JPS63213641A - High-speed tool steel - Google Patents

High-speed tool steel

Info

Publication number
JPS63213641A
JPS63213641A JP4447387A JP4447387A JPS63213641A JP S63213641 A JPS63213641 A JP S63213641A JP 4447387 A JP4447387 A JP 4447387A JP 4447387 A JP4447387 A JP 4447387A JP S63213641 A JPS63213641 A JP S63213641A
Authority
JP
Japan
Prior art keywords
speed tool
tool steel
steel
carbides
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4447387A
Other languages
Japanese (ja)
Other versions
JP2564534B2 (en
Inventor
Isao Tamura
庸 田村
Norimasa Uchida
内田 憲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62044473A priority Critical patent/JP2564534B2/en
Publication of JPS63213641A publication Critical patent/JPS63213641A/en
Application granted granted Critical
Publication of JP2564534B2 publication Critical patent/JP2564534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-speed tool steel excellent in wear resistance, chipping resistance, machinability, etc., by specifying a composition consisting of C, Si, Mn, Cr, W, Mo, V, Al, and Fe and also by controlling respective contents of N, S, and O as impurities. CONSTITUTION:The high-speed tool steel has a composition which consists of, by weight, 0.5-1.5% C, 0.1-1% Si, 0.1-1% Mn, 3-7% Cr, 5-25% (W+2Mo) (where W is <=12% or unadded and Mo is 2-12%), 0.6-5% V, 0.02-0.2% Al, and the balance Fe with usual impurities and further contains, if necessary, 0.02-0.2% of one or more elements among La, Ce, Y, and Nb and/or 1-20% Co and in which N, S, and O are limited to <=0.01%, <=0.04%, and <=40ppm. In this steel, large amounts of high-hardness carbide are finely crystallized out and the fineness of the cast structure in the outside peripheral part is improved. In this way, machining property and wear resistance are improved and the occurrence of chipping in tips of cutting tools is inhibited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タップ、エンドミルに代表される切削工具や
、金型他の工具の材料として使用される高速度工具鋼で
あり、硬質の炭化物の絶対量が増し、同時に個々の炭化
物のサイズが細かく、分布が均一で、特に外周側の組織
が微細であるため。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a high-speed tool steel used as a material for cutting tools such as taps and end mills, as well as molds and other tools. The absolute amount of carbide increases, and at the same time, the size of individual carbides is fine and the distribution is uniform, especially because the structure on the outer periphery is fine.

タップ等素材の外周側の要求特性が厳しい用途に大きな
効果をもつ高速度工具鋼に関する。
This article relates to high-speed tool steel that is highly effective in applications such as taps that require strict characteristics on the outer periphery of the material.

〔従来の技術〕[Conventional technology]

加工技術の高度化、加工工数の合理化に伴って、高硬度
等の難削材の切削、高仕上精度化のため、これらに用い
られる工具の寿命向上の要求が工具材料に対して高まっ
ている。これに対応してV量を増やし硬質の炭化物を富
化して、強度、耐摩耗性、耐熱性、耐焼付性を向上させ
た5KH52や5KH53で代表される2、5%V系や
3%V系高速度工具鋼が開発され、苛酷な使用条件に用
いられる工具用の材料として用いられてきた。
With the advancement of processing technology and the rationalization of processing man-hours, there is an increasing demand for tool materials to extend the life of tools used for cutting difficult-to-cut materials such as high hardness and achieving high finishing accuracy. . In response to this, the amount of V has been increased and hard carbides have been enriched to improve strength, wear resistance, heat resistance, and seizure resistance. High-speed tool steels have been developed and used as materials for tools used under severe operating conditions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらのVの含有量の高い高速度工具鋼は、鋳
造凝固時に必然的に生ずるVを主体とした粗大なMC型
の炭化物がその後の製造過程においても解消せず1例え
ば切削工具では、工具自身の仕上研削時に研削仕上精度
が悪い、研削能率が悪い等の悪影響を及ぼすだけでなく
、この粗大炭化物が偏析した部分から切削工具の刃先の
チッピングや割れが発生し、工具寿命を縮めたり、寿命
のバラツキの原因となっていた。また、高■材の代りに
、W、MOの含有量を高めてMsC型の炭化物量を増や
すことにより、工具寿命を向上させようとの試みもなさ
れているが、上記と同様に炭化物の偏析部より割れ、チ
ッピング等が発生する問題があった。
However, in these high-speed tool steels with a high V content, coarse MC-type carbides mainly composed of V that inevitably occur during casting and solidification do not disappear even during the subsequent manufacturing process1.For example, in cutting tools, Not only does this have negative effects such as poor finishing accuracy and poor grinding efficiency during finish grinding of the tool itself, but also chipping and cracking of the cutting tool's cutting edge occur from areas where these coarse carbides are segregated, shortening the tool life. , which caused variations in lifespan. In addition, attempts have been made to improve tool life by increasing the content of W and MO to increase the amount of MsC-type carbides instead of using high-quality materials, but similar to the above, segregation of carbides There were problems such as cracking and chipping.

本発明の目的は、微細で均一に分布した炭化物組織を持
つ高速度工具鋼を提供することであり、これによって工
具として高い性能を示しつつ、チッピングや欠けの起り
にくい被切削性にも優れた安定した寿命を持つ工具用材
料を提供するものである。
The purpose of the present invention is to provide a high-speed tool steel with a fine and uniformly distributed carbide structure, which exhibits high performance as a tool and also has excellent machinability with less chance of chipping or chipping. This provides a tool material with a stable lifespan.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる問題点を解決するために第2表に示す
高速度工具鋼を対象に実験を行なった結果、ある特定の
元素Al.T−a、Ce、Y、Nbを添加することによ
り、炭化物を微細に晶出させ、高硬度の炭化物の晶出量
を増やし、切削性能や耐摩耗性を向上させること、a造
組織を微細化し、切削工具の切刃のチッピン、グ欠けを
起りにくくする等の特性改善が可能であること、ならび
にその効果は、添加元素の組合せにより、相乗的に作用
することを見出したことに基づくものである。
In order to solve these problems, the present invention conducted experiments on high-speed tool steels shown in Table 2, and found that a certain specific element Al. By adding T-a, Ce, Y, and Nb, carbides are finely crystallized, the amount of high-hardness carbide crystallized is increased, cutting performance and wear resistance are improved, and a-structure is finely crystallized. This is based on the discovery that it is possible to improve the properties of cutting tools, such as reducing the likelihood of chipping and chipping of the cutting edge of cutting tools, and that this effect works synergistically through the combination of additive elements. It is.

具体的には9重量比でC005〜1.5%、Si 0.
1〜1%、Mn0.1〜1%、Cr3〜7%、 W+2
Mo 5〜25%(ただしW 12%以下、または無添
加、Mo2〜121、Vo、6−5%、 Al 0.0
2〜0.2%を含み、残部Feならびに通常の不純物か
らなり、N≦0.01%、S≦0.04%、O≦40P
PIllに規制した外周部の鋳造組織を改善したことを
特徴とする高速度工具鋼であり、また、La、Ce、Y
、Nbの一種または二種以上を0.02〜0.2%含有
せしめて、Al添加との相乗効果を得るものである。ま
た本発明は、さらにCo 1〜20%を含有するものを
含む。
Specifically, C005 to 1.5% and Si 0.9% by weight.
1-1%, Mn0.1-1%, Cr3-7%, W+2
Mo 5-25% (but W 12% or less or no addition, Mo2-121, Vo, 6-5%, Al 0.0
Contains 2 to 0.2%, the balance consists of Fe and normal impurities, N≦0.01%, S≦0.04%, O≦40P
It is a high-speed tool steel characterized by an improved casting structure on the outer periphery that is regulated to PIll, and also contains La, Ce, Y
, Nb in an amount of 0.02 to 0.2% to obtain a synergistic effect with the addition of Al. Moreover, the present invention further includes those containing 1 to 20% of Co.

〔作用〕[Effect]

以下に本発明の各合金元素を上記に限定した理由を述べ
る。
The reason why each alloying element of the present invention is limited to the above will be described below.

Cは、Cr、W、Mo、Vなどの炭化物生成元素と結合
して炭化物を形成し、焼入−焼もどし硬さを与え、耐摩
耗性、耐熱性、耐焼付性に寄与する。
C combines with carbide-forming elements such as Cr, W, Mo, and V to form carbides, imparts quenching-tempering hardness, and contributes to wear resistance, heat resistance, and seizure resistance.

多すぎると靭性が低下し、また巨大な炭化物を生じさせ
るので+ Cr、w、Mo、V量とバランスさせて含有
させ、0.5〜1.5%に限定する。
If it is too large, the toughness will decrease and giant carbides will be formed, so the content is limited to 0.5 to 1.5% and balanced with the amounts of Cr, W, Mo, and V.

Si、Mnは主に脱酸を目的として0.ト1%添加する
Si and Mn are mainly used for the purpose of deoxidation. Add 1%.

Crは、焼入性、耐摩耗性、耐酸化性また適切な含有量
の設定により高温強度、焼もどし軟化抵抗を向」ニさせ
る。上記の目的により3%以上とするが、多すぎると却
って高温強度、焼もどし軟化抵抗を低下させ、また靭性
も下げるので7%以下とする。
Cr improves hardenability, wear resistance, oxidation resistance, and high temperature strength and resistance to temper softening by setting an appropriate content. For the above purpose, the content should be 3% or more, but if it is too large, the high temperature strength and temper softening resistance will be reduced, and the toughness will also be reduced, so the content should be 7% or less.

WおよびMoは、Cと結合して特殊炭化物を形成し、耐
摩耗性、耐焼付性向上に寄与する。また焼もどしによる
二次硬化作用が大きく、高温強度に寄与する。以上の効
果を得るために、W 12%以下、Mo 2〜12%の
範囲でW + 2 M o量が5〜25%を満たすよう
に添加する。Mo2%未満、W+2Moiが5%未満で
は上記の効果が得られず、多すぎると靭性、熱間加工性
を損うので、W≦12%、Mo512%、W+2Mo 
25%以下とする。
W and Mo combine with C to form a special carbide, which contributes to improving wear resistance and seizure resistance. In addition, the secondary hardening effect due to tempering is large and contributes to high temperature strength. In order to obtain the above effects, W is added in a range of 12% or less and Mo in a range of 2 to 12%, so that the amount of W + 2 Mo satisfies 5 to 25%. If Moi is less than 2% and W+2Moi is less than 5%, the above effects cannot be obtained, and if it is too large, toughness and hot workability will be impaired.
25% or less.

VはCと結合して硬質の炭化物を形成し、耐摩耗性に寄
与する。ただし、この炭化物は、砥粒よりも硬いため、
研削砥石を早期に摩滅させる。特に、粗大な炭化物が多
数生じ、分布が一様でないと、被研削性は著しく低下す
る。このため、従来被研削性を重視する場合、1.2x
以下にとどめていた。
V combines with C to form a hard carbide, contributing to wear resistance. However, this carbide is harder than the abrasive grain, so
Premature wear of the grinding wheel. In particular, if a large number of coarse carbides are produced and the distribution is not uniform, the grindability will be significantly reduced. For this reason, when conventionally placing importance on grindability, 1.2x
I kept it below.

しかし、本発明者はAl単独または、さらにLa、Ce
、Y、Nbを組合せて添加すると、多量にVを含有して
も粗大なVを主体としたMC型炭化物の発生を防ぐこと
ができることを発見した。本発明では、用途に応じて、
0.6〜5%の範囲で適当な量を含有させる。錦を越え
ると本発明の効果が小さくなるため5x以下とし、少な
すぎると耐摩耗性に寄与しないため0.6%以上とする
However, the present inventor found that Al alone or in addition La, Ce
, Y, and Nb in combination, it was discovered that even if a large amount of V is contained, the generation of coarse MC-type carbides mainly composed of V can be prevented. In the present invention, depending on the application,
It is contained in an appropriate amount in the range of 0.6 to 5%. If it exceeds brocade, the effect of the present invention will be reduced, so it should be 5x or less, and if it is too small, it will not contribute to wear resistance, so it should be 0.6% or more.

A]、は、本発明における最も重要な元素であり、第3
図、第4図に示すとおり、鋳造時にデンドライト品を発
達させ、外周側の組織を微細均一にする効果があり、L
a、Ce、Y、Nbも同様の効果を有する。また、Al
はMC型炭化物の絶対量を増やす効果、さらにMC型炭
化物を微細に品出させる効果もあり、単独で添加しても
効果は得られるが、La、CeまたはY、Nbとの複合
添加するとこれらの効果が大きい。
A] is the most important element in the present invention, and the third
As shown in Fig. 4, it has the effect of developing dendrites during casting and making the structure fine and uniform on the outer peripheral side.
a, Ce, Y, and Nb also have similar effects. Also, Al
has the effect of increasing the absolute amount of MC type carbides, and also has the effect of making MC type carbides finer.Although the effect can be obtained even when added alone, when combined with La, Ce, Y, and Nb, these effects are increased. The effect is large.

0.02%より少ないとこれらの効果が小さく、0.2
2を越えると炭化物微細化の効果に悪影響を及ぼすので
、0.02〜0.2%とした。
If it is less than 0.02%, these effects will be small;
If it exceeds 2, it will have a negative effect on the carbide refinement effect, so it is set at 0.02 to 0.2%.

