JPS63200812A - Filter medium for forming - Google Patents

Filter medium for forming

Info

Publication number
JPS63200812A
JPS63200812A JP3242187A JP3242187A JPS63200812A JP S63200812 A JPS63200812 A JP S63200812A JP 3242187 A JP3242187 A JP 3242187A JP 3242187 A JP3242187 A JP 3242187A JP S63200812 A JPS63200812 A JP S63200812A
Authority
JP
Japan
Prior art keywords
fiber
sheet type
molding
type substance
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3242187A
Other languages
Japanese (ja)
Other versions
JPH0779934B2 (en
Inventor
Yukimasa Kuroda
幸政 黒田
Takeo Oshima
大島 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62032421A priority Critical patent/JPH0779934B2/en
Publication of JPS63200812A publication Critical patent/JPS63200812A/en
Publication of JPH0779934B2 publication Critical patent/JPH0779934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets

Abstract

PURPOSE:To obtain the filter medium of no deterioration of preformance caused by the three dimentional forming by adhering fibrous sheet type substance with permeable thermoplastic sheet type substance in 1-50% rate of projection area. CONSTITUTION:The filter medium for forming consists of fibrous sheet type substance 1 forming ribs, thermoplastic sheet type substance 2 capable of forming three-dimensionally, and partial adhering parts 3. The fibrous sheet type substance 1 of 1-5mum diameter of single fiber, of 5-50% filling-up rate of fiber, and of >=70% breaking elongation at 120 deg.C is used, and, as for the thermoplastic sheet 2, the permeable one is used. And the fibrous sheet type substance 1 and the thermoplastic sheet 2 are adhered in 1-50% rate of projection area. Consequently, though the ribs are disappeared by the elongation when the three-dimensional forming is carried out, the structural sliding does not occur in the fibrous sheet type substance, so that the fibrous sheet type substance is free from the deformation caused by elongation, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、立体成型性が必要なフィルターとして使用さ
れる成型用フィルター材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a moldable filter material used as a filter requiring three-dimensional moldability.

〈従来の技術〉 近年、衛生理念の高まりにより、マスクや掃除機が巾広
く使用されるようになってきたが、マスクや掃除機に使
われているフィルターは、取り替え頻度が高い為、製造
が容品で安価なものに対する要望が強い。この要望を満
たす1つの手段として、これらフィルターを一体成盟法
によって製造する方法があり、これらを可能にするには
、立体成型可能なフィルター材が必要である。
<Conventional technology> In recent years, masks and vacuum cleaners have become widely used due to the rise in hygiene philosophy. However, the filters used in masks and vacuum cleaners have to be replaced frequently, making it difficult to manufacture them. There is a strong demand for compact and inexpensive products. One means to meet this demand is to manufacture these filters by an integral molding method, and to make this possible a filter material that can be three-dimensionally molded is required.

従来、フィルター材としては、紙、織布及び不織シート
で代表されるフィルター材がある。
Conventionally, filter materials include paper, woven fabric, and non-woven sheet.

しかし、紙、織布から成るフィルター材は、立体成型す
ると地割れ、破れなどが生じるため立体成型用のフィル
ター材には使用できない。
However, filter materials made of paper or woven fabric cannot be used as filter materials for three-dimensional molding because they cause cracks and tears when molded in three-dimensional form.

