JPS63201051A - Proton conductive solid electrolyte - Google Patents

Proton conductive solid electrolyte

Info

Publication number
JPS63201051A
JPS63201051A JP62028316A JP2831687A JPS63201051A JP S63201051 A JPS63201051 A JP S63201051A JP 62028316 A JP62028316 A JP 62028316A JP 2831687 A JP2831687 A JP 2831687A JP S63201051 A JPS63201051 A JP S63201051A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen
conductive solid
proton conductive
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62028316A
Other languages
Japanese (ja)
Inventor
太輔 牧野
昌彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62028316A priority Critical patent/JPS63201051A/en
Publication of JPS63201051A publication Critical patent/JPS63201051A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温型プロトン導電性固体電解質に関するも
のである。このようなプロトン導電性固体電解質は、燃
料電池および各種センサ(Htセンサ、NOxセンサ、
COセンサ等)の材料として期待されている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high temperature proton conductive solid electrolyte. Such proton conductive solid electrolytes are used in fuel cells and various sensors (Ht sensors, NOx sensors,
It is expected to be used as a material for CO sensors, etc.

〔従来の技術〕[Conventional technology]

従来、高温型プロトン導電性固体電解質として知られて
いる材料は、ストロンチウムとセリウムの酸化物を母体
とし、これに、イツトリウム、スカンジウム、イッテル
ビウム、ネオジム、マグネシウム、プラセオジム及び亜
鉛の少なくとも一種の金属の酸化物を含む材料で構成さ
れていた(特開昭58−50458号公報)。この様な
固体酸化物の一般式を下に示す。
The material conventionally known as a high-temperature proton-conductive solid electrolyte has a matrix of strontium and cerium oxides, and an oxide of at least one of the following metals: yttrium, scandium, ytterbium, neodymium, magnesium, praseodymium, and zinc. (Japanese Unexamined Patent Publication No. 58-50458). The general formula of such a solid oxide is shown below.

5rCe+−x Mx 0s−y (ここで、Mは、Y、Sc  、Yb  、Nd  、
Pr  。
5rCe+-x Mx 0s-y (here, M is Y, Sc, Yb, Nd,
Pr.

Mg又はZnを示し、Xは0.5以下の数値を示し、α
は0から0.5の数値を示す)。
Indicates Mg or Zn, X indicates a numerical value of 0.5 or less, α
indicates a numerical value from 0 to 0.5).

この様な酸化物において、4価のCeをそれより低イオ
ン価のイオンで置換するため、酸素欠陥が生じ、電荷補
償が行なわれる。下記に、5rCeO。
In such an oxide, since the tetravalent Ce is replaced with an ion having a lower valence, oxygen defects are generated and charge compensation is performed. Below, 5rCeO.

にYbzOsを添加した場合の例を示す。An example is shown in which YbzOs is added to.

(ここで、yb’、、は5rCeOsのCeの位置に置
換固溶されたybを表わし、voo。は5rCe02中
の0の位置の欠陥(酸素欠陥)を表わし、0゜は5rC
eOs中のOの位置を占める酸素を表わす。) このような酸素欠陥に起因して、プロトンが生成し、プ
ロトン導電性が生じるとされている。プロトン生成機構
としては、下記に示す、〔I〕、および(II)のプロ
セスが考えられる。
(Here, yb',, represents yb substituted as a solid solution at the Ce position of 5rCeOs, voo. represents a defect (oxygen defect) at the 0 position in 5rCe02, and 0° represents 5rCeOs.
Represents oxygen that occupies the O position in eOs. ) Protons are generated due to such oxygen vacancies, and proton conductivity is said to occur. Possible proton generation mechanisms include processes [I] and (II) shown below.

