JPS63187622A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63187622A
JPS63187622A JP1852687A JP1852687A JPS63187622A JP S63187622 A JPS63187622 A JP S63187622A JP 1852687 A JP1852687 A JP 1852687A JP 1852687 A JP1852687 A JP 1852687A JP S63187622 A JPS63187622 A JP S63187622A
Authority
JP
Japan
Prior art keywords
implanted
amorphous layer
substrate
semiconductor substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1852687A
Other languages
Japanese (ja)
Inventor
Eiji Murata
英治 村田
Noriaki Kurita
典明 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1852687A priority Critical patent/JPS63187622A/en
Publication of JPS63187622A publication Critical patent/JPS63187622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent channeling and to ensure desirable recovery of crystallinity, by implanting inert atoms into a substrate form an amorphous layer and etching away only the amorphous layer by means of an isotropic etching means. CONSTITUTION:Inert As ions 2 are implanted into a substrate 1, whereby an amorphous layer 3 is formed from the surface to the inside of the substrate 1. Si<+> ions are implanted at an acceleration energy of 120 KeV and a dosage of 3.5 X 10<12>/cm<3> to form an Si implanted operation layer 4. Then, a process for etching the amorphous layer 3 precedes heat treatment of the implanted dopant atoms. In order to anneal the implanted active dopant atoms, the substrate 1 having the operation layer 4 is held at 850 deg.C for 15 minutes within the atmosphere of argon containing a small amount of arsine. Thereby, the crystallinity is recovered, the Si is activated and a uniform N-type conductive layer 4' can be obtained. Thus, channeling is prevented and desirable recovery of crystallinity is ensured.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体単結晶基板(以後半導体基板と略記す
る)へのイオン注入時に発生するチャンネリングを防止
するために、有効な非晶質層を通したイオン注入工程な
らびに注入イオンの活性化用熱処理工程とを含む半導体
装置の製造方法の改良に係り、特にGaAs半導体基板
を利用するFETの製造に好滴する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a method for preventing channeling that occurs during ion implantation into a semiconductor single crystal substrate (hereinafter abbreviated as a semiconductor substrate). The present invention relates to an improvement in a method for manufacturing a semiconductor device that includes an effective ion implantation process through an amorphous layer and a heat treatment process for activating the implanted ions, and is particularly suitable for manufacturing FETs using GaAs semiconductor substrates.

(従来の技術) 活性不純物を半導体基板表面から内部に向けである一定
の深さに一定量だけ導入し更に均一性に優れるイオン注
入法は半導体プロセスにとって欠くことのできない手法
となっている。しかし、結晶特有の三次元配列をもつ単
結晶にイオン注入すると、入射イオン及びターゲット単
結晶基体間の相互作用はイオン入射方向によって+11
違し、低指数結晶軸方向からイオン注入するといわゆる
軸チャンネリング現象が起こるので、注入イオンの飛程
は、ランダム方向からの注入に比べて著ろしく増大する
ことは良く知られている。
(Prior Art) The ion implantation method, which introduces active impurities in a certain amount from the surface of a semiconductor substrate to a certain depth and has excellent uniformity, has become an indispensable method for semiconductor processes. However, when ions are implanted into a single crystal with a three-dimensional arrangement unique to crystals, the interaction between the incident ions and the target single crystal substrate increases by +11 depending on the direction of ion incidence.
On the other hand, it is well known that when ions are implanted from a low-index crystal axis direction, a so-called axial channeling phenomenon occurs, so that the range of implanted ions is significantly increased compared to when implanted from a random direction.

この低指数結晶軸方位からのイオン注入をずらして軸チ
ャンネリング発生を防止する場合でもイオンビーム入射
方向のずれ方向によってはいわゆる面チャンネリング現
象が発生し、これによっても注入イオンの飛程は増大し
てその制御が困難になる。
Even when ion implantation is shifted from this low-index crystal axis direction to prevent the occurrence of axial channeling, a so-called plane channeling phenomenon may occur depending on the direction of deviation of the ion beam incidence direction, and this also increases the range of the implanted ions. This makes it difficult to control.

この面チャンネリングを防止するには半導体基板への活
性不純物原子のイオンビームに先立って。
To prevent this surface channeling, activate the impurity atoms into the semiconductor substrate prior to the ion beam.

電気的に不活性な〃;〔子のビーム(今後この記載はイ
オン、原子或いは分子ビームを総称するものである)を
照射することによって、半導体基板の結晶配列を乱す非
晶質層を設けてから、所望の活性不純物〃ズ子を注入し
、引続いてこの不純物原子を活性化する熱処理を行う方
法が知られている。
An amorphous layer that disturbs the crystal orientation of a semiconductor substrate by irradiating it with an electrically inert particle beam (hereinafter this description will refer to ion, atomic, or molecular beams) A method is known in which desired active impurity atoms are implanted, followed by heat treatment to activate the impurity atoms.

この方法を適用すると、所望の活性不純物原子のビーム
入射方向が面チャンネリング方向に一致しても、入射イ
オンは乱れた結晶性によって散乱してこの面チャンネリ
ング現象を起さない。
When this method is applied, even if the beam incidence direction of the desired active impurity atoms coincides with the planar channeling direction, the incident ions are scattered by the disordered crystallinity and the planar channeling phenomenon does not occur.

(発明が解決しようとする問題点) このような手段では、半導体基板に非晶質xりを形成す
る際に導入する損傷(ダメージ)を残したまN不純物原
子を活性化する熱処理(アニール)工程に移行するので
、不活性不純物の注入ドーズ(Dose) mが多いと
、ダメージ量が多過るために通常のアニール温度では注
入不純物の活性化が不充分となる。この結果所望の活性
層における不純物濃度分布は所期の価が1!)られなく
なる難点は避けられない。
(Problems to be Solved by the Invention) Such means require a heat treatment (annealing) step to activate N impurity atoms while leaving damage introduced when forming an amorphous layer on a semiconductor substrate. Therefore, if the implantation dose (m) of the inactive impurity is large, the amount of damage will be too large and the activation of the implanted impurity will be insufficient at the normal annealing temperature. As a result, the desired impurity concentration distribution in the active layer has the expected value of 1! ) is inevitable.

本発明は上記難点を除去する新規な半導体装1r1の製
造方法を提供することを目的とするものである。
An object of the present invention is to provide a novel method for manufacturing a semiconductor device 1r1 that eliminates the above-mentioned difficulties.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するのに1本発明方法では半導体基板に
対して電気的に不活性な原子のビームを照射して非晶質
層を設け、次いでこの非晶質層を通して所望の活性不純
物原子を注入してから、この非晶質層を等方性食刻手段
によって溶除する。
(Means for Solving the Problems) In order to achieve the above object, in one method of the present invention, a semiconductor substrate is irradiated with a beam of electrically inert atoms to form an amorphous layer, and then the amorphous layer is formed on a semiconductor substrate. After implanting the desired active impurity atoms through the crystalline layer, the amorphous layer is dissolved away by isotropic etching means.

更にこの注入された活性不純物原子を活性化する熱処理
工程を施す手法を採用する。
Furthermore, a method is adopted in which a heat treatment process is performed to activate the implanted active impurity atoms.

(作 用) 本発明に係る半導体装置の製造方法は半導体基板に対し
て電気的に不活性な元素のビームを照射して形成する非
晶質層は等方性食刻手段により簡単に溶除可能な事実更
にこの等方性食刻手段後の半導体基板には鏡面が形成さ
れる事実を基に完成したものである。
(Function) In the method for manufacturing a semiconductor device according to the present invention, an amorphous layer formed by irradiating a semiconductor substrate with a beam of an electrically inactive element can be easily dissolved by isotropic etching means. This method was completed based on the fact that a mirror surface is formed on the semiconductor substrate after this isotropic etching process.

