional to the cooling capacity of the refrigeration cycle, so when the rotation speed of the electric compressor (20) is high, defrosting starts in a short operating period, and when the rotation speed is low, it starts defrosting for a long period of time. By changing the operating period, it becomes possible to start defrosting the cooler (10) with a substantially constant amount of N, which prevents the temperature inside the refrigerator from rising due to wasteful defrosting, and also prevents abnormalities. It is possible to prevent a decrease in cooling efficiency due to an increase in the amount of frost formed. Moreover, at this time, there is no need for a charge storage element, etc., and this is achieved by the timer (50) as a function of the microcomputer (25), so that the cost can be reduced and a highly reliable defrosting device is constructed. .

(ト)発明の効果 本発明によれば圧縮機の回転数を制御して貯蔵室内の温
度を調整する冷蔵庫に於いて冷却器の除霜が開始きれる
までの圧縮機の運転期間を圧縮機の回転数に応じて変更
するので、圧縮機の回転数変更により冷凍サイクルの冷
却能力が種々変更されても常に一定の着霜量で冷却器の
除霜を実行する事が可能となり、無駄な除霜による貯蔵
室内の温度上昇と、異常着霜による冷却能力の低下を防
止することができる。
(G) Effects of the Invention According to the present invention, in a refrigerator that controls the rotation speed of the compressor to adjust the temperature inside the storage room, the operating period of the compressor until the time when defrosting of the cooler starts is reduced. Since it changes according to the rotation speed, even if the cooling capacity of the refrigeration cycle is variously changed by changing the rotation speed of the compressor, it is possible to defrost the cooler with a constant amount of frost at all times, eliminating unnecessary defrosting. It is possible to prevent a rise in temperature within the storage room due to frost and a decrease in cooling capacity due to abnormal frost formation.

又、この時従来の如き電荷蓄積素子等は不要であり、発
振機能と積算機能から成る時限手段にて構成でき、信頼
性が高く、又、コスト的にも低減きれた除霜装置を提供
できる。
Further, at this time, there is no need for a conventional charge storage element, etc., and the defrosting device can be configured with a timer consisting of an oscillation function and an integration function, and is highly reliable and can be reduced in cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の実施例を示すもので、第1図は制御用電
気回路図、第2図は冷凍冷蔵庫の側断面図、第3図は冷
媒回路図、第4図は電動圧縮機の運転周波数と冷凍室温
度の関係を示す図、第5図はマイクロコンピュータの機
能としての時限手段の機能ブロック図、第6図は時限手
段の積算動作の一形態を示す図である。 (F)・・・冷凍室、 (10)・・・冷却器、 (2
0)・・・電動圧縮機、(25)・・・マイクロコンピ
ュータ、 (37)・・・インバータ回路、  (42
)・・・ヒータ、 (50)・・・時限手段、 (51
)・・・発振手段、 (52)・・・カウンタ、(53
)・・・分周器。 出願人 三洋電機株式会社外1名 代理人 弁理士 西野卓嗣 外1名 第3図 第5図 へn 2   g   S   g   。 ?り羊寅展閥早 第6図
Each figure shows an embodiment of the present invention. Figure 1 is a control electric circuit diagram, Figure 2 is a side sectional view of a refrigerator-freezer, Figure 3 is a refrigerant circuit diagram, and Figure 4 is an electric compressor diagram. FIG. 5 is a functional block diagram of the timer as a function of the microcomputer, and FIG. 6 is a diagram showing one form of the integration operation of the timer. (F)... Freezer, (10)... Cooler, (2
0)...Electric compressor, (25)...Microcomputer, (37)...Inverter circuit, (42)...
)... Heater, (50)... Timing means, (51
)...Oscillation means, (52)...Counter, (53
)...Frequency divider. Applicant: Sanyo Electric Co., Ltd. and one other representative Patent attorney Takuji Nishino and one other person Go to Figure 3 and Figure 5 n 2 g S g. ? Riyo Tora exhibition group early figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、冷凍サイクルの圧縮機の回転数を制御する事によっ
て貯蔵室内の温度を調整すると共に、前記圧縮機の運転
時間を積算する時限手段による除霜開始指令にて前記冷
凍サイクルの冷却器の除霜を実行する冷蔵庫に於いて、
前記時限手段は周期的な発振出力の積算動作を実行する
積算手段を有して該積算手段の所定の積算値にて前記除
霜開始指令を発生すると共に前記圧縮機の回転数に応じ
て前記発振出力の発振周期を変更する事を特徴とする冷
蔵庫の除霜装置。
1. Adjust the temperature inside the storage chamber by controlling the rotation speed of the compressor of the refrigeration cycle, and defrost the cooler of the refrigeration cycle with a defrost start command by a timer that integrates the operating time of the compressor. In the refrigerator to carry out the frost,
The time limit means has an integration means that performs an integration operation of periodic oscillation output, and generates the defrosting start command at a predetermined integrated value of the integration means, and also outputs the defrosting start command according to the rotation speed of the compressor. A defrosting device for a refrigerator characterized by changing the oscillation cycle of oscillation output.
JP16506286A 1986-07-14 1986-07-14 Defroster for refrigerator Pending JPS6321473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16506286A JPS6321473A (en) 1986-07-14 1986-07-14 Defroster for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16506286A JPS6321473A (en) 1986-07-14 1986-07-14 Defroster for refrigerator

Publications (1)

Publication Number Publication Date
JPS6321473A true JPS6321473A (en) 1988-01-29

Family

ID=15805131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16506286A Pending JPS6321473A (en) 1986-07-14 1986-07-14 Defroster for refrigerator

Country Status (1)

Country Link
JP (1) JPS6321473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291221A (en) * 1989-05-01 1990-12-03 Gakken Co Ltd Method for regrowing callus from japanese horseradish protoplast

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066083A (en) * 1983-09-20 1985-04-16 松下冷機株式会社 Defrostation controller for refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066083A (en) * 1983-09-20 1985-04-16 松下冷機株式会社 Defrostation controller for refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291221A (en) * 1989-05-01 1990-12-03 Gakken Co Ltd Method for regrowing callus from japanese horseradish protoplast

Similar Documents

Publication Publication Date Title
US7942014B2 (en) Reduced energy refrigerator defrost method and apparatus
EP2116796B1 (en) Refrigerating storage cabinet
US5657638A (en) Two speed control circuit for a refrigerator fan
US6691524B2 (en) Methods and apparatus for controlling compressor speed
EP2136167A1 (en) Cooling storage chamber and method for operating the same
US6216478B1 (en) Operation speed change system and method for refrigerator
KR19980071466A (en) Refrigeration system and control method
US4604872A (en) Heat pump type air conditioning apparatus having a controlled variable capacity compressor
JP3515920B2 (en) refrigerator
JP2000356447A (en) Inverter for refrigerating system
JPS6321473A (en) Defroster for refrigerator
JPH11201608A (en) Refrigerator
JPH11101548A (en) Refrigerator
JPS6321472A (en) Defroster for refrigerator
KR100207087B1 (en) Refrigerator operating control method
JP3184334B2 (en) refrigerator
KR100208364B1 (en) Refrigerator and its control method
JPH0670546B2 (en) refrigerator
JP3026319B2 (en) Refrigerator refrigerator control device
JPH0217793B2 (en)
KR100234121B1 (en) Refrigerator and control method
JPS61280373A (en) Defrostation controller
JP3192729B2 (en) refrigerator
JPS6317373A (en) Controller for refrigerator
JPH08247598A (en) Operation controller for refrigerator