(I ) V  a + Hz  −一→2 H”〔発
明が解決しようとする問題点〕 現在、5rCeO,系プロトン導電性固体電解質で最も
導電率が高い組成は、5rCea、as Ybo、os
Os−*であるが、その導電率は、850℃において1
0−”S・am−’程度である。そしてこの値は、現在
広く利用されているイツトリア安定化ジルコニアの導電
率(10−’S−値−1)に比べ、約lオーダ低い値で
ある。従って、今後プロトン導電体の広範な応用を図る
ためには、その導電率を向上させる必要がある。
(I) V a + Hz −1 → 2 H” [Problem to be solved by the invention] Currently, the composition with the highest conductivity in the 5rCeO-based proton conductive solid electrolyte is 5rCea, as Ybo, os
Os-*, but its conductivity is 1 at 850°C.
This value is about 1 order of magnitude lower than the conductivity (10-'S-value-1) of yttria-stabilized zirconia, which is currently widely used. Therefore, in order to widen the application of proton conductors in the future, it is necessary to improve their conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記のような事情に鑑み、プロトン導電型固
体電解質の導電率を向上させることを目的として為され
たもので、その要旨は、ストロンチウムおよびセリウム
の酸化物を母体とし、さらにセリウムより酸素とのイオ
ン結合力が弱い金属元素の酸化物およびイツトリウム、
スカンジウム、インテルビウム、ネオジム、マグネシウ
ム、プラセオジムおよび亜鉛から選ばれた少なくとも1
種の金属元素の酸化物を含むことを特徴とするプロトン
導電性固体電解質にある。
In view of the above-mentioned circumstances, the present invention was made for the purpose of improving the electrical conductivity of a proton conductive solid electrolyte. Oxides of metal elements with weak ionic bonding strength with oxygen and yttrium,
At least one selected from scandium, interbium, neodymium, magnesium, praseodymium and zinc
The present invention is a proton conductive solid electrolyte characterized by containing oxides of certain metal elements.

セリウムより酸素とのイオン結合力が弱い金属元素とし
ては例えばジルコニウム、チタン、錫などがある。
Examples of metal elements having a weaker ionic bonding force with oxygen than cerium include zirconium, titanium, and tin.

上記のプロトン導電性固体電解質は下記一般式%式% (ここで、MはCeより酸素とのイオン結合力が弱い金
属元素、例えばZr 、T’i  、Snを表わし、M
′はY、Sc 、Yb 、Nd 、Mg 、Prおよび
Znの少な(とも1種の金属元素を表わす、x。
The above proton conductive solid electrolyte is manufactured by the following general formula % (where M represents a metal element whose ionic bonding force with oxygen is weaker than that of Ce, such as Zr, T'i, Sn, and M
' is Y, Sc, Yb, Nd, Mg, Pr and Zn (both represent one type of metal element, x.

yはそれぞれM、M’のCeとの置換モル割合を表わし
、αはM、M’によるCeの置換によって規定される酸
素欠陥の割合を表わす、)この固体電解質において、X
の値は、Q<x≦0.5の範囲、より好ましくはQ<x
≦0.2の範囲をとる。また、yの値は、Q<y≦0.
5の範囲、より好ましくはQ<y≦0.1の範囲をとる
In this solid electrolyte,
The value of is in the range of Q<x≦0.5, more preferably Q<x
The range is ≦0.2. Moreover, the value of y is Q<y≦0.
5, more preferably Q<y≦0.1.

本発明における固体酸化物中には該酸化物のプロトン導
電性を損なわない限りにおいて、Sr  。
The solid oxide in the present invention may contain Sr as long as it does not impair the proton conductivity of the oxide.

Ce  、M (Zn  、Ti  、Snなど)、M
’(Y、’Sc 、Yb 、Nd  、Mg 、 Pr
 、 Zn)以外の金属等の不純物を含んでいてもよい
。5rCeO3などのペロプスカイト化合物は、ybな
どのイオン添加によって、容易に欠陥構造をとる。以下
にその一例を示す。
Ce, M (Zn, Ti, Sn, etc.), M
'(Y, 'Sc, Yb, Nd, Mg, Pr
, Zn) may also contain impurities such as metals other than Zn. A perovskite compound such as 5rCeO3 easily assumes a defective structure by adding ions such as yb. An example is shown below.

5rCeo、 qsYbo、 as O+−exそして
、プロトン導電性は、酸素欠陥の数に依存する。すなわ
ち、酸素欠陥数、αが大きな値であるほどプロトン導電
性は、大きくなる。
5rCeo, qsYbo, as O+-ex and the proton conductivity depends on the number of oxygen vacancies. That is, the larger the number of oxygen vacancies, α, is, the greater the proton conductivity becomes.

一方、ペロブスカイトは、イオン性結晶である、従って
、イオン結晶性、すなわちイオン結合力を弱めれば、酸
素欠陥が生じ易くなると考えられる。
On the other hand, perovskite is an ionic crystal, and therefore, if the ionic crystallinity, that is, the ionic bonding force is weakened, oxygen defects are likely to occur.

本発明者らは、Ceの一部をCeより電気陰性度が大き
く酸素とのイオン結合力の弱い金属、例えばZn、Ti
等で置換することによって、酸素イオンとの結合力が弱
まり、酸素欠陥が生じ易くなるため、プロトン導電性が
増大することを見い出した。
The present inventors have proposed that a part of Ce be replaced with a metal that has higher electronegativity than Ce and weaker ionic bonding force with oxygen, such as Zn and Ti.
It has been found that by substituting with, for example, the bonding force with oxygen ions is weakened and oxygen vacancies are more likely to occur, thereby increasing proton conductivity.

イオン結晶性は、一般に、陽イオンと、陰イオンの電気
陰性度の差で示される。この場合、酸素との電気陰性度
の差が小さい陽イオンの方が、酸素イオンとのイオン結
合力が弱いことになる。表1に各陽イオンの電気陰性度
を示す。
Ionic crystallinity is generally indicated by the difference in electronegativity between cations and anions. In this case, a cation with a smaller difference in electronegativity from oxygen has a weaker ionic bonding force with oxygen ions. Table 1 shows the electronegativity of each cation.

また、表2にCe 、Zr  、Tt  、Hf  、
Snの各原子の0原子とのイオン結晶性を示す。
Table 2 also shows Ce, Zr, Tt, Hf,
It shows the ionic crystallinity of each Sn atom with zero atoms.

表1、表2から、Zr、Tiなどの場合、Ceと比べて
イオン結晶性が低下することが認められる。
From Tables 1 and 2, it is recognized that in the case of Zr, Ti, etc., the ionic crystallinity is lower than that of Ce.

このようにCeの一部をCeより0との結合力が弱い金
属元素、例えばZrで置換した場合、下記の如く酸素欠
陥数が大きくなることが推測され、実際、後出の実施例
で示されるように固体電解質の導電率が向上して、上記
の事情が確認された。
In this way, when a part of Ce is replaced with a metal element whose bonding strength with 0 is weaker than that of Ce, for example, Zr, it is estimated that the number of oxygen vacancies increases as shown below, and in fact, as shown in the example below. The above situation was confirmed as the conductivity of the solid electrolyte improved.

すなわち、 5rCe11. *5Ybo、 osos−ex I 
+5rCeo、*s−x Zr、 Ybo、as o3
−& zにおいて、 α1くα2 であった。
That is, 5rCe11. *5 Ybo, osos-ex I
+5rCeo, *s-x Zr, Ybo, as o3
- & z, α1 × α2.

本発明のプロトン導電性固体電解質の製造方法は特に限
定されず、従来知られている複合酸化物の製造方法のい
ずれによってもよい。代表的な方法では、目的とする金
属酸化物を構成する各金属の酸化物または焼成して酸化
物となる化合物(例、炭酸塩)の所定の割合の混合粉末
を仮焼した後、成形し、本焼して焼結体とする。
The method for producing the proton conductive solid electrolyte of the present invention is not particularly limited, and any conventionally known method for producing complex oxides may be used. In a typical method, a mixed powder of a predetermined ratio of oxides of each metal constituting the desired metal oxide or a compound (e.g., carbonate) that becomes an oxide when fired is calcined, and then molded. , final firing to produce a sintered body.

〔実施例〕〔Example〕

第1図に、5rCeo、 qsYbo、 0503− 
at r  (1)と5rCeo、 75 Zro、 
zYbo、 as O:I−ex z  (2)および
、比較のために、(ZrOz) 0.9 (YJs) 
o、 + (3)の導電率をそれぞれ示す。同図より、
〔2〕の電解質ではZr添加によって800℃以上の高
温で〔1〕の電解質よりプロトン導電性が増加し、85
0℃では、はぼ酸素イオン導電体に匹適する導電率を示
すことが認められる。
In Figure 1, 5rCeo, qsYbo, 0503-
at r (1) and 5rCeo, 75 Zro,
zYbo, as O:I-ex z (2) and, for comparison, (ZrOz) 0.9 (YJs)
The conductivities of o and + (3) are shown respectively. From the same figure,
In the electrolyte [2], the proton conductivity increases compared to the electrolyte [1] at high temperatures of 800°C or higher due to the addition of Zr, and the proton conductivity increases to 85
It is observed that at 0° C., the material exhibits a conductivity comparable to that of an oxygen ion conductor.

第2図に、5rCe(1,9%−X ZryYbo、 
osOx−tx tにおいてZrの添加量Xを変えた時
の850℃での導電率の変化を示す。同図より、Zrの
イオン半径がCeよりも小さいため、添加量が少ない場
合、イオンの導電通路が狭くなり一時導電率は減少する
が、Zr添加量の増大にともなって、酸素欠陥増加効果
が著しくなり、導電率は増大して行くことが認められる
Figure 2 shows 5rCe (1,9%-X ZryYbo,
The graph shows the change in electrical conductivity at 850° C. when the amount of Zr added is changed in osOx-txt. From the same figure, since the ionic radius of Zr is smaller than that of Ce, when the amount added is small, the conductive path of the ions becomes narrow and the conductivity temporarily decreases, but as the amount of Zr added increases, the effect of increasing oxygen vacancies decreases. It is observed that the conductivity increases significantly.

下記に5rCeo、7s Zro、zYo、os 0x
−yの製造例を説明する。5rCOi粉末221.45
g 、 Ce0z粉末193.64g 、 ZrO,粉
末39.97 g 、 YbzOi粉末14.78 g
をそれぞれ秤量し、ポットミルで混合した後、これを1
300℃に10時間保持して仮焼粉末を得た。それから
、この仮焼粉末を成型後、1400〜1500℃の温度
で12時間保持することによって焼結体を得た。
Below are 5rCeo, 7s Zro, zYo, os 0x
An example of manufacturing -y will be explained. 5rCOi powder 221.45
g, Ce0z powder 193.64 g, ZrO, powder 39.97 g, YbzOi powder 14.78 g
Weigh each and mix in a pot mill, then add 1
A calcined powder was obtained by maintaining the temperature at 300°C for 10 hours. Then, this calcined powder was molded and held at a temperature of 1400 to 1500°C for 12 hours to obtain a sintered body.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温型プロトン導電性固体電解質の導
電率を酸素イオン導電体のそれに匹敵するまで高めるこ
とができ、プロトン導電性固体電解質の実用性を増大す
ることができる。
According to the present invention, the conductivity of a high-temperature proton conductive solid electrolyte can be increased to be comparable to that of an oxygen ion conductor, and the practicality of the proton conductive solid electrolyte can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種の固体電解質の導電率の温度変化を示すグ
ラフ図、第2図は本発明の実施例の固体電解質のZr添
加量に関する導電率の変化を示すグラフ図である。 $1図 (m01°/、) Zr添加量 第2図
FIG. 1 is a graph showing changes in electrical conductivity of various solid electrolytes with temperature, and FIG. 2 is a graph showing changes in electrical conductivity with respect to the amount of Zr added in solid electrolytes according to examples of the present invention. $1 figure (m01°/,) Zr addition figure 2

Claims (1)

【特許請求の範囲】 1、ストロンチウムおよびセリウムの酸化物を母体とし
、さらにセリウムより酸素とのイオン結合力が弱い金属
元素の酸化物と、 イットリウム、スカンジウム、イッテルビウム、ネオジ
ム、マグネシウム、プラセオジムおよび亜鉛から選ばれ
た少なくとも1種の金属元素の酸化物とを含むことを特
徴とするプロトン導電性固体電解質。 2、セリウムより酸素とのイオン結合力が弱い前記金属
元素がジルコニウム、チタン、ハフニウム、ケイ素、ゲ
ルマニウム、鉛および錫から選ばれた少なくとも1種で
ある特許請求の範囲第1項記載のプロトン導電性固体電
解質。
[Scope of Claims] 1. Based on oxides of strontium and cerium, and further comprising oxides of metal elements whose ionic bonding strength with oxygen is weaker than that of cerium, and yttrium, scandium, ytterbium, neodymium, magnesium, praseodymium, and zinc. A proton conductive solid electrolyte comprising an oxide of at least one selected metal element. 2. Proton conductivity according to claim 1, wherein the metal element having a weaker ionic bonding force with oxygen than cerium is at least one selected from zirconium, titanium, hafnium, silicon, germanium, lead, and tin. solid electrolyte.
JP62028316A 1987-02-12 1987-02-12 Proton conductive solid electrolyte Pending JPS63201051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028316A JPS63201051A (en) 1987-02-12 1987-02-12 Proton conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028316A JPS63201051A (en) 1987-02-12 1987-02-12 Proton conductive solid electrolyte

Publications (1)

Publication Number Publication Date
JPS63201051A true JPS63201051A (en) 1988-08-19

Family

ID=12245208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028316A Pending JPS63201051A (en) 1987-02-12 1987-02-12 Proton conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JPS63201051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535922A1 (en) * 1995-09-27 1997-04-10 Forschungszentrum Juelich Gmbh New strontium-cerium-zirconium oxide ceramic
JP2003033662A (en) * 2001-07-23 2003-02-04 Sumitomo Metal Mining Co Ltd Photocatalyst exhibiting catalytic activity in visible light region
JP2008243627A (en) * 2007-03-27 2008-10-09 Toyota Motor Corp Proton conductor, electrochemical cell, and manufacturing method of proton conductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535922A1 (en) * 1995-09-27 1997-04-10 Forschungszentrum Juelich Gmbh New strontium-cerium-zirconium oxide ceramic
JP2003033662A (en) * 2001-07-23 2003-02-04 Sumitomo Metal Mining Co Ltd Photocatalyst exhibiting catalytic activity in visible light region
JP4696414B2 (en) * 2001-07-23 2011-06-08 住友金属鉱山株式会社 Photocatalyst having catalytic activity in the visible light region
JP2008243627A (en) * 2007-03-27 2008-10-09 Toyota Motor Corp Proton conductor, electrochemical cell, and manufacturing method of proton conductor

Similar Documents

Publication Publication Date Title
Ho On the structural chemistry of zirconium oxide
Roth Pyrochlore-Type Compounds Containing Double
Takahashi et al. Oxide ion conductors based on bismuthsesquioxide
Dumon et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet
Tuller et al. Fast ion conductors: future trends
US7697263B2 (en) High-temperature dielectric materials and capacitors made therefrom
Joy et al. Formation of lead magnesium niobate perovskite from niobate precursors having varying magnesium content
Liu et al. Achieving ultrahigh energy-storage capability in PbZrO 3-based antiferroelectric capacitors based on optimization of property parameters
US4927793A (en) Proton conductive material and method of manufacturing thereof
US3340074A (en) Barium titanate materials
US5213911A (en) Solid-oxide fuel cell electrolyte
JPH08208333A (en) Conductive material for oxygen ion and its production
JPS63201051A (en) Proton conductive solid electrolyte
Kornphom et al. High energy-storage performance under low electric fields and excellent temperature stability of KF-modified BNT-ST-AN relaxor ferroelectric ceramics
JP3034132B2 (en) Zirconia solid electrolyte
Yoshioka et al. Oxide ion conduction in A-site deficient La-Ti-Al-O perovskite
JP4575171B2 (en) Mg2MM&#39;O6 + x, (M = Y, rare earth metal, and M &#39;= SN, SB, ZR, HF, and TA) compound and method for producing the same
US7347983B2 (en) Mg2MM&#39;o 6+x, (M=Y, rare earth metal and M&#39;=SN, OR Zr) dielectric ceramics
Irvine et al. Oxide ion transport in highly defective cubic stabilized zirconias
Aksenova et al. Phase equilibria in the Nd2O3–BaO–Fe2O3 system: Crystal structure, oxygen content, and properties of intermediate oxides
Bai et al. Reduced leakage current and excellent thermal stability in lead-free BiFeO3–BaTiO3-based piezoelectric ceramics
JPH0258232B2 (en)
Wu et al. Microstructural Investigation of Ba (Ti (1− x) Mnx) O3 Ceramics with 6H‐and 12R‐Polytypes
Pollet et al. Copper electrodes multilayer ceramic capacitors Part I The dielectric composition
JP3877809B2 (en) Proton conductive ceramics