ところで本発明を適用する半導体基板としては、砒化ガ
リウムが好適しており、一般的な食刻手段として知られ
る異方性食剣法即ちドライプロセスは半導体基板に損傷
を与える恐れが考えられるので不採用とし、等方性食刻
液には塩酸又はリン酸、苛性ソーダアンモニヤ水からな
るグループから選択する一種に過酸化水素水を添加した
混合溶液が適用可能である。前記半導体基板に対して電
気的に不活性な不純物元素としては、ガリウム、砒泰、
グリプトン、キャノンならびにアルゴンが好ましく、非
晶質層の形成条件は50KeV〜100KeVのビー1
1を使用し、その濃度はs x to”/ad乃至5X
1014/d、更に非晶質層の厚さは100〜500人
である。
By the way, gallium arsenide is suitable for the semiconductor substrate to which the present invention is applied, and the anisotropic etching process, which is known as a general etching method, i.e., dry process, cannot be used because it may damage the semiconductor substrate. For the isotropic etching solution, a mixed solution prepared by adding hydrogen peroxide to one selected from the group consisting of hydrochloric acid, phosphoric acid, and caustic soda-ammonium water can be used. Examples of impurity elements that are electrically inactive with respect to the semiconductor substrate include gallium, arsenic,
Glypton, Cannon, and argon are preferable, and the conditions for forming the amorphous layer are Be1 of 50 KeV to 100 KeV.
1 and its concentration is s x to”/ad to 5X
1014/d, and the thickness of the amorphous layer is 100 to 500.

この非晶質層を通してイオン注入する活性不純物原子と
してはFETの動作層として機能させろ際にはSiイオ
ンを50KeV〜150KeVでイオン注入して0.1
〜0.2μsの厚さに形成する。
As active impurity atoms to be ion-implanted through this amorphous layer, Si ions are ion-implanted at 50 KeV to 150 KeV and 0.1
It is formed to a thickness of ~0.2 μs.

しかも前述のように非晶質層を等方性食刻手段によって
除去してから、イオン注入した活性不純物原子にアニー
ル工程を実施した結果、このイオン注入層のシートギヤ
1フ8度は従来方法の2倍以上のN5=2.3X101
2/cJを得た。これは熱処理工程に先立つ非晶質層の
等方性食刻手段による溶除により、以後の熱処理時に結
晶性の回復が順調であることによると推定される。
Furthermore, as mentioned above, after the amorphous layer was removed by isotropic etching, the ion-implanted active impurity atoms were annealed. More than double N5 = 2.3X101
2/cJ was obtained. This is presumed to be because the amorphous layer is removed by isotropic etching prior to the heat treatment step, and crystallinity is smoothly recovered during the subsequent heat treatment.

更に非晶質層と半導体基板の食刻速度は大きな差がある
のでこの非晶質層のみの溶除が簡単であって、イオン注
入層の均−性及び再現性低下は起らなかったことも確認
済みであることを付記する。
Furthermore, since there is a large difference in etching speed between the amorphous layer and the semiconductor substrate, it is easy to dissolve only this amorphous layer, and no deterioration in the uniformity or reproducibility of the ion-implanted layer occurs. Please note that this has also been confirmed.

(実施例) 第1図a = d及び第2図a、bにより本発明の実施
例を詳述する。
(Example) An example of the present invention will be described in detail with reference to FIG. 1 a = d and FIGS. 2 a and b.

シリコン半導体素子に較べて高周波特性が優れる砒化ガ
リウム半導体基板へドナー不純物イオンを注入する例を
説明する。
An example of implanting donor impurity ions into a gallium arsenide semiconductor substrate, which has superior high frequency characteristics compared to a silicon semiconductor element, will be described.

面方位(100)の半絶縁性GaAs基板1を用意し、
これに対して電気的に不活性なAsイオン2を加速エネ
ルギ50KeVドーズ量2 XIO”/at?注入する
A semi-insulating GaAs substrate 1 with a (100) plane orientation is prepared,
On the other hand, electrically inactive As ions 2 are implanted at an acceleration energy of 50 KeV and a dose of 2 XIO''/at?.

(第1図a)このイオン注入工程に当っては軸チャンネ
リングを避けるためにイオンビームの入射方向に対して
半導体基板1の法線(<100)方向)を7°傾けて支
持するが、この傾けた面内では方位を特段指定せずに自
在に設定可能である。
(Fig. 1a) During this ion implantation process, the normal (<100) direction of the semiconductor substrate 1 is supported at an angle of 7 degrees with respect to the direction of incidence of the ion beam in order to avoid axial channeling. Within this tilted plane, the orientation can be freely set without any particular designation.

この工程によってGaAs基板に注入されたAsイオン
はGaAs基板1内で概ね第2図aに示す曲線5のよう
に分布する。この結果GaAs半導体基板1の表面から
内部に向けて非晶質層3(第2図b)が形成され、これ
は注入Asの平均投影飛程をRp(As)、その標準偏
差をΔRp(As)とすると大部分がRp(As)+Δ
Rρ(As)付近からGaAs基板表面にかけて存在す
る。(第2図b)なお、この注入条件ではRpさ214
A、ΔRpα109人であるのでΔnp + +’+p
ユ323人である。この非晶質層3を形成した状態で第
1 +qbに示すようにSi+13 (図では4と表示
)を加速エネルギー120KeV、ドーズff3.5 
x xo”/ciで注入してS1注入動作層4を設ける
が、この注入工程時には非晶質層3が存在しており、し
かもこNではGaAsの結晶構造力(乱されている。し
かし前述のようにイオンビームの入射方向に対して、7
°傾斜した面内に自在にこのGaAs半遵体基板を設置
して、もしSiイオンビームの入射方向がこの基板の(
1,10)面方向に合致しても、この乱れた結晶性のた
めに入射SLイオンは散乱(デチャンネリング)され面
チャンネリングを起さずに注入される。尚非晶質層3の
厚さは100〜500人、注入動作λりのそれは0.1
μm〜0.2βmである。
The As ions implanted into the GaAs substrate through this step are distributed within the GaAs substrate 1 approximately as shown by the curve 5 shown in FIG. 2a. As a result, an amorphous layer 3 (FIG. 2b) is formed from the surface of the GaAs semiconductor substrate 1 inward, and the average projected range of implanted As is Rp(As), and its standard deviation is ΔRp(As). ), most of it is Rp(As)+Δ
It exists from near Rρ(As) to the surface of the GaAs substrate. (Fig. 2b) Note that under these implantation conditions, Rp is 214
A, ΔRpα There are 109 people, so Δnp + +'+p
There were 323 people. With this amorphous layer 3 formed, Si+13 (indicated as 4 in the figure) is accelerated at an energy of 120 KeV and a dose of ff3.5 as shown in the first +qb.
x 7 with respect to the direction of incidence of the ion beam as shown in
This GaAs semiconducting substrate can be freely installed within the inclined plane, and if the incident direction of the Si ion beam is
1, 10) Even if the plane directions match, the incident SL ions are scattered (dechanneled) due to this disordered crystallinity and are implanted without causing plane channeling. The thickness of the amorphous layer 3 is 100 to 500, and the injection operation λ is 0.1.
μm to 0.2βm.

前記非晶質層3の形成に使用する元λ・ミとしてはGa
As半導体−jAF2に対して電気的に不活性なガリウ
ム、クリプトン、キャノンならびにアルゴンが適用可能
であり、その注入条件は加速゛重圧が50KeV〜1O
OKevドーズ量は5 X 101)/ffl乃至5X
10”/dである。
The element λ·mi used to form the amorphous layer 3 is Ga.
Gallium, krypton, cannon, and argon, which are electrically inert to As semiconductor-jAF2, can be applied, and the implantation conditions are acceleration and pressure of 50 KeV to 1 O.
OKev dose is 5X 101)/ffl to 5X
10"/d.

次に注入した活性不純物原子の熟処J11工1・コに先
立つ非晶質層3の溶除工程に移る。(第1図C)前述の
ようにGaAs半導体基板に411傷を与えると推定さ
れるDry Proclssを除外して1等方性食刻毛
段を使用する。
Next, the process moves on to the step of dissolving the amorphous layer 3, which precedes the aging of the implanted active impurity atoms. (FIG. 1C) As described above, the Dry Procedure, which is estimated to cause 411 scratches on the GaAs semiconductor substrate, is excluded and 1 isotropic etching step is used.

その食刻液としては1)η述のように塩酸の外に苛性ソ
ーダ、リン酸、アンモニヤ水からなるグループから選択
する一種に過酸化水素水を添加する混合溶液が適用可能
であり、このうち塩酸はGaAs半導体基板に形成する
非晶質層だけを溶除すると共に鏡面が得られるので特に
好適である。
As for the etching solution, as described in 1) η, a mixed solution consisting of hydrochloric acid, one selected from the group consisting of caustic soda, phosphoric acid, and aqueous ammonia and hydrogen peroxide can be used; This method is particularly suitable because only the amorphous layer formed on the GaAs semiconductor substrate can be dissolved and a mirror surface can be obtained.

塩酸としては濃塩酸を使用してこの溶液中での煮沸によ
って簡単に非晶質層だけが溶け、いわゆる浸漬法を採用
した際には所要時間が10倍以上か\るので生産効率上
好ましくない。
Concentrated hydrochloric acid is used as the hydrochloric acid, and boiling in this solution easily dissolves only the amorphous layer, and when the so-called immersion method is adopted, the time required is more than 10 times, which is unfavorable in terms of production efficiency. .

リン酸と過酸化水素水の混合溶液組成は容積比でリン酸
3 : H,0,1: 112050を適用し、食刻速
度は15°Cで500人7分である。
The composition of the mixed solution of phosphoric acid and hydrogen peroxide solution was 3:H,0,1:112050 by volume, and the etching speed was 500 people and 7 minutes at 15°C.

苛性ソーダと過酸化水素水では容積比で1=1とすると
、食刻速度は常温で2500人/分、Na0t12:H
2O,1(容積比)では1500八/分となる。何れに
しても、これらの等方性食刻液は前記非晶質Xりを簡単
にしかも連続するGaAs半導体基板に何等1.じ響を
与えずに溶除できる点が特徴であり、塩酸は食刻終了後
鏡面が形成できることがポイントとなる。
If the volume ratio of caustic soda and hydrogen peroxide solution is 1=1, the etching rate is 2500 people/min at room temperature, Na0t12:H
At 2O,1 (volume ratio), it is 15008/min. In any case, these isotropic etching solutions simplify the amorphous X etching process and do not do anything to the continuous GaAs semiconductor substrate. The feature of hydrochloric acid is that it can be removed without making any noise, and the key point of hydrochloric acid is that it can form a mirror surface after etching.

次に注入した活性不純物原子のアニール工程として少量
のアルシン(AsHi )を含有するアルゴン雰囲気中
で、前記Si注入動作層4をもったGaAs半導体基板
1を850℃に15分間保持することによってその結晶
性の回復とSiの活性化を行って均一なn型導電層4′
を完成する。(第1図d)又、この方法をGaAs半導
体基板を使用して常法通りにFETを形成するとその特
性を向上することになる。
Next, as an annealing step for the implanted active impurity atoms, the GaAs semiconductor substrate 1 having the Si implanted active layer 4 is held at 850° C. for 15 minutes in an argon atmosphere containing a small amount of arsine (AsHi) to crystallize it. A uniform n-type conductive layer 4' is formed by recovering the properties and activating Si.
complete. (FIG. 1d) Furthermore, if an FET is formed using this method using a GaAs semiconductor substrate in a conventional manner, its characteristics will be improved.

〔発明の効果〕〔Effect of the invention〕

このように本発明では半導体基板に電気的に不活性なバ
(子を注入して非晶質層を形成してから、必要な活性不
純物原子を注入してチャンネリングを防止する。更に、
この非晶質層だけを等方性食刻手段によって溶除するこ
とによって、注入時に発生するダメージを除外した状態
で熱処理を実施するので、活性不純物を活性化する割合
が高い外に結晶性の回復も良好となり、活性不純物のN
sは従来より大幅に増大するものである。
As described above, in the present invention, an amorphous layer is formed by implanting electrically inactive atoms into a semiconductor substrate, and then necessary active impurity atoms are implanted to prevent channeling.Furthermore,
By dissolving only this amorphous layer using an isotropic etching method, heat treatment is performed while excluding damage that occurs during implantation. The recovery was also good, and the active impurity N
s is significantly increased compared to the conventional case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a = dは本発明の詳細な説明する断面図、第
2図aは樅ば1・1uにA s JM子数横・)す11
に半導体基板表面からの深さを採って、雨音の関係を示
す曲線図、第2[4bは本発明方法を終えた半導体基板
の断面図である。 1・・GaAs半導体1.!;扱    2・・Asイ
オンビーl\3・・・非晶質層 4・・S1イオンビー11及びSL注入動作層4′・・
・n導電層 代理人 弁理士  井 上 −男 第  1 図 第2図
Fig. 1 a = d is a sectional view explaining the present invention in detail, Fig. 2 a is a cross-sectional view showing the details of the present invention;
2 is a curve diagram showing the relationship between the depth from the surface of the semiconductor substrate and the sound of rain, and No. 2 [4b] is a cross-sectional view of the semiconductor substrate after the method of the present invention has been applied. 1..GaAs semiconductor 1. ! ; Handling 2... As ion beam \3... Amorphous layer 4... S1 ion beam 11 and SL implantation operation layer 4'...
・N conductive layer agent Patent attorney Inoue - Male Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に対して電気的に不活性な元素のビームを照
射して形成する非晶質層を通して活性不純物原子を前記
半導体基板内部に注入し、この非晶質層を等方性食刻手
段により溶除後この注入した不純物原子を活性化する熱
処理を施すことを特徴とする半導体装置の製造方法。
Active impurity atoms are implanted into the semiconductor substrate through an amorphous layer formed by irradiating the semiconductor substrate with a beam of an electrically inert element, and this amorphous layer is etched by isotropic etching. A method for manufacturing a semiconductor device, which comprises performing heat treatment to activate the implanted impurity atoms after dissolution.
JP1852687A 1987-01-30 1987-01-30 Manufacture of semiconductor device Pending JPS63187622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1852687A JPS63187622A (en) 1987-01-30 1987-01-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1852687A JPS63187622A (en) 1987-01-30 1987-01-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63187622A true JPS63187622A (en) 1988-08-03

Family

ID=11974071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1852687A Pending JPS63187622A (en) 1987-01-30 1987-01-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63187622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116770A (en) * 1988-07-14 1992-05-26 Matsushita Electric Industrial Co., Ltd. Method for fabricating bipolar semiconductor devices
US5236851A (en) * 1988-07-14 1993-08-17 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor devices
US5464789A (en) * 1989-06-08 1995-11-07 Kabushiki Kaisha Toshiba Method of manufacturing a CMOS semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116770A (en) * 1988-07-14 1992-05-26 Matsushita Electric Industrial Co., Ltd. Method for fabricating bipolar semiconductor devices
US5236851A (en) * 1988-07-14 1993-08-17 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor devices
US5464789A (en) * 1989-06-08 1995-11-07 Kabushiki Kaisha Toshiba Method of manufacturing a CMOS semiconductor device
US5612245A (en) * 1989-06-08 1997-03-18 Kabushiki Kaisha Toshiba Method of manufacturing CMOS device

Similar Documents

Publication Publication Date Title
KR102311036B1 (en) Development of high etch selective hardmask material by ion implantation into amorphous carbon films
US4452644A (en) Process for doping semiconductors
US7736960B2 (en) Process for producing a photoelectric conversion device
TW201235463A (en) Formulations for the removal of particles generated by cerium-containing solutions
JP4150548B2 (en) Manufacturing method of semiconductor device
JPS63187622A (en) Manufacture of semiconductor device
US6835626B2 (en) Method to overcome instability of ultra-shallow semiconductor junctions
JPH03131020A (en) Manufacture of semiconductor device
JP2662058B2 (en) Method for manufacturing semiconductor film
JPS6130030A (en) Method of annealing multi-element semiconductor
US20030045112A1 (en) Ion implantation to induce selective etching
JPH08279475A (en) Forming method of active layer in compound semiconductor device
JP3260165B2 (en) Manufacturing method of thin film element
JPH0396228A (en) Ion implanting method
JP2685384B2 (en) Semiconductor substrate manufacturing method
JPS5992997A (en) Method for forming thin film using molecular beam epitaxial growth method
JPH02133926A (en) Manufacture of semiconductor device
EP3370251B1 (en) Method for forming a shallow junction in a semiconductor substrate
JP2020155447A (en) Method of forming semiconductor device
JPS6057619A (en) Manufacture of semiconductor device
JPS60177621A (en) Manufacture of semiconductor element
JPH01124216A (en) Method for activating impurity
JPS60175416A (en) Manufacture of semiconductor device
JPH0116005B2 (en)
JPH06263599A (en) Processing of substrate