さらk、不織シートから成るフィルター材のうち、短繊
維不織シート、ニードルパンチングした不織シートなど
は、立体成型はある程度可能であるが、そのメカニズム
は短繊維同志のずれや構成繊維の一部を切断し、短繊維
化して自由度を高めることkよって立体成型を行ってい
る。このため大変形の成型が出来ないことや均一な立体
成型がむずかしく目付斑などが発生するため、ずれ部分
のフィルター性能が低下し、集塵性が悪くなったり、保
型性が悪い等の欠点がある。そのため、成型部の保型性
を良くする目的で、樹脂加工を行っている。また、長繊
維不織シートの構成繊維に破断伸度の大きい未延伸糸を
使った不織シートから成るフィルター材は、立体成型は
可能であるが、そのメカニズムは立体成型時の変形応力
を構成繊維の伸びにより吸収している。このため、保型
性の悪さはある程度改良できるが、前記フィルター材と
同様に集塵性が悪くなる等の欠点がある。
Furthermore, among filter materials made of non-woven sheets, short fiber non-woven sheets, needle-punched non-woven sheets, etc. are capable of three-dimensional molding to some extent, but the mechanism for this is due to misalignment of short fibers or one of the constituent fibers. Three-dimensional molding is performed by cutting the parts and making them into short fibers to increase the degree of freedom. For this reason, large deformation molding is not possible, uniform three-dimensional molding is difficult, and unevenness occurs, resulting in poor filter performance in misaligned areas, poor dust collection, poor shape retention, etc. There is. Therefore, resin processing is performed to improve the shape retention of the molded part. In addition, filter materials made of nonwoven sheets that use undrawn yarns with high breaking elongation as constituent fibers of long fiber nonwoven sheets can be formed into three-dimensional molding, but the mechanism is that the deformation stress occurs during three-dimensional molding. It is absorbed by the elongation of the fibers. For this reason, although the poor shape retention can be improved to some extent, it has the same drawbacks as the above-mentioned filter material, such as poor dust collection.

〈発明が解決しようとする問題点〉 本発明は、このような従来技術の問題点を解消し、立体
成型によってフィルター性能が低下しない優れた集塵性
を有する成型用フィルター材を提供することにある。
<Problems to be Solved by the Invention> The present invention solves the problems of the prior art and provides a molded filter material with excellent dust collection properties that does not deteriorate filter performance due to three-dimensional molding. be.

く問題点を解決するための手段〉 本発明は、単繊維直径0.1〜5μm、繊維充填率5〜
50%の繊維シート状物と120℃加熱下の破断伸度が
70%以上で、通気性を有する熱可塑性シート状物とが
投影面積の1〜50%接合された成型用フィルター材で
ある。
Means for Solving Problems〉 The present invention has a single fiber diameter of 0.1 to 5 μm and a fiber filling rate of 5 to 5 μm.
This is a filter material for molding in which a 50% fibrous sheet material and a thermoplastic sheet material having air permeability and having a breaking elongation of 70% or more under heating at 120° C. are joined together for 1 to 50% of the projected area.

本発明でいう繊維シート状物としては、短繊維の抄造に
よる不織布、溶融紡糸した長繊維不織布、カーディング
ウェブのニードルパンチングした不織布、ガラス繊維シ
ート状物、メルトブロ一方式によるウェブ等が有るがこ
れらに限定されるものではなく、フィルターとして使用
できる繊維シート状物であればよい。ウェブとしては、
メルトブロ一方式による細デニール繊維からなるメルト
ブローウェブを用いた場合に効果が著しい。ウェブの目
付は4!に限定されないが、優れたフィルター性能のも
のを得るためKは、10〜200g/n”であることが
好ましい。かかるウェブな構成する繊維としては、単繊
維直径が0.1〜5μmの範囲にすることが必要である
。すなわち、0.1μm未溝では、単繊維強力が低く以
降の取扱い性が劣る。また、5μmを超えると、優れた
集塵性が得られず好ましくない。
Examples of the fiber sheet material in the present invention include a nonwoven fabric made by short fiber papermaking, a melt-spun long fiber nonwoven fabric, a carded web needle-punched nonwoven fabric, a glass fiber sheet material, and a melt-blown web. It is not limited to this, and any fiber sheet-like material that can be used as a filter may be used. As a web,
The effect is remarkable when a melt-blown web made of fine denier fibers produced by one-way melt-blowing is used. The web weight is 4! Although not limited to, K is preferably 10 to 200 g/n'' in order to obtain excellent filter performance.The fibers constituting such a web may have a single fiber diameter in the range of 0.1 to 5 μm. In other words, if the groove is 0.1 μm without grooves, the strength of the single fibers will be low and the subsequent handling will be poor.If it exceeds 5 μm, excellent dust collection performance will not be obtained and this is not preferred.

繊維シート状物の(〆/#)X100で表わされる繊維
充填率α(%)〔〆は繊維構造物の見掛は密度、ρは繊
維の真の密度。〕は、5≦α≦50にする必要がある。
Fiber filling rate α (%) expressed as (〆/#)×100 of the fiber sheet-like material [〆 is the apparent density of the fiber structure, and ρ is the true density of the fibers. ] must satisfy 5≦α≦50.

より好ましくは、10≦α≦30の範囲であるすなわち
、繊維充填率が5%未満であると繊維間隙が大きくなり
繊維シート状物が粗となるため単位面積当りの繊維量が
不均一となり易いだけでなく集塵性も劣っている。また
、繊維充填率が50%を越えると繊維間隙が小さくなり
繊維シート状物が密となり通気性が損なわれ、圧力損失
が高くなることなど実用のフィルター材として好ましい
ものが得られない。
More preferably, the range is 10≦α≦30. In other words, if the fiber filling rate is less than 5%, the fiber gaps become large and the fiber sheet becomes coarse, so that the amount of fibers per unit area tends to be uneven. Not only that, but the dust collection performance is also poor. Furthermore, if the fiber filling rate exceeds 50%, the fiber gap becomes small, the fiber sheet becomes dense, the air permeability is impaired, and the pressure loss increases, making it impossible to obtain a filter material suitable for practical use.

本発明でいう、熱可塑性シート状物とは、例えば、ポリ
エチレン、ポリプロピレン、ポリ塩化ビニル、ポリエス
テル、ナイロン6、ナイロン66゜ポリウレタンなどの
繊維材料及び有人フィルムがある。好ましくは、未延伸
糸から成る編、織物及び不織布などの繊維材料、−軸及
び二軸延伸有人フィルムなどこれらを加熱収縮させた熱
可塑性シート状物が良い。更に1これら繊維材料、フィ
ルムの組み合せがある。かかる熱可塑性シート状物は、
90〜200℃の広い温度範囲で立体成型が可能であり
、代表的な立体成型温度120℃加熱下の破断伸度が7
0%以上であり、少なくとも、繊維シート状物より良好
な通気性(JIS L−1096フラジール法によって
測定される通気量1〜400ce/ctr?/w:、 
]を有することが必要である。好ましくは、120℃加
熱下の破断伸度が100%以上が良い。120℃加熱下
の破断伸度が70%未満では、十分な立体成型性が得ら
れず、深い凹凸の成型を行うと、偏肉現象、破れ等が起
り好ましくない。
In the present invention, the thermoplastic sheet material includes, for example, fibrous materials such as polyethylene, polypropylene, polyvinyl chloride, polyester, nylon 6, nylon 66° polyurethane, and manned films. Preferably, fibrous materials such as knitted, woven, and nonwoven fabrics made of undrawn yarn, and thermoplastic sheet-like materials obtained by heat-shrinking these materials, such as -axially and biaxially stretched manned films, are preferable. Furthermore, there is a combination of these fiber materials and films. Such thermoplastic sheet material is
Three-dimensional molding is possible in a wide temperature range of 90 to 200°C, and the elongation at break when heated at a typical three-dimensional molding temperature of 120°C is 7.
0% or more, and at least has better air permeability than fiber sheet materials (air permeability measured by JIS L-1096 Frazier method: 1 to 400 ce/ctr?/w:
]. Preferably, the elongation at break under heating at 120°C is 100% or more. If the elongation at break under heating at 120° C. is less than 70%, sufficient three-dimensional moldability cannot be obtained, and when molding with deep unevenness is performed, uneven thickness, tearing, etc. occur, which is not preferable.

本発明でいう投影面積は、繊維シート状物と熱可塑性シ
ート状物とが接合によって複合化された複合シートの(
S、/(S++St) ) X 100で表わされる投
影面積A(%)〔Slは接合部の面積、Stは非接合部
の面積。〕であり、1≦A≦50、好ましくは、5≦A
≦30の範囲であることが必要である。投影面積が1%
未満であると繊維シート状物と熱可塑性シート状物との
接合が悪く立体成型時に層間剥離などが発生し好しくな
い。投影面積が50%を越えると、該複合シートを立体
成型行うと、成型体の有効濾過面積が減少する。その為
、圧力損失の上昇と、ν材への粉塵の目詰りが発生し、
実用のフィルター材としての性能が劣り好ましくない。
The projected area in the present invention is the (
S, /(S++St) ) X Projected area A (%) expressed as 100 [Sl is the area of the bonded portion, St is the area of the non-bonded portion. ], 1≦A≦50, preferably 5≦A
It is necessary that the range is ≦30. Projected area is 1%
If it is less than this, the bonding between the fiber sheet and the thermoplastic sheet will be poor and delamination will occur during three-dimensional molding, which is not preferable. When the projected area exceeds 50%, the effective filtration area of the molded product decreases when the composite sheet is three-dimensionally molded. As a result, pressure loss increases and the ν material becomes clogged with dust.
Its performance as a practical filter material is poor and is not preferred.

又、本発明でいう接合とは、エンボスロールを使った部
分熱圧着接合、超音波及び高周波ウエルダー等による部
分融着接合、あるいは、各種接着剤によって接合された
部分接合等がある。
Furthermore, the term "joining" as used in the present invention includes partial thermocompression bonding using an embossing roll, partial fusion bonding using ultrasonic waves, high-frequency welding, etc., partial bonding using various adhesives, and the like.

好ましくは、部分熱圧着接合あるいは、部分融着接合が
よい。さらに、接合状態としては、接合部が点状(接合
部の形状は円形、長方形、正方形。
Preferably, partial thermocompression bonding or partial fusion bonding is preferred. Furthermore, the bonded state is dotted (the shape of the bonded portion is circular, rectangular, or square).

六角形など特に限定しない。)、格子状、直線状などが
あり、好ましくは点状の接合がよく、規則正しく配列し
ていることがよい。
It is not particularly limited to hexagonal shapes. ), lattice shape, linear shape, etc., preferably dotted joints and regularly arranged.

本発明は、上記、特定の繊維シート状物と、通気性を有
し立体成型性を持った特定の熱可塑性シート状物とが部
分的接合によって複合化され、該、繊維シート状物が熱
可塑性シート状物上で畝を形成している。これkよって
立体成型性を持たない繊維シート状物を、立体成型可能
くし、成型品が型くずれしKくいように保型性を向上さ
せたものである。
The present invention is characterized in that the above-mentioned specific fiber sheet-like material and a specific thermoplastic sheet-like material having air permeability and three-dimensional formability are composited by partial bonding, and the fiber sheet-like material is heated. The ridges are formed on a plastic sheet material. This makes it possible to form a fiber sheet-like product that does not have three-dimensional moldability into three-dimensional molding, and improves shape retention so that the molded product does not lose its shape.

以下、本発明を添付図面を参照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図、第2−a図、第2−b図は、本発明に係る成型
用フィルター材をモデル的に説明する概念図で、繊維シ
ート状物が熱塑性シート状物上で畝を形成していること
を示す。即ち、第1図は、本発E!A′に係る成型用フ
ィルター材の斜視図、第2−a図は成型前の断面図、第
2−b図は成型後の断面図であって1は畝を形成した繊
維シート状物、2は立体成型性を有する熱可塑性シート
状物、3は部分的接合部である。
Figures 1, 2-a, and 2-b are conceptual diagrams illustrating the molded filter material according to the present invention as a model, in which a fiber sheet forms ridges on a thermoplastic sheet. Indicates that That is, Figure 1 shows the original E! A perspective view of the filter material for molding according to A', FIG. 2-a is a cross-sectional view before molding, and FIG. 2-b is a cross-sectional view after molding. 3 is a thermoplastic sheet material having three-dimensional formability, and 3 is a partial joint.

この様な構造を有する成型用フィルター材においては、
立体成型時に成型用フィルター材を構成する熱可塑性シ
ート状物と、繊維シート状物とが同時に伸ばされる。こ
の時、繊維シート状物は上述の様に畝を形成しているの
で、伸ばされた時畝は消失するが、繊維シート状物内で
組織のずれが生じないため、繊維シート状物は、延伸な
どの変形を受けない。従って、繊維シート状物は、優れ
た集塵性を保持したまま立体成型ができる。この場合、
畝の消失度合、延伸の程度は、実質的に性能が変化しな
い程度であればよく、41限定しない。
In molded filter materials with such a structure,
During three-dimensional molding, the thermoplastic sheet-like material and the fiber sheet-like material constituting the filter material for molding are simultaneously stretched. At this time, since the fiber sheet-like material has ridges as described above, the ridges disappear when it is stretched, but since no tissue shift occurs within the fiber sheet-like material, the fiber sheet-like material Not subject to deformation such as stretching. Therefore, the fiber sheet material can be three-dimensionally molded while maintaining excellent dust collection properties. in this case,
The degree of disappearance of the ridges and the degree of stretching are not limited as long as they do not substantially change the performance.

次いで、第3−a図及び第3−b図は、本発明でいう立
体成型に用いる成型装置の1例を示すモデル図である。
Next, FIGS. 3-a and 3-b are model diagrams showing an example of a molding apparatus used for three-dimensional molding according to the present invention.

即ち、第3−a図は、成型前の成型装置、被成型体を表
し、第3−b図は、成型時の成型装置、被成型体が成型
されたもの(成型体)を表した断面の模式図であり、4
は被成型体、5は被成型体を保持する枠、6は上下移動
できる加熱体、4′は成型体である。このよ5K、本発
明の立体成型の形状は、加熱体の形状によって決まり、
例えば、円柱形状2円錐台形状、直方体形状、半球形状
などの任意の形状が目的によって選ばれる。
That is, Figure 3-a shows the molding device and the object to be molded before molding, and Figure 3-b shows the cross section of the molding device and the object to be molded during molding (the molded object). This is a schematic diagram of 4
5 is a frame for holding the molded object, 6 is a heating element which can be moved up and down, and 4' is a molded object. In this 5K, the shape of the three-dimensional molding of the present invention is determined by the shape of the heating body,
For example, any shape such as a cylindrical shape, a biconical truncated cone shape, a rectangular parallelepiped shape, a hemispherical shape, etc. is selected depending on the purpose.

本発明の成型用フィルター材は、必要に応じて透水剤、
撥水剤、帯電防止剤、顔料及び染料による着色などの加
工が行われる。又、用途に応じて繊維シート状物と熱可
塑性シート状物の間に活性炭、吸着剤、吸水性ポリマー
などを封入してもよい。
The filter material for molding of the present invention may optionally contain a water permeable agent,
Processes include coloring with water repellents, antistatic agents, pigments, and dyes. Furthermore, activated carbon, an adsorbent, a water-absorbing polymer, etc. may be enclosed between the fiber sheet-like material and the thermoplastic sheet-like material depending on the purpose.

〈実施例〉 以下、実施例、比較例により本発明を具体的に説明する
<Examples> The present invention will be specifically described below with reference to Examples and Comparative Examples.

尚、本発明で用いた特性値の測定方法を以下に示す。The method for measuring the characteristic values used in the present invention is shown below.

150℃加熱下の破断強度; 万能引張り試験機(高滓製作所製Auto Graph
DSS−2000型)、引張り試験機用恒温槽な用いて
、雰囲気温度120℃の槽内において、把握長50■、
引張り速度1001分の条件下で測定することによって
得られる荷重−伸長曲線より評価する。
Breaking strength under heating at 150°C; Universal tensile tester (Auto Graph manufactured by Takasugi Seisakusho)
DSS-2000 model), using a thermostat for tensile testing machine, gripping length 50cm in a tank with an ambient temperature of 120℃,
The evaluation is based on a load-elongation curve obtained by measuring at a tensile rate of 1001 minutes.

立体成型性:成型体の最大面積比: 第3−a図、第3−b図に示す成型装置を用いて、加熱
体の温度120℃、成型時間30秒の条件下で成型する
時、成型する前の絞り込み面積(S−と成型後の絞り込
みされた拡大全表面積(S、)との比で表わされる成型
体の最大面積比(Ss/ So)で表わす。
Three-dimensional moldability: Maximum area ratio of molded body: When molded using the molding equipment shown in Figures 3-a and 3-b under the conditions of a heating element temperature of 120°C and a molding time of 30 seconds, the molding It is expressed as the maximum area ratio (Ss/So) of the molded body, which is expressed as the ratio of the squeezed area (S-) before molding to the expanded total surface area squeezed after molding (S, ).

立体成型度; 立体成型性の評価と同様の方法によって、S、4゜2.
30時の成型体の形体を下記判定基準で評価する。
Three-dimensional formability: S, 4°2.
The shape of the molded product at 30 o'clock is evaluated using the following criteria.

〈判定基準〉 O:破れ、破壊が生じなかった。<Judgment criteria> O: No tearing or destruction occurred.

×:破れ、破壊が生じた。×: Tearing and destruction occurred.

集塵性:捕集効率; JISK−8901試験用ダクト13種B法の0.3μ
m平均のステアリン酸エアーゾルのダストの捕集効率測
定により評価した。
Dust collection property: Collection efficiency; JISK-8901 test duct 13 type B method 0.3μ
The evaluation was made by measuring the dust collection efficiency of m-average stearic acid aerosol.

圧力損失: 捕集効率測定と同様の条件下で測定される圧力損失によ
り評価する。
Pressure drop: Evaluate by pressure drop measured under the same conditions as for collection efficiency measurement.

実施例1 メルトプロ一方式により得られた単繊維直径1.7μm
を主体とする目付20.l;+7m”、繊維充填率60
%を主体とする目付30p/ff!”、通気性300c
t:/cttr”Aacのポリエステル長繊維不織シー
トを重ね合せて、上部が凸部を有するエンボスロールと
表面が平滑な下部ロールの間で部分熱圧着を行った。
Example 1 Single fiber diameter 1.7 μm obtained by one method of Melt Pro
The basis weight is 20. l;+7m”, fiber filling rate 60
Weight based on % 30p/ff! ”, breathability 300c
Polyester long fiber nonwoven sheets of t:/cttr"Aac were overlapped and partially thermocompressed between an embossing roll having a convex portion on the upper part and a lower roll having a smooth surface.

コノ時、エンボスロールの凸部の単位m積力ζ21ni
&、圧着面積比率12%であり、上下ロール温度90℃
、線圧20kC97cm下にて部分熱圧着を施し、複合
シートを得た。次に該複合シートをスチーム温度90℃
、滞留時間60秒の条件下で収縮加工(経。
When concave, the unit m product force of the convex part of the embossing roll ζ21ni
&, crimping area ratio is 12%, upper and lower roll temperature is 90℃
, partial thermocompression bonding was performed under a linear pressure of 20 kC and 97 cm to obtain a composite sheet. Next, the composite sheet was steamed at a temperature of 90°C.
, shrinkage processing under conditions of a residence time of 60 seconds.

緯方向50%)を行った後、乾燥させ投影面積12%点
接合された複合シートを作成した。得られた複合シート
の性能を表−1に示す。
50% in the latitudinal direction), dried, and a composite sheet having a projected area of 12% was bonded at points. Table 1 shows the performance of the composite sheet obtained.

実施例2,3 メルトプロ一方式により得られた単繊維直径5μmを主
体とする目付zoo/rn”、繊維充填率17%のポリ
プロピレン繊維シート状物と、二軸延伸有人ポリエチレ
ンフィルム(経、緯方向50%収縮)を重ね合せて、超
音波接合によって、融着面積比率15%で格子状、直線
状の熱融着を施し複合シートを得た。以下、実施例1と
同様の収縮加工を行ない、実施例2.3の複合シートを
作成した。
Examples 2 and 3 A polypropylene fiber sheet with a fabric weight "zoo/rn" and a fiber filling rate of 17%, mainly composed of single fibers with a diameter of 5 μm, obtained by the MeltPro one-way method, and a biaxially stretched manned polyethylene film (in the warp and weft directions) 50% shrinkage) were superimposed and thermally bonded in a lattice and linear shape with a fused area ratio of 15% by ultrasonic bonding to obtain a composite sheet.Hereafter, the same shrinking process as in Example 1 was performed. , a composite sheet of Example 2.3 was prepared.

得られた複合シートの性能を表−IIlc示す。Table IIlc shows the performance of the obtained composite sheet.

比較例1 実施例2において、製水収縮率1%のポリエステル繊維
の糸条50デニール24フイラメントのウーリー加工糸
を用いた以外は、実施例2と同様の操作を行って収縮加
工前の複合シートを作成した。複合シートの性能を表I
K示す。
Comparative Example 1 The same operation as in Example 2 was carried out to produce a composite sheet before shrinkage processing, except that in Example 2, a woolly processed yarn of 50 denier 24 filaments of polyester fiber with a water production shrinkage rate of 1% was used. It was created. Table I shows the performance of the composite sheet.
Show K.

表−1 *1:熱可塑性シート状物の経、緯方向の破断速度*2
 : as/1% =3.0 で成型した後の成屋体の
集塵性表−1に示すとと(、実施例1〜3は、比較例1
K比べ、立体成型性、底盤後の集塵性とも優れているこ
とが判る。
Table-1 *1: Breaking speed of thermoplastic sheet in warp and weft directions *2
: as / 1% = 3.0 As shown in Table 1, the dust collection property of the finished body after molding is as / 1% = 3.0
It can be seen that compared to K, it is superior in three-dimensional formability and dust collection after the bottom plate.

比較例2,3 実施例IVcおいて、単繊維直径20μmを主体とする
目付509/WE−繊維充填率3%(比較例2)55%
(比較例3)Kなるように加工を施したポリエステル繊
維シート状物を用いた以外は、実施例1と同様の操作を
行なって複合シートを作成した。
Comparative Examples 2 and 3 In Example IVc, basis weight 509/WE-fiber filling rate 3% (Comparative Example 2) 55%, mainly composed of single fibers with a diameter of 20 μm
(Comparative Example 3) A composite sheet was prepared in the same manner as in Example 1, except that a polyester fiber sheet material processed to have K was used.

比較例2は、複合シートの捕集効率が8%と低く集塵性
が悪い。
In Comparative Example 2, the composite sheet had a low collection efficiency of 8% and had poor dust collection performance.

比較例3は、複合シートの圧力損失が高(実用のフィル
ター材として好ましくない。
In Comparative Example 3, the pressure loss of the composite sheet was high (unfavorable as a practical filter material).

比較例4,5 実施例3において、融着面積0.5%点状熱融着(比較
例4)、融着面積55%、格子状熱融着(比較例5)を
行った以外は、実施例3と同様の操作を行ない複合シー
トを作成した。
Comparative Examples 4 and 5 In Example 3, except that point heat fusion with a fusion area of 0.5% (Comparative Example 4) and lattice heat fusion with a fusion area of 55% (Comparative Example 5) were performed. A composite sheet was prepared by performing the same operation as in Example 3.

比較例4は、立体成型時に繊維シート状物とフィルムと
の間で層間剥離が発生した。
In Comparative Example 4, delamination occurred between the fiber sheet and the film during three-dimensional molding.

比較例5は、複合シートの圧力損失が高く実用フィルタ
ー材として好ましくなかった。
In Comparative Example 5, the composite sheet had a high pressure loss and was not preferred as a practical filter material.

〈発明の効果〉 本発明になる成型用フィルター材は、繊維シート状物の
持つ優れた集塵性を低下させることな(立体成型を可能
にし、成型後のフィルター材の保型性を向上することが
できる。
<Effects of the Invention> The filter material for molding according to the present invention does not reduce the excellent dust collection properties of the fiber sheet (enables three-dimensional molding and improves the shape retention of the filter material after molding). be able to.

これによって、例えば掃除機、マスク、自動車エアーフ
ィルター及び油、紅茶、コーヒー、緑茶などの成分抽出
用フィルターなど、広い分野の成を用フィルター材とし
て用いることができる。
As a result, products in a wide range of fields can be used as filter materials, such as vacuum cleaners, masks, automobile air filters, and filters for extracting components of oil, black tea, coffee, green tea, and the like.

【図面の簡単な説明】 第1図、第2−a図、第2−b図は、本発明の成型用フ
ィルター材をモデル的に説明する概念図であり、第1図
は複合シートの一例を示す斜視図、第2−a図は、複合
シートの基本的構造の一例を示す断面図、第2−b図は
、複合シートの立体成型後の一例を示す断面図である。 第3−a図及び第3−b図は成型前後の底盤装置、被成
型体の状態をモデル的に説明するものであり、第3−a
図は、成壓前を模式的に示した断面図、第3−b図は、
成型後を模式的に示した断面図である。 1・・・畝を形成した繊維シート状物、2・・・熱可朦
性シート状物、3・・・接合部、4・・・被成型体、4
′・・・成型体、5・・・被成型体を保持する枠、6°
°°上下移動できる加熱体。 特許出臥 旭化成工業株式会社
[Brief Description of the Drawings] Figures 1, 2-a, and 2-b are conceptual diagrams explaining the molded filter material of the present invention as a model, and Figure 1 is an example of a composite sheet. Fig. 2-a is a sectional view showing an example of the basic structure of a composite sheet, and Fig. 2-b is a sectional view showing an example of the composite sheet after three-dimensional molding. Figure 3-a and Figure 3-b are model explanations of the bottom plate device and the state of the molded object before and after molding, and Figure 3-a
The figure is a cross-sectional view schematically showing the state before construction, and Figure 3-b is
FIG. 3 is a cross-sectional view schematically showing the product after molding. DESCRIPTION OF SYMBOLS 1... Fiber sheet-like material with ridges formed therein, 2... Thermoplastic sheet-like material, 3... Joint portion, 4... To-be-molded object, 4
'... Molded object, 5... Frame for holding the molded object, 6°
°°Heating element that can be moved up and down. Patent issued Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 単繊維直径0.1〜5μm、繊維充填率5〜50%の繊
維シート状物と120℃加熱下の破断伸度が70%以上
で、通気性を有する熱可塑性シート状物とが、投影面積
の1〜50%接合された成型用フィルター材
A fiber sheet with a single fiber diameter of 0.1 to 5 μm and a fiber filling rate of 5 to 50%, and a thermoplastic sheet with air permeability and a breaking elongation of 70% or more when heated at 120°C have a projected area of Filter material for molding with 1 to 50% bonded
JP62032421A 1987-02-17 1987-02-17 Molding filter material Expired - Fee Related JPH0779934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032421A JPH0779934B2 (en) 1987-02-17 1987-02-17 Molding filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032421A JPH0779934B2 (en) 1987-02-17 1987-02-17 Molding filter material

Publications (2)

Publication Number Publication Date
JPS63200812A true JPS63200812A (en) 1988-08-19
JPH0779934B2 JPH0779934B2 (en) 1995-08-30

Family

ID=12358484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032421A Expired - Fee Related JPH0779934B2 (en) 1987-02-17 1987-02-17 Molding filter material

Country Status (1)

Country Link
JP (1) JPH0779934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066534A (en) * 2007-09-13 2009-04-02 Roki Techno Co Ltd Pleat type filter cartridge for liquid
JP2014529495A (en) * 2011-08-26 2014-11-13 ネーナー・ゲッスナー・ゲーエムベーハー Multilayer filter media and filter elements made from multilayer filter media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163136U (en) * 1979-05-11 1980-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163136U (en) * 1979-05-11 1980-11-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066534A (en) * 2007-09-13 2009-04-02 Roki Techno Co Ltd Pleat type filter cartridge for liquid
JP2014529495A (en) * 2011-08-26 2014-11-13 ネーナー・ゲッスナー・ゲーエムベーハー Multilayer filter media and filter elements made from multilayer filter media

Also Published As

Publication number Publication date
JPH0779934B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
EP0924328B2 (en) Laminated nonwoven fabric and method of manufacturing same
JP4039809B2 (en) Three-dimensional structured fiber planar product and method for producing the same
JP2981533B2 (en) Molded filter
KR100452179B1 (en) High precision cylinder filter
CA2086033A1 (en) Laminated non-woven fabric and process for producing the same
JPH04370260A (en) Nonwoven material consisting of two or more layers having filtering characteristic for a long period of time and method for its production
KR19990087272A (en) Electrostatic fibrous filter web
KR100327933B1 (en) Spunbonded Loop Materials for Hook and Loop Fastening Systems
CA2393931C (en) Regularly structured nonwovens, method for their manufacture and use
JPH10280267A (en) Flexible spun-bonded nonwoven fabric
JPH0525763A (en) Bulky sheet and production thereof
JP2951559B2 (en) Bulk nonwoven fabric and method for producing the same
JPS58180653A (en) Laminated nonwoven sheet for microfilter
JPS63200812A (en) Filter medium for forming
EP0505568B1 (en) Heat-resistant nonwoven fabric and method of manufacturing said fabric
JPH09195154A (en) Nonwoven fabric for hook-and-loop fastener and its production
JPH086242B2 (en) Heat-shrinkable non-woven sheet and method for producing the same
JPH10204765A (en) Waterproof multi-layered nonwoven fabric having good vapor permeability and reduced in weight and its production
JPH0967748A (en) Bulky nonwoven fabric and its production
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JPS62141167A (en) Production of composite sheet
JP3025606B2 (en) Non-woven and bonded non-woven
JPH03293008A (en) Electret filter and its production
JP4007919B2 (en) Filter for dust collector
JP2751451B2 (en) Laminated nonwoven sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees