JPS63194120A - Fuel control system for coal feeder - Google Patents

Fuel control system for coal feeder

Info

Publication number
JPS63194120A
JPS63194120A JP62024725A JP2472587A JPS63194120A JP S63194120 A JPS63194120 A JP S63194120A JP 62024725 A JP62024725 A JP 62024725A JP 2472587 A JP2472587 A JP 2472587A JP S63194120 A JPS63194120 A JP S63194120A
Authority
JP
Japan
Prior art keywords
coal
mill
differential pressure
boiler
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62024725A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tsuchida
義之 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62024725A priority Critical patent/JPS63194120A/en
Publication of JPS63194120A publication Critical patent/JPS63194120A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/22Timing network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To stabilize a fuel line by controlling to stabilize combustion of a boiler, by previously controlling the coal rate by a corrected mill differential pressure in accordance with the changing rate of required value of coal feed rate, and by controlling the feeding rate of coal by adding a primary delay function to an operating signal to a coal feeder. CONSTITUTION:A preceding circuit 'H' is a driver to bring the rising of mill differential pressure in a mill near to a primary air differential pressure by previously controlling the differential pressure by adding a corrected value of mill ratio to it. A coal- feeder operating signal 31 calculated by a feeding coal arithmetic and adding circuit E-1 adds a primary delay circuit 'I' to a coal feeding rate command, that is a demanded value to the primary air differential pressure command for a primary air damper. Then the coal feeder is operated by a feed coal command. The delay time which appears as a mill differential pressure, that is, a delay time to pulverize coal is corrected by the primary delay circuit 'I'. A corrected value is added to the set signal of coal feeding rate, and a proper control is performed by a control circuit G-1 constituted of a proportional control and an integral control. The change caused by stoking of coal fuel is absorbed by the primary delay circuit 'I', and a feed coal controlling signal 28 which conducts a stabilized coal feeding can be output.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は石炭火力プラントの燃料制御において、火力プ
ラントの機器の1次おくれ時定数の機器と組み合せた燃
料制御系の安定した石炭供給燃料制御装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is aimed at stabilizing a fuel control system in combination with equipment with a first-order lag time constant of equipment in a coal-fired power plant, in the fuel control of a coal-fired power plant. This invention relates to a coal supply fuel control device.

(従来の技術) 従来の燃料制御方法は、給炭量指令と一次空気指令が石
炭供給燃料量要求信号に対して、比例制御と積分制御、
微分制御を組み合せた制御であったため、−水空気量に
対し、石炭量の応答は時定数を有しており、それにより
制御系の遅れが大きく、石炭ミル内部において、給炭指
令による石炭量と一次空気量指令に対する空気量に偏差
が生じて燃料制御としては、アンバランスが生じて、ミ
ルから燃料である微粉炭を燃焼装置であるボイラに安定
して供給できないという問題点があった。
(Prior art) In the conventional fuel control method, the coal supply amount command and the primary air command are controlled by proportional control, integral control,
Since the control was a combination of differential control, the response of the amount of coal to the amount of -water and air has a time constant, which causes a large delay in the control system. A deviation occurs in the amount of air relative to the primary air amount command, resulting in an imbalance in fuel control, which causes the problem that pulverized coal, which is the fuel, cannot be stably supplied from the mill to the boiler, which is the combustion device.

第2図に従来の石炭火力プラントの燃料制御装置の構成
例を示す。負荷であるタービン1は圧力。
FIG. 2 shows an example of the configuration of a conventional fuel control device for a coal-fired power plant. Turbine 1, which is a load, has pressure.

温度一定な蒸気を必要とし、タービン1の回転により発
電機2を駆動し、電力を発生する。ボイラ3においても
、蒸気、温度、圧力を一定にしなければならない。ボイ
ラ3が常に圧力、温度一定の蒸気条件を作成し、蒸気管
を通して蒸気加減弁4を介して蒸気量の制御を行なうよ
うにするためには、ボイラ3内の水の重量バランス及び
エネルギーバランスを保たねばならない。
It requires steam at a constant temperature, and the rotation of the turbine 1 drives the generator 2 to generate electric power. In the boiler 3 as well, steam, temperature, and pressure must be kept constant. In order for the boiler 3 to always create steam conditions with constant pressure and temperature and to control the amount of steam through the steam pipe and the steam control valve 4, it is necessary to maintain the weight balance and energy balance of the water in the boiler 3. must be preserved.

該ボイラ3内の水の重量バランスやエネルギーバランス
を保つために、ボイラ出力の蒸気流量、圧力、温度を各
々検出器5,6.7にて検出し、該各々の検出器からの
信号、ボイラ出力の蒸気流量信号a、圧力信号10、温
度信号11をボイラ燃料制御装置8へ入力する。この各
々の検出したボイラ出力の信号量9 、10.11より
ボイラ燃料制御装置8はタービン1からの蒸気を復水器
12を通して給水ポンプ13を介して給水制御弁14を
制御する給水制御信号15にて制御して、ボイラ3への
給水量の制御を行ない、かつベーン操作器16をボイラ
燃料制御装置8からのベーン開度制御信号17にて制御
して、ベーン18の開閉の開度制御を行なう、該ベーン
18の開度制御により1次空気ファン19を介して送ら
れてきた空気20の流量制御し、ミル21の入力側に供
給される。これによって、ボイラ3内の水の重量バラン
スを保ち、かつエネルギーバランスを保つ。ミル21内
の空気流量とボイラ3への微粉炭を供給する制御は次の
ようになっている。
In order to maintain the weight balance and energy balance of the water in the boiler 3, the steam flow rate, pressure, and temperature of the boiler output are detected by detectors 5 and 6.7, respectively, and the signals from the respective detectors and the boiler The output steam flow rate signal a, pressure signal 10, and temperature signal 11 are input to the boiler fuel control device 8. Based on the detected boiler output signal quantities 9 and 10.11, the boiler fuel control device 8 sends the steam from the turbine 1 through the condenser 12 to the feed water pump 13 to control the feed water control valve 14 using the feed water control signal 15. to control the amount of water supplied to the boiler 3, and control the vane operating device 16 using a vane opening control signal 17 from the boiler fuel control device 8 to control the opening and closing of the vanes 18. By controlling the opening of the vanes 18, the flow rate of the air 20 sent through the primary air fan 19 is controlled, and the air 20 is supplied to the input side of the mill 21. This maintains the weight balance of the water in the boiler 3 and also maintains the energy balance. The air flow rate in the mill 21 and the supply of pulverized coal to the boiler 3 are controlled as follows.

ホッパ22からの石炭は、給炭器23により石炭24が
ミル21に送られ、ここで粉砕される。粉砕された微粉
炭25は1次空気ファン19で制御された空気20によ
りボイラ3に供給され燃焼する。
Coal 24 from the hopper 22 is sent to the mill 21 by a coal feeder 23, where it is crushed. The crushed pulverized coal 25 is supplied to the boiler 3 by air 20 controlled by a primary air fan 19 and combusted.

ボイラ3への石炭供給量の制御は、ミル21の入口空気
圧力と出力空気圧力の差をミル差圧検出器26により検
出して、該ミル差圧をもってミル差圧信号27をボイラ
燃料制御装置8に入力し、石炭供給量調節信号28を出
力する。
The amount of coal supplied to the boiler 3 is controlled by detecting the difference between the inlet air pressure and the output air pressure of the mill 21 using a mill differential pressure detector 26, and transmitting a mill differential pressure signal 27 using the mill differential pressure to the boiler fuel control device. 8 and outputs a coal supply amount adjustment signal 28.

更に、空気20の空気量検出器29にて検出された空気
流量信号30をボイラ燃料制御装置8に入力し、該ボイ
ラ燃料制御装[8の内部で空気流量信号30に一定比率
をかけて石炭供給量を得て、設定値との偏差により給炭
器操作信号31を出力し、給炭器操作器32を動作させ
て、給炭器23を制御し、石炭供給量を制御する。又、
中央給電所33からの負荷制御指令34の信号に基づき
、ボイラ燃料制御装置8に入力し、プラントの状態量に
見合って給炭器操作信号31で給炭器操作器32を制御
する。
Further, the air flow rate signal 30 detected by the air amount detector 29 of the air 20 is inputted to the boiler fuel control device 8, and the air flow rate signal 30 is multiplied by a certain ratio inside the boiler fuel control device [8]. The coal feeder operation signal 31 is output based on the deviation from the set value, and the coal feeder operating device 32 is operated to control the coal feeder 23 and control the coal feed amount. or,
Based on the signal of the load control command 34 from the central power supply station 33, it is input to the boiler fuel control device 8, and the coal feeder operating device 32 is controlled by the coal feeder operation signal 31 according to the state quantity of the plant.

次に第3図の従来の燃料制御装置の動作について説明す
る。ミル21の入口空気圧力と出口空気圧力の差をミル
差圧検出器26にて検出して、該ミル差圧検出器のミル
差圧信号27と、空気流量信号30は入口空気流量と出
口空気流量の比を示すプラントの状態量である。ボイラ
出力の蒸気流量信号9、圧力信号10、温度信号11は
変換演算回路Aに入力し、1次遅れ関数回路Bを通して
、演算回路Cに入力する。−次遅れ関数回路Bはミルか
らボイラに至る微粉炭の伝達遅れを補正するために設け
られたものである。ミル差圧信号27は演算回路Cに入
力する。該演算回路Cにて微粉炭の伝達遅れ量の制御値
とミル差圧信号量の割合い比の演算を行なうことにより
、ミル21に供給する微粉炭の粒度を示すパラメータ量
を出力し、石炭の粒度を考慮した石炭供給量信号で石炭
供給演算加算回路Eに入力する。
Next, the operation of the conventional fuel control system shown in FIG. 3 will be explained. The difference between the inlet air pressure and the outlet air pressure of the mill 21 is detected by the mill differential pressure detector 26, and the mill differential pressure signal 27 of the mill differential pressure detector and the air flow rate signal 30 are determined based on the inlet air flow rate and the outlet air flow rate. This is a plant state quantity that indicates the ratio of flow rates. A steam flow rate signal 9, a pressure signal 10, and a temperature signal 11 of the boiler output are input to a conversion calculation circuit A, and then input to a calculation circuit C through a first-order lag function circuit B. -The second lag function circuit B is provided to correct the transmission delay of pulverized coal from the mill to the boiler. The mill differential pressure signal 27 is input to the calculation circuit C. By calculating the ratio between the control value of the transmission delay amount of pulverized coal and the mill differential pressure signal amount in the calculation circuit C, a parameter value indicating the particle size of the pulverized coal to be supplied to the mill 21 is output, and the coal A coal supply amount signal that takes into account the grain size of the coal is input to the coal supply calculation and addition circuit E.

一方ミル差圧信号27は調節回路りに入力してミルレシ
オを補正して石炭供給演算加算回路Eに入力し、給炭器
操作信号31を出力する。
On the other hand, the mill differential pressure signal 27 is input to the adjustment circuit to correct the mill ratio, and is input to the coal supply calculation and addition circuit E, which outputs the coal feeder operation signal 31.

又、空気流量信号30は比率演算回路Fに入力し。Further, the air flow rate signal 30 is input to the ratio calculation circuit F.

一定比率をかけ合せて石炭供給量の設定信号を出力して
調節回路Gに入力して、ホッパ22への石炭供給量の調
節を行ない1、石炭供給量調節信号28を出力する。
A coal supply amount setting signal is outputted by multiplying by a certain ratio, and is inputted to the adjustment circuit G to adjust the coal supply amount to the hopper 22 1, and a coal supply amount adjustment signal 28 is output.

(発明を解決するための問題点) かかる構成において、ミル21に供給される石炭24の
質が一定で、ミル21にて粉砕された微粉炭25の粒度
が一定ならば、ミル差圧により正確な石炭供給量の計測
を行なうことができるが、石炭の品質にばらつきがある
場合や、低品質の場合、ミル差圧の誤差により正確な石
炭供給量の計測を行なうことが不可能で、ボイラ燃料制
御装置18は空気量と石炭量のアンバランスにより燃焼
不安定になり、一定したボイラ燃焼制御ができない。
(Problems for Solving the Invention) In this configuration, if the quality of the coal 24 supplied to the mill 21 is constant and the particle size of the pulverized coal 25 pulverized by the mill 21 is constant, the mill differential pressure can provide accurate However, if the quality of the coal varies or is low, it is impossible to accurately measure the coal supply amount due to errors in the mill differential pressure, and the boiler The fuel control device 18 becomes unstable in combustion due to an imbalance between the amount of air and the amount of coal, and cannot perform constant boiler combustion control.

又、給炭器操作信号31に対する給炭器操作器32の動
作と空気20を取り入れる1次空気ファンの空気量を制
御するベーン開度制御信号17をベーン操作器16に対
して、石炭量の応答遅れが大きく、ミル21の内部にお
いて石炭量と空気量にアンバランスを生じて、ボイラ3
に微粉炭25を安定して供給できないという問題がある
Further, the operation of the coal feeder operating device 32 in response to the coal feeder operation signal 31 and the vane opening control signal 17 that controls the air amount of the primary air fan that takes in the air 20 are sent to the vane operating device 16 to control the amount of coal. The response delay was large, causing an imbalance between the amount of coal and air inside the mill 21, and the boiler 3
There is a problem in that the pulverized coal 25 cannot be stably supplied.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、給炭器系の制御回路において、ミル差圧とボ
イラ出力の比をもとにミル差圧を補正し、この補正した
ミル差圧によって給炭量要求値の変化率に見合って石炭
量を先行制御させ、ホッパへの石炭供給量114節量制
御をするために給炭器操作信号に一次遅れ関数を追加し
て石炭供給量を制御するようにしたものである。
(Means for Solving the Problems) The present invention corrects the mill differential pressure based on the ratio of the mill differential pressure to the boiler output in the control circuit of the coal feeder system, and uses the corrected mill differential pressure to feed the coal feeder. The amount of coal is controlled in advance in accordance with the rate of change of the required value of coal, and the amount of coal supplied is controlled by adding a first-order lag function to the coal feeder operation signal in order to control the amount of coal supplied to the hopper. This is how it was done.

(作 用) これによりボイラの燃焼制御系において、ボイラの安定
した燃焼制御を行なう燃料系の安定が図れる。
(Function) As a result, in the combustion control system of the boiler, the fuel system that performs stable combustion control of the boiler can be stabilized.

(実施例) 以下、図面により本発明の詳細な説明する。第1図は本
発明のボイラ燃料制御装置の実施例を示す、第3図と異
なる点は、比例制御と積分FrJへ御を加えた調節回路
D−L先行回路H1石炭供給演算加算回路E−1、石炭
供給量調節信号28に一次遅れ関数回路工と該−次遅れ
関数回路Iを空気流量信号30の比率演算回路Fを通し
たあとの信号を加算する加算回路Jと、該加算回路Jの
出力に比例制御と積分制御を加えた調節回路G−1を設
けたことによるミル差圧信号27を先行回路Hを通して
石炭供給演算加算回路E−1に加算する。
(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows an embodiment of the boiler fuel control device of the present invention. The difference from FIG. 3 is that the adjustment circuit D-L controls the proportional control and the integral FrJ, the preceding circuit H1, the coal supply calculation addition circuit E- 1. An addition circuit J that adds a signal obtained by passing the first-order lag function circuit I and the air flow rate signal 30 through the ratio calculation circuit F to the coal supply amount adjustment signal 28, and the addition circuit J. A mill differential pressure signal 27 obtained by providing an adjustment circuit G-1 which adds proportional control and integral control to the output of is added to the coal supply calculation addition circuit E-1 through the preceding circuit H.

空気流量信号30は比率演算回路Fより一定比率をかけ
石炭供給量の設定信号を出力して石炭供給演算加算回路
E−1に入力する。先行回路Hはミルレシオ補正値を先
行制御を付加することによりミル内のミル差圧の立ち上
がりを一次空気差圧に近づけるものである。又、該石炭
供給演算加算回路E−1から演算された給炭器操作信号
31は一次空気差圧バの一次空気差圧指令に対する要求
値の石炭供給量指令に1次遅れ回路工を付加し、給炭指
令により給炭器が動作し、ミル差圧となってあられれる
遅れ時間、即ち石炭を微粉炭にする粉砕遅れ時間を、1
次遅れ回路Iにより補正し1石炭供給量の設定信号と加
算して比例制御と積分制御で構成された調節回路G−1
により適正な制御を行ない、石炭の燃料投入にふる変動
を1次遅れ回路工により吸収して安定した石炭供給を行
なう石炭供給調節信号を出力する。
The air flow rate signal 30 is multiplied by a constant ratio from the ratio calculation circuit F to output a coal supply amount setting signal, which is input to the coal supply calculation addition circuit E-1. The advance circuit H brings the rise of the mill differential pressure within the mill closer to the primary air differential pressure by adding advance control to the mill ratio correction value. Further, the coal feeder operation signal 31 calculated from the coal supply calculation adding circuit E-1 adds a primary delay circuit to the coal supply amount command of the request value for the primary air differential pressure command of the primary air differential pressure bar. , the delay time when the coal feeder operates according to the coal feed command and the mill differential pressure occurs, that is, the pulverization delay time from coal to pulverized coal, is 1.
Adjustment circuit G-1 composed of proportional control and integral control, corrected by the next delay circuit I and added to the setting signal of 1 coal supply amount
This outputs a coal supply adjustment signal that performs appropriate control and absorbs fluctuations in coal input using the first-order lag circuit to provide a stable coal supply.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、供給器操作信号に先行回路を付加し、
調節回路に比例制御と積分制御とすることによりミル差
圧信号の変動に対する応答性の改善がなされ、更に給炭
器操作による石炭供給に見合った空気流量を加算するこ
とにより、ボイラ内では、石炭量と空気流量のバランス
制御が行なえ、安定したボイラ燃焼制御が行なえる。
According to the present invention, a preceding circuit is added to the feeder operation signal,
By using proportional control and integral control in the regulation circuit, the responsiveness to fluctuations in the mill differential pressure signal has been improved.Furthermore, by adding an air flow rate commensurate with the coal supply by coal feeder operation, the coal Balance control of air volume and air flow rate can be performed, and stable boiler combustion control can be performed.

又1石炭粉砕の1次遅れ関数回路を付加した二とにより
、ミルレシオ信号が安定し石炭供給調節信号が連続的に
安定したミルレシオ制御が行なえ。
Furthermore, by adding a first-order delay function circuit for coal pulverization (1) and (2), it is possible to perform mill ratio control in which the mill ratio signal is stable and the coal supply adjustment signal is continuously stable.

石炭供給調節信号が負荷の変動によっても安定した石炭
供給制御が行なえる。
The coal supply adjustment signal enables stable coal supply control even when load changes.

本発明はアナログ回路により構成できることは勿論、デ
ィジタル制御による構成でボイラ燃焼制御、石炭供給制
御が行なうことができ、安定した制御系を構成できる。
The present invention can be configured not only by an analog circuit, but also by a configuration using digital control to perform boiler combustion control and coal supply control, and a stable control system can be configured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のボイラ燃料制御装置のブロック図、第
2図は石炭火力プラントの燃料制御装置の構成ブロック
図、第3図は従来の燃料制御装置のブロック図である。 1・・・タービン         21・・・ミル2
・・・発電機          22・・・ホッパ3
・・・ボイラ          23・・・給炭器4
・・・蒸気加減弁        24・・・石炭5・
・・蒸気流量検出器      25・・・微粉炭6・
・・圧力検出器        26・・・ミル差圧検
出器7・・・温度検出器        27・・・ミ
ル差圧信号8・・・ボイラ燃料制御装置    28・
・・石炭供給量調節信号9・・・ボイラ出力の蒸気流量
信号 29・・・空気量検出器IO・・・ボイラ出力の
圧力信号   30・・・空気流量信号11・・・ボイ
ラ出力の温度信号   31・・・給炭器操作信号16
・・・ベーン操作器       32・・・給炭器操
作器17・・・ベーン開度制御信号 18・・・ベーン 19・・・−次空気フアン A・・・変換演算回路 計・・1次遅れ関数回路 C・・・演算回路 D・・・調節回路 E・・・石炭供給演算加算回路 F・・・比率演算回路 G・・・調節回路 H・・・先行回路 J・・・加算回路 ■・・・1次遅れ関数回路 代理人 弁理士  則 近 憲 佑 同  王侯弘文 ホ゛4ラエカのr、カイ3号 n 第1図 第 2 図
FIG. 1 is a block diagram of a boiler fuel control device of the present invention, FIG. 2 is a block diagram of a fuel control device for a coal-fired power plant, and FIG. 3 is a block diagram of a conventional fuel control device. 1... Turbine 21... Mill 2
... Generator 22 ... Hopper 3
... Boiler 23 ... Coal feeder 4
...Steam control valve 24...Coal 5.
...Steam flow rate detector 25...Pulverized coal 6.
...Pressure detector 26...Mil differential pressure detector 7...Temperature detector 27...Mil differential pressure signal 8...Boiler fuel control device 28.
... Coal supply amount adjustment signal 9 ... Steam flow rate signal of boiler output 29 ... Air amount detector IO ... Pressure signal of boiler output 30 ... Air flow rate signal 11 ... Temperature signal of boiler output 31...Coal feeder operation signal 16
... Vane operating device 32 ... Coal feeder operating device 17 ... Vane opening control signal 18 ... Vane 19 ... -Next air fan A ... Conversion calculation circuit meter ... First-order delay Function circuit C...Arithmetic circuit D...Adjustment circuit E...Coal supply calculation addition circuit F...Ratio calculation circuit G...Adjustment circuit H...Advance circuit J...Addition circuit ■・...1st-order lag function circuit agent Patent attorney Nori Chika Ken Yutong Wang Hou Hongbun Ho ゛4 Laeka r, Kai 3 n Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)給炭器からホッパを制御して供給制御される石炭
と1次空気ファンのベーンにより制御される空気量を入
力とするミルと、ミルで微粉化された微粉炭を送り出し
、燃焼するボイラーと、ボイラーの燃焼により出される
蒸気量によって駆動されるタービンと、タービンからの
蒸気を復水器、給水ポンプを通してボイラーに給水する
ボイラ燃焼制御系において、石炭ミルの応答遅れを改善
するためにミルの入口と出口の空気圧力比のミル差圧信
号と該ミル差圧信号に先行回路を付加し、ボイラ出力の
伝達遅れを補正する一次遅れ回路を通したボイラ出力と
一次空気流量の協調をとり、給炭器へ最適な給炭器操作
を行なう事を特徴とする石炭供給燃料制御装置。
(1) A mill that inputs the coal supplied by controlling the hopper from the coal feeder and the air amount controlled by the vane of the primary air fan, and sends out the pulverized coal that has been pulverized by the mill and burns it. In order to improve the response delay of coal mills in the boiler, the turbine that is driven by the amount of steam produced by the combustion of the boiler, and the boiler combustion control system that supplies water to the boiler through the steam from the turbine through the condenser and feed pump. A mill differential pressure signal of the air pressure ratio between the inlet and outlet of the mill and a preceding circuit are added to the mill differential pressure signal, and the boiler output and primary air flow rate are coordinated through the primary lag circuit that corrects the transmission delay of the boiler output. A coal supply fuel control device characterized by controlling the coal feeder in an optimal manner.
(2)特許請求の範囲の第1項において先行回路を付加
した給炭器操作信号に一次遅れ回路を付加することによ
り石炭粉砕の応答遅れを補正し空気流量とミル差圧の協
調をとって石炭ミルの先行制御する最適な石炭供給調節
制御を行なう事を特徴とする石炭供給燃料制御装置。
(2) In claim 1, a primary delay circuit is added to the coal feeder operation signal to which the preceding circuit is added, thereby correcting the response delay of coal crushing and coordinating the air flow rate and the mill differential pressure. A coal supply fuel control device characterized by performing optimal coal supply adjustment control for advance control of a coal mill.
JP62024725A 1987-02-06 1987-02-06 Fuel control system for coal feeder Pending JPS63194120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024725A JPS63194120A (en) 1987-02-06 1987-02-06 Fuel control system for coal feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024725A JPS63194120A (en) 1987-02-06 1987-02-06 Fuel control system for coal feeder

Publications (1)

Publication Number Publication Date
JPS63194120A true JPS63194120A (en) 1988-08-11

Family

ID=12146131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024725A Pending JPS63194120A (en) 1987-02-06 1987-02-06 Fuel control system for coal feeder

Country Status (1)

Country Link
JP (1) JPS63194120A (en)

Similar Documents

Publication Publication Date Title
CA1068492A (en) Combined gas turbine and steam turbine power plant
AU2005261689B2 (en) Process for operating a continuous steam generator
EP0098037A2 (en) Electric power generation systems and methods of operating such systems
US3417737A (en) Once-through boiler control system
RU2601320C1 (en) Power control method of combined-cycle plants and apparatus for its implementation
JPH09317499A (en) Control method for blast furnace gas monofuel combustion gas turbine
JPS63194120A (en) Fuel control system for coal feeder
JPH06159603A (en) Control device for waste heat steam generator
RU2315871C1 (en) System of automatic control of power of steam boiler-turbine power unit
JPH11223302A (en) Automatic control device and method of power generating plant
JP2865972B2 (en) Boiler fuel calorific value correction method
JPS6046338B2 (en) Combustion system automatic control device
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JP2000274603A (en) Water supply controller
JP2000171003A (en) Reheat steam temperature control method of coal- burning thermal power plant
SU1442677A1 (en) System for automatic control of power unit
SU1134751A1 (en) Device for controlling gas temperature upstream of gas turbine of steam-gas plant with steam generator
JPH0429761A (en) Apparatus for controlling airflow rate of coal pulverizer
JPH06331131A (en) Fuel calorie control device
SU1451443A1 (en) Automatic system for regulating steam parameters after power-generating boiler
JPH09170753A (en) Method and apparatus for controlling primary air pressure in coal igniting boiler
JPS60134904A (en) Cooperative controller of thermal power plant
JP2000171027A (en) Load variation rate controller and control method for coal burning thermal power plant
JPH0318082B2 (en)
JPH07310902A (en) Steam temperature control for once-through boiler