JPS63209131A - Coating method for fusion-bonding metal in die bonding - Google Patents

Coating method for fusion-bonding metal in die bonding

Info

Publication number
JPS63209131A
JPS63209131A JP4234387A JP4234387A JPS63209131A JP S63209131 A JPS63209131 A JP S63209131A JP 4234387 A JP4234387 A JP 4234387A JP 4234387 A JP4234387 A JP 4234387A JP S63209131 A JPS63209131 A JP S63209131A
Authority
JP
Japan
Prior art keywords
metal
fusion
die bonding
fused
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4234387A
Other languages
Japanese (ja)
Inventor
Seiji Iida
飯田 清次
Hiroo Suzuki
鈴木 宏生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP4234387A priority Critical patent/JPS63209131A/en
Publication of JPS63209131A publication Critical patent/JPS63209131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Die Bonding (AREA)

Abstract

PURPOSE:To uniformly coat fusion-bonding metal thinly by stretching the metal by the spray pressure of reducing or inert gas, and further removing the excessive metal by the pressure. CONSTITUTION:When fusion-bonding metal 24 of thermally fused state is supplied to the die bonding section 22a of other member 22, the metal 24 remains relatively thick as it is. Then, when reducing or inert gas is sprayed toward the metal 24, the metal 24 is thinly moistened to be spread on the surface of the section 22a by the gas diffusing pressure, and the thickness is uniformized by the fluidity of the metal 24 of fused state. Simultaneously, the excessive metal 24 is blown off by the spraying gas. Thus, a thin and uniform fusion- bonded film is formed.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は、例えば、半導体レーザー等の半導体発光素子
の製造方法に関連して、その半導体レーザー等を融着金
属を用いてヒートシンクにダイボンディングする場合等
において、前記融着金属をヒートシンク等に塗布する方
法に関するものである。
Detailed Description of the Invention (Objective of the Invention) (Industrial Field of Application) The present invention relates to a method for manufacturing a semiconductor light emitting device such as a semiconductor laser, and relates to a method for manufacturing a semiconductor light emitting device such as a semiconductor laser, etc. by using a fused metal. The present invention relates to a method of applying the fusion metal to a heat sink or the like when performing die bonding to the heat sink or the like.

(従来の技術) 第4図に示されるように、半導体発光素子としての半導
体レーザー11は、その主特性である電流−光出力特性
が温度に対して非常に敏感であることから、銅、銀等の
熱伝導性の良いヒートシンク22に、金共晶合金、鉛−
錫はlυだ、インジウム等の融着金属24によって均一
にダイボンディングする必要がある。
(Prior Art) As shown in FIG. 4, the semiconductor laser 11 as a semiconductor light emitting device has a main characteristic, the current-light output characteristic, which is very sensitive to temperature. The heat sink 22 has good thermal conductivity such as gold eutectic alloy, lead-
Although tin is lυ, it is necessary to uniformly die-bond it with a fusion metal 24 such as indium.

この場合、半導体レーザー11は、その寸法が0.25
X 0.30X 0.1 mtdと非常に小さいし、ま
た発光部12の位tff (P−N接合部)がヒートシ
ンク側(融着金属側)の端まで20〜50μmと非常に
近接している等の理由から、この半導体レーザー11を
ヒートシンク22にダイボンディングするための融着金
属24は、均一にしかも薄くヒートシンク22に塗布す
る必要がある。13は、ボンディングワイヤである。
In this case, the semiconductor laser 11 has dimensions of 0.25
It is very small at X 0.30X 0.1 mtd, and the light emitting part 12 (P-N junction) is very close to the end of the heat sink side (fusion metal side) by 20 to 50 μm. For these reasons, the fusion metal 24 for die-bonding the semiconductor laser 11 to the heat sink 22 needs to be applied uniformly and thinly to the heat sink 22. 13 is a bonding wire.

従来、前記融着金属24を塗布するには、真空蒸着法、
ディスベンザによる注入法、金属ベレットによる方法等
がとられているが、これらの方法では、それぞれ次のよ
うな問題がある。
Conventionally, in order to apply the fusion metal 24, a vacuum evaporation method,
Injection methods using a disbenzer, methods using a metal pellet, etc. have been used, but each of these methods has the following problems.

従来の真空蒸着法は、均一性では優れているものの、連
続作業が困難であり、また、第5図に示されるヒートシ
ンク22において、電極16.17が絶縁性ガラス等の
絶縁材18によって独立している場合、蒸着時に前記絶
縁材18をカバーすることが困難であり、絶縁材18が
蒸着されて電極16.17とヒートシンク22(ダイボ
ンディング部22a)との間で絶縁不良を起すおそれが
ある。
Although the conventional vacuum evaporation method has excellent uniformity, continuous operation is difficult, and in the heat sink 22 shown in FIG. In this case, it is difficult to cover the insulating material 18 during vapor deposition, and there is a risk that the insulating material 18 will be vapor-deposited and cause insulation failure between the electrodes 16 and 17 and the heat sink 22 (die bonding part 22a). .

また、従来のディスペンサによる注入法および金属ベレ
ットによる方法は、共に、融着台1124の厚さ制御が
困難であり、半導体レーザー11のダイボンディングに
適した6〜12μ■厚の@1着金属を均一に塗布するこ
とが難しく、このために半導体レーザー11の接合部の
短絡や、厚さの不均一に因る半導体レーザーの傾斜等が
生じ、組立歩留の低下をぎたす。
Furthermore, in both the conventional injection method using a dispenser and the method using a metal pellet, it is difficult to control the thickness of the welding table 1124. It is difficult to apply the coating uniformly, and this causes short circuits at the joints of the semiconductor lasers 11 and tilting of the semiconductor lasers due to non-uniform thickness, which reduces assembly yield.

さらに、半導体レーザー11の融着金属としては、金−
錫等の金糸共晶合金やインジウム等がよく用いられるが
、これらは鉛−錫はんだと比較した場合、ヒートシンク
22との濡れ性が必ずしも良くない。そのため、これら
の融着金属は、加熱するだけではヒートシンク上に薄り
濡れ広がることはなく、第2図に示されるように、ダイ
ボンディング部22aの上面に表面張力によって厚く盛
上った状態に保たれる。そこで、その融着台WA24a
に対して外部からの機械的摺動等を与えて、融着金属を
引伸ばず必要がある。
Further, as the fusion metal of the semiconductor laser 11, gold-
Gold thread eutectic alloys such as tin, indium, etc. are often used, but these do not necessarily have good wettability with the heat sink 22 when compared to lead-tin solder. Therefore, these fused metals do not thin and spread on the heat sink only by heating, but instead become thickly raised on the upper surface of the die bonding part 22a due to surface tension, as shown in FIG. It is maintained. Therefore, the fusion table WA24a
It is necessary to apply mechanical sliding or the like from the outside to the fused metal without stretching it.

(発明が解決しようとする問題点) このように、従来は、真空蒸着法の場合は連続作業が困
難であり、絶縁不良を起す等の問題もあり、ディスペン
サまたは金属ベレットによる方法の場合は、融着金属を
薄くかつ均一に塗布することが困難である問題がある。
(Problems to be Solved by the Invention) Conventionally, in the case of the vacuum evaporation method, continuous operation was difficult and there were problems such as poor insulation, and in the case of the method using a dispenser or metal pellet, There is a problem in that it is difficult to apply the fusion metal thinly and uniformly.

本発明の目的は、これらの問題点を解決し、ダイボンデ
ィング用融着金属を連続作業によって能率良く均一に薄
く塗布できる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a method for efficiently and uniformly applying a die bonding metal in a thin layer in a continuous operation.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、一方の部材11を融着金属24を用いて他方
の部材22に一体化するダイボンディングにおいて、 溶融状態にある前記融着台1i124を他方の部材 5
22に供給し、この融着金属24に還元性または不活性
ガスを吹付け、そのガスの吹付は圧によって融着金属2
4を薄く引伸ばすとともに、余分な融着金属を吹飛ばし
て除去することにより、所定の厚さの融着金属を均一に
得る融着金属塗布方法である。
(Means for Solving the Problems) The present invention, in die bonding in which one member 11 is integrated with the other member 22 using the fusion metal 24, the fusion stand 1i124 in a molten state is Part 5
22, and a reducing or inert gas is sprayed onto the fused metal 24, and the gas is sprayed by pressure to the fused metal 24.
This is a method of applying a fused metal to uniformly obtain a fused metal of a predetermined thickness by stretching 4 thinly and blowing away excess fused metal.

(作用) 本発明は、他方の部材22のダイボンディング部22a
に被加熱溶融状態にある融着金属24が供給されると、
この融着金属24は、自身が有する流動性によってダイ
ボンディング部22aの表面で濡れ広がる傾向があって
も、そのままでは比較的厚いままの状態にある。そこで
、還元性または不活性ガスをこの融着金属に向けて吹付
けると、そのガスの吹イ1け圧によって、融着金属24
はダイボンディング部22aの表面で薄く濡れ広がり、
溶融状態にある融着金属の流動性によってその厚みが均
一・化される。同時に余った融着金属は前記吹付はガス
によって吹飛ばされ、結局、薄くて均一な融着金属膜が
形成される。この金属股上に一方の部材11が供給され
、融着金属が固化すると両方の部材が一体化される。
(Function) The present invention provides die bonding portion 22a of the other member 22.
When the fused metal 24 in a heated and molten state is supplied to
Although the fused metal 24 tends to wet and spread on the surface of the die bonding portion 22a due to its own fluidity, it remains relatively thick as it is. Therefore, when a reducing or inert gas is blown toward the fused metal, the blown pressure of the gas causes the fused metal to 24
spreads thinly on the surface of the die bonding part 22a,
The thickness of the fused metal is made uniform due to the fluidity of the molten metal. At the same time, the remaining fused metal is blown away by the gas, and a thin and uniform fused metal film is formed. One member 11 is supplied onto this metal crotch, and when the fused metal solidifies, both members are integrated.

(実施例) 以下、本発明を第1図乃至第3図に示される実施例を参
照して詳細に説明する。
(Example) Hereinafter, the present invention will be explained in detail with reference to the example shown in FIGS. 1 to 3.

第1図は、半導体レーザー・ダイボンディング用融着金
属塗布装置の概略図であり、ヒートシンク加熱用ヒータ
としても機能するボルダ21に、一方の部材としての半
導体レーザー11(第5図)が融着される他方の部材と
してのヒートシンク22が嵌着され、このヒートシンク
22のダイボンディング部22aの融着金属塗布面(上
面)に対向させて、融着金属抽出口部の先端抽出口部2
3と、この抽出口部23から塗布面に供給された融着台
R24を一定の厚さに引伸ばすためのガスを噴出する装
置の先端噴出口部25とが、それぞれ設けられている。
FIG. 1 is a schematic diagram of a fusion metal coating device for semiconductor laser die bonding, in which a semiconductor laser 11 (FIG. 5) as one member is fused to a boulder 21 that also functions as a heater for heat sink heating. A heat sink 22 as the other member is fitted, and the tip extraction port 2 of the fusion metal extraction port is placed opposite the fusion metal application surface (upper surface) of the die bonding portion 22a of the heat sink 22.
3 and a distal ejection port 25 of a device that ejects gas for stretching the fusing table R24 supplied from the extraction port 23 onto the application surface to a constant thickness.

そうして、図示されない別の加熱手段によって予め加熱
されたヒートシンク22が、第1図に示されるように本
加熱用ホルダ21にセットされ、融着金属24の融点に
加熱される。次に、このヒートシンク22の半導体レー
ザーダイボンディング部22a1.:融着金属抽出口部
23より、加熱されて溶融状態にある高温の融着金属が
供給されると、その融着金属24は、ダイボンディング
部22aの表面で自身が有する流動性によって濡れ広が
る傾向があっても、そのままでは第2図に24aで示さ
れるように比較的厚く盛上った状態にある。
Then, the heat sink 22, which has been preheated by another heating means (not shown), is set in the main heating holder 21, as shown in FIG. 1, and heated to the melting point of the fusion metal 24. Next, the semiconductor laser die bonding portion 22a1. of this heat sink 22. : When a high-temperature fusion metal that is heated and in a molten state is supplied from the fusion metal extraction port 23, the fusion metal 24 wets and spreads on the surface of the die bonding part 22a due to its own fluidity. Even if there is a tendency, if left as it is, it will remain relatively thick and raised as shown by 24a in FIG.

そこで、この融着金属が供給されると同時に・前記噴出
口部25からフォーミングガス等の還元性ガス若しくは
窒素等の不活性ガスを噴出さU、ダイボンゲイング部2
2a上の融着金属24aに吹付けると、そのガスの吹付
は圧によって、融着金属はグイボンディング部22aの
表面全体に薄り濡れ広がり、融着金属が有する流動性に
よってその厚みが均一化される。同時にそれ以外の余剰
融着金属は、噴出ガスの吹付は圧によって塗布面から吹
飛ばされ、第3図に丞されるように薄くて均一な融着金
属24bの薄い膜が形成されるので、この融着金属膜上
に前記半導体レーザー11(第5図)を載せ、融着金属
24bによってダイボンディング部22aと半導体レー
ザー11とがF!&看される。
Therefore, at the same time as this fusion metal is supplied, a reducing gas such as forming gas or an inert gas such as nitrogen is ejected from the ejection port 25, and the die bonding portion 2
When the gas is sprayed onto the fused metal 24a on the 2a, the fused metal thinly spreads over the entire surface of the bonding part 22a due to the pressure of the sprayed gas, and the thickness becomes uniform due to the fluidity of the fused metal. be done. At the same time, the remaining excess welding metal is blown away from the coated surface by the pressure of the ejected gas, and a thin and uniform thin film of welding metal 24b is formed as shown in FIG. The semiconductor laser 11 (FIG. 5) is placed on this fused metal film, and the die bonding portion 22a and the semiconductor laser 11 are bonded to F! by the fused metal 24b. & be looked after.

前記ガスの還元性および不活性は、融着金属の酸化を防
止する働きがある。
The reducing nature and inertness of the gas serves to prevent oxidation of the fused metal.

実験では、融着金属どして、鉛−錫はんだ(W&点18
3℃)を用いた場合、加熱温度・220℃、窒素ガス圧
・3 K9 / criの条件で、8〜12μmの厚さ
のms金属膜を均一に塗布することができた。
In the experiment, lead-tin solder (W & point 18) was used as the fusion metal.
When using a heating temperature of 220°C and a nitrogen gas pressure of 3 K9/cri, it was possible to uniformly apply a ms metal film with a thickness of 8 to 12 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、融着金属を還元性または不活性ガスの
吹付は圧によって引伸し、さらにこの圧で余剰金属を除
去するようにしたから、融着金属を薄く均一に塗布する
ことができ、例えば、融着金属の厚さ不均一が原因とな
る半導体発光素子(半導体レーザー)の接合部短絡や、
傾斜等による組立不良などの問題点が解消される。また
、前記ガスを吹付ける圧により融着金属が塗布面上で濡
れ広がるので、融着金属を機械的に引伸ばす必要がなく
、また連続作業を能率良く行える。さらに真空蒸着法に
みられる絶縁不良等の問題もない。
According to the present invention, the fusion metal is stretched by pressure when the reducing or inert gas is sprayed, and excess metal is removed using this pressure, so the fusion metal can be applied thinly and uniformly. For example, short circuits at the joints of semiconductor light emitting devices (semiconductor lasers) caused by uneven thickness of the fused metal,
Problems such as poor assembly due to inclination etc. are solved. Further, since the fused metal spreads wetly on the coating surface due to the pressure of the gas, there is no need to mechanically stretch the fused metal, and continuous work can be carried out efficiently. Furthermore, there are no problems such as poor insulation that occur with vacuum evaporation methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の融着金属塗布方法の一実施例を示す断
面図、第2図はその融着金属のガス吹イ」け前の状r!
3(従来方法での融着金属の濡れ広がり状態)を示ず斜
視図、第3図はその融着金属をガスの吹付は圧によって
引伸ばした状B(本発明による融着金属の濡れ広がり状
態)を示す斜視図、第4図は半導体レーザーがダイボン
ディングされた部分を示す斜視図、第5図は半導体レー
ザーがダイボンディングされたヒートシンクの斜視図で
ある。 11・・一方の部材としての半導体レーザー、22・・
他方の部材としてのヒートシンク、24・・融着金属。 滓4に 滓5田
Fig. 1 is a sectional view showing an embodiment of the fusion metal application method of the present invention, and Fig. 2 shows the state of the fusion metal before gas blowing.
Figure 3 is a perspective view (not showing the wetting and spreading state of the welded metal according to the conventional method), and Fig. 3 shows the state B (wetting and spreading of the welded metal according to the present invention) in which the welded metal is stretched by the pressure applied to the gas spray. FIG. 4 is a perspective view showing a portion to which a semiconductor laser is die-bonded, and FIG. 5 is a perspective view of a heat sink to which a semiconductor laser is die-bonded. 11... Semiconductor laser as one member, 22...
Heat sink as the other member, 24... fused metal. Kagura 4 and Kagura 5 fields

Claims (2)

【特許請求の範囲】[Claims] (1)一方の部材を融着金属を用いて他方の部材に一体
化するダイボンディングにおいて、溶融状態にある前記
融着金属を他方の部材に供給し、この融着金属に還元性
または不活性ガスを吹付けることで、融着金属を薄く引
伸ばすとともに、余分な融着金属を吹飛ばして除去する
ことにより、所定の厚さの融着金属を均一に得ることを
特徴とするダイボンディングにおける融着金属の塗布方
法。
(1) In die bonding, in which one member is integrated with another member using a fusion metal, the fusion metal in a molten state is supplied to the other member, and the fusion metal has a reducible or inert property. In die bonding, which is characterized by uniformly obtaining a predetermined thickness of the fused metal by stretching the fused metal thinly by blowing gas and blowing off and removing excess fused metal. How to apply fused metal.
(2)一方の部材としての半導体レーザー等の半導体発
光素子を他方の部材としての放熱用ヒートシンクに融着
金属を用いてダイボンディングすることを特徴とする特
許請求の範囲第1項記載のダイボンディングにおける融
着金属の塗布方法。
(2) Die bonding according to claim 1, characterized in that a semiconductor light emitting device such as a semiconductor laser as one member is die-bonded to a heat sink for heat dissipation as the other member using a fusion metal. How to apply fused metal in.
JP4234387A 1987-02-25 1987-02-25 Coating method for fusion-bonding metal in die bonding Pending JPS63209131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234387A JPS63209131A (en) 1987-02-25 1987-02-25 Coating method for fusion-bonding metal in die bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4234387A JPS63209131A (en) 1987-02-25 1987-02-25 Coating method for fusion-bonding metal in die bonding

Publications (1)

Publication Number Publication Date
JPS63209131A true JPS63209131A (en) 1988-08-30

Family

ID=12633373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234387A Pending JPS63209131A (en) 1987-02-25 1987-02-25 Coating method for fusion-bonding metal in die bonding

Country Status (1)

Country Link
JP (1) JPS63209131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559119A (en) * 2021-10-29 2022-05-31 弗罗纽斯国际有限公司 Soldering method and soldering apparatus for performing soldering process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559119A (en) * 2021-10-29 2022-05-31 弗罗纽斯国际有限公司 Soldering method and soldering apparatus for performing soldering process
CN114559119B (en) * 2021-10-29 2024-02-02 弗罗纽斯国际有限公司 Soldering method and soldering device for carrying out a soldering process

Similar Documents

Publication Publication Date Title
JP2793528B2 (en) Soldering method and soldering device
KR101183824B1 (en) Direct die attach utilizing heated bond head
US7156284B2 (en) Low temperature methods of bonding components and related structures
KR100279133B1 (en) Method for producing electronic circuit device, jig for making solder residue uniform, jig for transferring solder paste, and apparatus for producing electronic circuit device
JP2009177142A (en) Discharge of solder for mounting semiconductor chips
JP2557268B2 (en) Device mounting method
JPS63209131A (en) Coating method for fusion-bonding metal in die bonding
JP2016174117A (en) Thermoelectric conversion module, and method for manufacturing the same
JP3719506B2 (en) Semiconductor device and manufacturing method thereof
JPH07288255A (en) Formation of solder bump
US20180082975A1 (en) Method of joining a surface-mount component to a substrate with solder that has been temporarily secured
JPH088284A (en) Wire bonding structure and its reinforcement method
US5478005A (en) Apparatus and method for fluxless soldering
JPH0212919A (en) Formation of bump electrode
JP2007061857A (en) METHOD OF JOINING SUBSTRATE AND ELEMENT USING Au-Sn ALLOY SOLDER PASTE
JP2812094B2 (en) Solder TAB structure, solder TAB ILB apparatus and ILB method
JPH02192128A (en) Vacuum suction device
JPH0645377A (en) Semiconductor manufacturing device and semiconductor package, and chip mounting method
JPH01319951A (en) Wire bonding method for coated wire
JP3220638B2 (en) Method for manufacturing semiconductor device
JP2000100291A (en) Mounting structure and mounting method for temperature fuse element
CN116169111A (en) Eutectic welding structure and method for reducing eutectic cavity rate
JPH1140586A (en) Die bonding method and integrated circuit device
JPS61285783A (en) Manufacture of semiconductor laser device
JPH0212930A (en) Manufacture of semiconductor