La、Ceは、Alと同様に外周部の鋳造組織微細化に
効果を持つ。また、■を主体とした硬質のMC型炭化物
を微細に晶出させること、さらにこれらの硬質炭化物の
絶対量を増す目的で添加する。
Like Al, La and Ce are effective in refining the casting structure at the outer periphery. Further, it is added for the purpose of finely crystallizing hard MC type carbides mainly consisting of (3) and increasing the absolute amount of these hard carbides.

AIとの複合添加により一層その効果が大きいため、A
lと同時に、一種または二種を0.02〜0.2%添加
する。0.02%より少ないと、これらの効果が少なく
、0.2%を越えるとSやOと結合して介在物を作り、
また鋳造欠陥の原因となるため0.020〜0.20%
に限定した。ここで、実際の製造時にLa、Ceを添加
する場合、ミツシュメタルとして添加する方法が一般的
であり、ミツシュメタル中にはLa、Ceの他、Nd、
Prが含まれているが、これらを第1表に示すとおり、
各元素を単独で添加して確lzシた結果、Nd、Prは
添加の効果が小さかった。
The effect is even greater when combined with AI, so A
At the same time as 1, 0.02 to 0.2% of one or two of them is added. If it is less than 0.02%, these effects will be small, and if it exceeds 0.2%, it will combine with S and O to form inclusions.
In addition, 0.020 to 0.20% may cause casting defects.
limited to. Here, when adding La and Ce during actual manufacturing, it is common to add them as Mitshu metal, and in addition to La and Ce, Nd,
Pr is included, as shown in Table 1,
As a result of testing by adding each element individually, the effect of adding Nd and Pr was small.

このためこれらの元素は、本発明の請求範囲からは除外
したが、ミツシュメタルとして添加した場合のLa、C
eの効果を損うものではない。
For this reason, these elements are excluded from the scope of the claims of the present invention, but when added as Mitsushi metal, La and C
This does not impair the effect of e.

Y、NbにもLa、Ceと同様の効果があり、これらと
Alを複合添加することも有効である。
Y and Nb also have the same effects as La and Ce, and it is also effective to add these and Al in combination.

0.020%より少ないとこれらの効果が小さく、Yは
0.20%を越えると、Sや0と結合して介在物を作り
、製品の品位を下げるため0.20%以下とする。
If Y is less than 0.020%, these effects will be small, and if Y exceeds 0.20%, it will combine with S and 0 to form inclusions, degrading the quality of the product, so it should be kept at 0.20% or less.

Nbは、Sや0との結合力は小さいが、本発明では■を
主体とした炭化物を制御する目的で添加するため0.2
%を上限とする。
Nb has a small bonding force with S and 0, but in the present invention it is added for the purpose of controlling carbides mainly consisting of 0.2
The upper limit is %.

Goは基地に固溶して、本発明鋼の強度、耐熱性を向上
させるもので本発明による炭化物形態制御、鋳造組織改
善には直接関与しないが、必要に応じて1〜20%添加
する。
Go is dissolved in the matrix to improve the strength and heat resistance of the steel of the present invention, and is not directly involved in controlling the carbide morphology and improving the cast structure according to the present invention, but it is added in an amount of 1 to 20% as necessary.

Nは本発明鋼の不純物である。N量が0.01%を越え
ると、AlとLa、Ce等の共同添加による効果のうち
、第2表に示したVの形態制御の面で不利であるので0
.01%以下とした。
N is an impurity in the steel of the present invention. If the amount of N exceeds 0.01%, it is disadvantageous in terms of controlling the form of V shown in Table 2 among the effects of joint addition of Al, La, Ce, etc.
.. 01% or less.

S、Oも本発明鋼の不純物であり、これらは本発明鋼の
特徴である添加元素、Al、La、Ceのうち、特にL
a、Ceと結合力が強く、これらの添加による効果を、
第3図に示したとおり、損うだけでなく、La、Ceと
結合して鋼中に介在物としてとどまり、製品の品位を下
げるためにS≦0゜04%、0≦40ρpo+と制限し
た。
S and O are also impurities in the steel of the present invention, and these are the additive elements that characterize the steel of the present invention, especially L.
a, has a strong bonding force with Ce, and the effect of these additions is
As shown in FIG. 3, S is limited to S≦0°04% and 0≦40ρpo+ in order to not only damage it, but also combine with La and Ce and remain as inclusions in the steel, lowering the quality of the product.

実施例 以下に本発明の実施例について説明する。Example Examples of the present invention will be described below.

真空誘導炉により、第1表に示す化学組成の合金を溶解
し、中温温度、鋳型の冷却能等、鋳造条件を同一にして
鋼塊を作製した。
Alloys having the chemical composition shown in Table 1 were melted in a vacuum induction furnace, and steel ingots were produced under the same casting conditions such as medium temperature and mold cooling capacity.

各鋼塊を焼鈍して、各鋼塊の上部側の同一位置より試料
を採取し、鋳造時に晶出した炭化物の形状をwAeする
と、第1図に示す3通りの形態に分類されたにのうちA
タイプは、矢印で示すように■を主体とするMC型の炭
化物が不定形に塊状に品出しており粗大で、この形態の
MCは、製品となってもこのままの形で存在し、工具の
被研削性を著しく低下することが知られているものであ
る。
Each steel ingot was annealed, a sample was taken from the same position on the upper side of each steel ingot, and the shapes of the carbides crystallized during casting were classified into the three types shown in Figure 1. Of which A
As shown by the arrow, the MC type carbide mainly consists of irregularly shaped lumps and is coarse.This type of MC remains as it is even when it is made into a product, and is difficult to use in tools. This is known to significantly reduce grindability.

Bタイプは、MC型の炭化物が共晶として肋骨状に晶出
するが1周辺部に矢印で示すように粗大なMCが見られ
る。
In type B, MC-type carbide crystallizes as a eutectic in the form of ribs, but coarse MC is seen in one peripheral area as indicated by the arrow.

Cタイプは、MC型の炭化物が共晶としてひとつひとつ
のMCが非常に微細に晶出している。
In the C type, each MC is very finely crystallized as a eutectic MC type carbide.

第1表に示した試料の炭化物の形態は、第2表に示すよ
うに分類された。
The carbide morphology of the samples shown in Table 1 was classified as shown in Table 2.

比較鋼9は、Aタイプに分類され、W量を高めた比較鋼
17はBタイプに分類され1両者に見られる粗大なMC
型の炭化物は、Ai、La、Ce、Y、Nbを添加する
ことにより、その発生が抑えられている(10.12.
13、]−5,18゜19.24.28)が、Nb、 
Pr、 Hf、 Zr、 Mgを添加しても、MCの形
態変化は小さく、依然。
Comparative steel 9 is classified as A type, and comparative steel 17 with increased W content is classified as B type.
The generation of type carbides is suppressed by adding Ai, La, Ce, Y, and Nb (10.12.
13,]-5,18°19.24.28) is Nb,
Even when Pr, Hf, Zr, and Mg were added, the morphological change of MC was still small.

粗大なMCの晶出が見られる(11..14.16.2
0.21)。
Coarse MC crystallization is observed (11..14.16.2
0.21).

第2表 また、N含有量が重量比で0.01%を越えたもの(2
9)は、AlならびにLaおよびCeを複合添加しても
、MCの形態変化が小さく、粗大なMCが存在している
。また、MC形態変化の効果は、■含有量をさらルこ高
めた発明鋼36.38にも及んでいる。
Table 2 also shows items whose N content exceeds 0.01% by weight (2
In case 9), even if Al, La, and Ce were added in combination, the morphological change of MC was small, and coarse MC was present. Furthermore, the effect of the MC form change extends to the invention steel 36.38, which has a significantly increased content.

MC形態変化の効果は、■の含有量がある程度高いほど
大きく、V 0.6〜2%の範囲では、基本成分系にお
いても粗大なMCは見られないので、ここではデータを
掲げるのを割愛した。またMCの形態変化は、W、Mo
の量比において、Moが多いものほど大きい。
The effect of MC form change is greater as the content of did. In addition, the morphological changes of MC are W, Mo
In terms of the amount ratio, the more Mo there is, the greater the ratio is.

次に、先に炭化物の形状を観察した試料のMCの絶対量
を調べるために、X線回折法によって、MC炭化物のX
線強度のフェライト鉄に対する比を求め、これをLa−
Ceの含有量で整理した2この結果を第2図に示す。L
a、Ceの含有量を増すにつれ、MCの絶対量も増すこ
とがわかる。すなわち、これらがMCに及ぼす効果は、
形態を微細にするだけでなく、その量も増やすことを示
している。
Next, in order to investigate the absolute amount of MC in the sample whose carbide shape was observed earlier,
Find the ratio of line strength to ferrite iron, and calculate this as La-
Figure 2 shows the results organized by Ce content. L
It can be seen that as the content of a and Ce increases, the absolute amount of MC also increases. In other words, the effects of these on MC are
This shows that it not only makes the morphology finer, but also increases its quantity.

次に試料を鋼塊表面から中心部まで連続的に採取して、
デンドライト品の占める領域を鋼塊直径をDとしたとき
の、鋼塊表面からの距離で整理した結果を第3表、第3
図に示す。
Next, samples were taken continuously from the surface of the steel ingot to the center.
Table 3 shows the results of organizing the area occupied by dendrites according to the distance from the steel ingot surface, where the steel ingot diameter is D.
As shown in the figure.

第3表 Al.La、Ce、Y、Nbを添加することにより、デ
ンドライト品の占める領域が拡がるが、AlとLa、C
eおよびY、Nbを複合添加したとき、特にその効果が
大きい。またS量、0量の多いもの(30,31)は、
La、Ceを複合添加してもデンドライト品の占める領
域が著しく狭められる。
Table 3 Al. By adding La, Ce, Y, and Nb, the area occupied by dendrites expands, but when Al, La, and C
The effect is particularly large when e, Y, and Nb are added in combination. Also, those with a large amount of S and 0 (30, 31) are
Even if La and Ce are added in combination, the area occupied by dendrites is significantly narrowed.

第4図には、鋼塊直径をDとしたときのD/8部のセル
サイズを測定した結果を示すが、第3図において、デン
ドライト品の占める領域の大きいものほど、セルサイズ
が小さいという相関関係があることがわかる。
Figure 4 shows the results of measuring the cell size of the D/8 section where the diameter of the steel ingot is D. In Figure 3, the larger the area occupied by the dendrites, the smaller the cell size. It can be seen that there is a correlation.

タップ等の工具の廃却品を調べると、特に被加工材が高
硬度である場合に、短寿命品には刃先が欠けて寿命とな
る例が多数見られる。多くの場合、炭化物が偏析して密
集した部分から欠けが起こっており、デンドライト品を
発達させて、外周部の鋳造組織を細かくすることは、炭
化物の密集度を小さくするため、工具の寿命を向上させ
るのに大きな効果を持つと考えられる。
When examining discarded tools such as taps, there are many examples of short-life tools whose cutting edges are chipped and the tool life ends, especially when the workpiece material is highly hard. In many cases, chipping occurs in areas where carbides are segregated and dense, and developing dendrites and making the casting structure on the outer periphery finer will reduce the density of carbides, which will shorten the life of the tool. It is believed that this will have a significant effect on improving

次に各材料の被研削性を定量的に把握するために、タッ
プ溝ネジ研削盤を使用して、第4表に示した一定の研削
条件で、試料を研削した後に砥石用の摩耗量を測定した
。この結果を第5表に示した。なお、各試料は、溶製し
た鋼塊を鍛造後、20φに仕上げたものを、焼鈍後、焼
入−焼もどし処理を行って作製した。比較#!117に
比べ、本発明鋼の被研削性は明らかに向上している。
Next, in order to quantitatively understand the grindability of each material, we used a tap groove screw grinder to grind the sample under the constant grinding conditions shown in Table 4, and then measured the amount of wear on the grinding wheel. It was measured. The results are shown in Table 5. Each sample was produced by forging a steel ingot, finishing it to 20φ, annealing it, and then subjecting it to quenching and tempering. Comparison #! Compared to No. 117, the grindability of the steel of the present invention is clearly improved.

第4表 第5表 〔発明の効果〕 以上述べたとおり、本発明鋼は、硬質の炭化物を富化さ
せることにより、耐摩耗性が向上し、同時にこれらを微
細で均一に分散させることにより、被研削性、また耐熱
性、耐焼付性が向上し、さらに特に外周側の鋳造組織を
細かくすることにより、耐チッピング性が向上したもの
で、工具寿命の伸長と安定化と、工具自身の仕上研削の
高精度化、能率向上の両面をもたらすものであり、その
効果は非常に大きい。
Table 4 Table 5 [Effects of the Invention] As described above, the steel of the present invention has improved wear resistance by enriching hard carbides, and at the same time, by dispersing them finely and uniformly. Grindability, heat resistance, and seizure resistance have been improved, and chipping resistance has been improved by making the cast structure particularly fine on the outer periphery, extending and stabilizing tool life and improving the finish of the tool itself. This brings about both higher precision and improved efficiency in grinding, and the effects are very large.

なお、第1表は本発明の添加元素のすべての組合せを網
羅していないが、以上の説明からこれらも本発明の添加
元素を具備することは容易に理解できる。
Although Table 1 does not cover all combinations of the additive elements of the present invention, it can be easily understood from the above description that these also include the additive elements of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

ヌキの晶出物がMC型の炭化物である。第2〜第4図は
、La、Ceの合計量に対し、それぞれMO炭化物の絶
対量、プントライ1〜品の占める領域。 D/8部の凝固セルサイズをプロットしたもので、第3
図では、Y、Nb量及び高S、高○との関係をも示して
いる。また第3.4図において、破線はLa、Ceのみ
添加の場合で、実線はこれにA]丈−2/ 第  1  図 ムa 十 ごe t (萌2)
The crystallized product of Nuki is MC type carbide. Figures 2 to 4 show the absolute amount of MO carbide and the area occupied by Puntorai 1 to 3, respectively, relative to the total amount of La and Ce. This is a plot of the coagulation cell size of part D/8.
The figure also shows the relationship between the amounts of Y and Nb and high S and high O. In addition, in Fig. 3.4, the broken line indicates the case where only La and Ce are added, and the solid line indicates the case where only La and Ce are added.

Claims (1)

【特許請求の範囲】 1 重量比でC0.5〜1.5%、Si0.1〜1%、
Mn0.1〜1%、Cr3〜7%、W+2Mo5〜25
%(ただしW12%以下、または無添加、Mo2〜12
%)、V0.6〜5%、Al0.02〜0.2%を含み
、残部Feならびに通常の不純物からなり、N≦0.0
1%、S≦0.04%、O≦40ppmに規制した外周
部の鋳造組織を改善したことを特徴とする高速度工具鋼
。 2 重量比でC0.5〜1.5%、Si0.1〜1%、
Mn0.1〜1%、Cr3〜7%、W+2Mo5〜25
%(ただしW12%以下、または無添加、Mo2〜12
%)、V0.6〜5%、Al0.02〜0.2%を含み
、さらにLa、Ce、Y、Nbの一種または二種以上を
0.02〜0.2%含み、残部Feならびに通常の不純
物からなり、N≦0.01%、S≦0.04%、O≦4
0ppmに規制した外周部の鋳造組織を改善したことを
特徴とする高速度工具鋼。 3 重量比でC0.5〜1.5%、Si0.1〜1%、
Mn0.1〜1%、Cr3〜7%、W+2Mo5〜25
%(ただしW12%以下、または無添加、Mo2〜12
%)、V0.6〜5%、Al0.02〜0.2%、Co
1〜20%を含み、残部Feならびに通常の不純物から
なり、N≦0.01%、S≦0.04%、O≦40pp
mに規制した外周部の鋳造組織を改善したことを特徴と
する高速度工具鋼。 4 重量比でC0.5〜1.5%、Si0.1〜1%、
Mn0.1〜1%、Cr3〜7%、W+2Mo5〜25
%(ただしW12%以下、または無添加、Mo2〜12
%)、V0.6〜5%、Al0.02〜0.2%、Co
1〜20%を含み、さらにLa、Ce、Y、Nbの一種
または二種以上を0.02〜0.2%含み、残部Feな
らびに通常の不純物からなり、N≦0.01%、S≦0
.04%、O≦40ppmに規制した外周部の鋳造組織
を改善したことを特徴とする高速度工具鋼。
[Claims] 1. C0.5 to 1.5%, Si 0.1 to 1% by weight,
Mn0.1-1%, Cr3-7%, W+2Mo5-25
% (However, W12% or less or no additives, Mo2~12
%), V0.6~5%, Al0.02~0.2%, the balance consists of Fe and normal impurities, N≦0.0
1%, S≦0.04%, and O≦40ppm. A high-speed tool steel characterized by an improved casting structure in the outer peripheral part. 2 C0.5-1.5%, Si0.1-1% by weight ratio,
Mn0.1-1%, Cr3-7%, W+2Mo5-25
% (However, W12% or less or no additives, Mo2~12
%), V0.6-5%, Al0.02-0.2%, and further contains 0.02-0.2% of one or more of La, Ce, Y, and Nb, the balance being Fe and normal N≦0.01%, S≦0.04%, O≦4
A high-speed tool steel characterized by an improved casting structure in the outer peripheral part, which is regulated to 0 ppm. 3 C0.5-1.5%, Si0.1-1% by weight ratio,
Mn0.1-1%, Cr3-7%, W+2Mo5-25
% (However, W12% or less or no additives, Mo2~12
%), V0.6-5%, Al0.02-0.2%, Co
1 to 20%, the balance consists of Fe and normal impurities, N≦0.01%, S≦0.04%, O≦40pp
A high-speed tool steel characterized by an improved casting structure at the outer periphery, which is regulated to m. 4 C0.5-1.5%, Si0.1-1% by weight ratio,
Mn0.1-1%, Cr3-7%, W+2Mo5-25
% (However, W12% or less or no additives, Mo2~12
%), V0.6-5%, Al0.02-0.2%, Co
Contains 1 to 20%, further contains 0.02 to 0.2% of one or more of La, Ce, Y, and Nb, and the balance consists of Fe and normal impurities, N≦0.01%, S≦ 0
.. 04%, a high-speed tool steel characterized by an improved casting structure at the outer periphery, regulated to O≦40ppm.
JP62044473A 1987-02-27 1987-02-27 High speed tool steel Expired - Fee Related JP2564534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044473A JP2564534B2 (en) 1987-02-27 1987-02-27 High speed tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044473A JP2564534B2 (en) 1987-02-27 1987-02-27 High speed tool steel

Publications (2)

Publication Number Publication Date
JPS63213641A true JPS63213641A (en) 1988-09-06
JP2564534B2 JP2564534B2 (en) 1996-12-18

Family

ID=12692489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044473A Expired - Fee Related JP2564534B2 (en) 1987-02-27 1987-02-27 High speed tool steel

Country Status (1)

Country Link
JP (1) JP2564534B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504331B1 (en) * 2006-10-27 2008-05-15 Boehler Edelstahl STEEL ALLOY FOR TORQUE TOOLS
EP2570507A1 (en) 2011-09-19 2013-03-20 Sandvik Intellectual Property AB A method for producing high speed steel
CN112322960A (en) * 2020-11-03 2021-02-05 宁夏博德凯耐磨材料有限公司 Method for producing high-chromium alloy by mixing aluminum-magnesium alloy and various rare metals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146914A (en) * 1977-05-02 1978-12-21 Hitachi Metals Ltd Highhspeed tool steel
JPS61276954A (en) * 1985-05-30 1986-12-06 Daido Steel Co Ltd Die steel and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146914A (en) * 1977-05-02 1978-12-21 Hitachi Metals Ltd Highhspeed tool steel
JPS61276954A (en) * 1985-05-30 1986-12-06 Daido Steel Co Ltd Die steel and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504331B1 (en) * 2006-10-27 2008-05-15 Boehler Edelstahl STEEL ALLOY FOR TORQUE TOOLS
US7655101B2 (en) 2006-10-27 2010-02-02 Boehler Edelstahl Gmbh Steel alloy for cutting tools
EP2570507A1 (en) 2011-09-19 2013-03-20 Sandvik Intellectual Property AB A method for producing high speed steel
WO2013041558A1 (en) 2011-09-19 2013-03-28 Sandvik Intellectual Property Ab A method for producing high speed steel
CN112322960A (en) * 2020-11-03 2021-02-05 宁夏博德凯耐磨材料有限公司 Method for producing high-chromium alloy by mixing aluminum-magnesium alloy and various rare metals

Also Published As

Publication number Publication date
JP2564534B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US10233519B2 (en) Spray-formed high-speed steel
KR102042063B1 (en) Steel material for graphitization and graphite steel with improved machinability
JPS61213348A (en) Alloy tool steel
JPS6121299B2 (en)
US4011108A (en) Cutting tools and a process for the manufacture of such tools
WO2018042929A1 (en) Roll outer layer material for rolling, and composite roll for rolling
JP2809677B2 (en) Rolling die steel
JP2005336553A (en) Hot tool steel
JPS62211351A (en) Tool steel having superior machinability
JPS63213641A (en) High-speed tool steel
JPS61213350A (en) High-speed tool steel having superior grindability
JP2507765B2 (en) High speed tool steel
JP2573951B2 (en) High speed tool steel
JP2716441B2 (en) High speed tool steel
JP6083014B2 (en) High strength matrix high speed
JPH05171373A (en) Powder high speed tool steel
JP4352491B2 (en) Free-cutting cold work tool steel
JP2001234278A (en) Cold tool steel excellent in machinability
JPH08209297A (en) High speed steel
CN112912526B (en) High manganese steel material with excellent oxygen cutting performance and preparation method thereof
US20040081575A1 (en) Corrosion resistant steel having good cold-workability and machinability
JP3558600B2 (en) Low alloy tool steel with excellent machinability after tempering
JPS62211354A (en) Manufacture of high-speed tool steel
JPH05163551A (en) Powder high-speed tool steel
JP3419536B2 (en) Alloy tool steel members made of ingot material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees