JPS6318755Y2 - - Google Patents

Info

Publication number
JPS6318755Y2
JPS6318755Y2 JP1982091451U JP9145182U JPS6318755Y2 JP S6318755 Y2 JPS6318755 Y2 JP S6318755Y2 JP 1982091451 U JP1982091451 U JP 1982091451U JP 9145182 U JP9145182 U JP 9145182U JP S6318755 Y2 JPS6318755 Y2 JP S6318755Y2
Authority
JP
Japan
Prior art keywords
intake
resonant
engine
helmholtz resonator
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982091451U
Other languages
Japanese (ja)
Other versions
JPS58193017U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9145182U priority Critical patent/JPS58193017U/en
Publication of JPS58193017U publication Critical patent/JPS58193017U/en
Application granted granted Critical
Publication of JPS6318755Y2 publication Critical patent/JPS6318755Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は共鳴過給を行なう内燃機関の吸気騒音
防止装置に関する。 この種の内燃機関、特に気筒数が4気筒以下の
機関の場合、全気筒の吸気パルスが合流する吸気
マニホルドの合流部及びこれより上流の吸気系に
おいても圧力脈動が平滑化されずに吸気系開口端
より大きな吸気騒音を発生するという問題があつ
た。また、この種の機関で共鳴過給を行なう場合
には、吸気系全体を共鳴過給通路として設計する
必要があり、マツチング点の設定が難しいと共
に、エアクリーナにおける吸気絞り等の影響によ
り共鳴過給による過給効果が低下する。 これらの問題を解消するためには、機関吸気通
路の途中にサージタンクを設けることにより、該
サージタンク内で圧力脈動を平滑化すると共に、
サージタンク下流側に共鳴過給通路を形成する構
成にすればよいが、この場合サージタンクの容積
が気筒の容積の10倍以上必要となり、かなりのス
ペースが必要となるという不具合を有している。 このため、従来第1図に示すように、機関吸気
通路1の途中に共鳴管2及び共鳴容器3からなる
ヘルムホルツ共鳴器Aを接続合流し、この合流部
4下流側に共鳴管5及びマニホルド容器6等から
なる共鳴過給通路Bを設けると共に、ヘルムホル
ツ共鳴器Aと共鳴過給通路Bの共鳴周波数をマツ
チングさせて構成し、共鳴過給におけるエアクリ
ーナ等の影響を取り除くと共に吸気騒音を低減さ
せるようにしたものがある(特開昭55−87822号
公報)。 しかしながら、この従来装置のヘルムホルツ共
鳴器Aでは共鳴周波数は変化せず、その吸振効果
が有効に作用するのはその共鳴周波数付近のみで
あつた。このため、この共鳴周波数に対応する機
関回転速度領域から離れた領域では、その吸気振
動周波数が共鳴器Aの共鳴周波数からずれるため
吸振効果が著しく低下する。従つて、機関常用回
転域が広い自動車用内燃機関においては、吸気騒
音の低減効果が十分とは言えなかつた。 本考案は上記の実情に鑑みてなされたもので、
機関吸気通路の途中に、相対移動可能に重合する
内筒と外筒とを有して前記重合部に形成した密閉
環状間隙部に導入する流体圧によつて内筒と外筒
とが相対移動することにより機関回転速度の増大
に応じてその共鳴周波数が増大するヘルムホルツ
共鳴器を接続し、この接続部下流側吸気通路を共
鳴過給通路とすると共にヘルムホルツ共鳴器の共
鳴周波数を共鳴過給通路内の吸気振動周波数の変
化と略一致しながら変化するように構成すること
により、従来の問題点を解決することを目的とす
る。 以下、本考案の実施例を図面に基づいて詳細に
説明する。 第1実施例を示す第2図において、機関本体1
1に接続された吸気マニホルド12にエアクリー
ナ13を介して大気に開放された吸気ダクト14
を接続する。この吸気ダクト14のエアクリーナ
13と吸気マニホルド12との間に機関回転速度
の増大に応じてその共鳴周波数が増大するように
構成したヘルムホルツ共鳴器15を接続する。こ
の場合、前記共鳴器15の接続部14aより下流
の吸気ダクトを共鳴管14bとし、この共鳴管1
4bを含んで前記接続部14aより下流の吸気通
路を共鳴過給通路とする。23は排気マニホルド
である。 第3図に前記ヘルムホルツ共鳴器の構造の詳細
を示す。図において、このヘルムホルツ共鳴器1
5は共鳴管16と共鳴容器17とで構成されてい
る。そして、前記共鳴容器17は共鳴管16が接
続される外筒としての固定容器17Aと該固定容
器17Aにスライド可能に重合した内筒としての
可動容器17Bを有し、可動容器17Bの閉塞端
内面と固定容器17Aの共鳴管接続部内面との間
にスプリング18が介装されている。また、固定
容器17Aの開口部内周縁及び可動容器17Bの
開口部外周縁には、両容器17A,17Bの重合
により形成される間隙部19を密閉するためのシ
ール部材20が装着されている。そして、前記間
隙部19内には配管21を介して機関回転速度の
増大に応じて昇圧する例えば機関潤滑油が導入さ
れる。 次に作用を説明する。 機関回転速度の増大に伴なつて配管21を介し
て間隙部19へ導入される潤滑油の油圧が上昇す
ると、可動容器17Bがスプリング18の弾性力
に抗して第3図中左方向へスライドする。このた
め、共鳴容器17の容積が小さくなる。ヘルムホ
ルツ共鳴器15の共鳴周波数1は共鳴管の断面積
をA1、長さをL1、共鳴容器の容積をV1とすれば
The present invention relates to an intake noise prevention device for an internal combustion engine that performs resonance supercharging. In the case of this type of internal combustion engine, especially an engine with four or fewer cylinders, pressure pulsations are not smoothed out at the intake manifold junction where the intake pulses of all cylinders join, and in the intake system upstream from this. There was a problem in that the intake noise was louder than that at the open end. In addition, when performing resonant supercharging in this type of engine, the entire intake system must be designed as a resonant supercharging passage, which makes it difficult to set the matching point, and the effect of the intake throttle in the air cleaner makes resonant supercharging difficult. The supercharging effect is reduced. In order to solve these problems, by providing a surge tank in the middle of the engine intake passage, pressure pulsations within the surge tank are smoothed out, and
It would be possible to configure a resonant supercharging passage downstream of the surge tank, but in this case, the volume of the surge tank would need to be more than 10 times the volume of the cylinder, which would require a considerable amount of space. . For this reason, conventionally, as shown in FIG. 1, a Helmholtz resonator A consisting of a resonance tube 2 and a resonance container 3 is connected and merged in the middle of an engine intake passage 1, and a resonance tube 5 and a manifold container are connected downstream of this junction 4. In addition to providing a resonant supercharging passage B consisting of 6 etc., the resonant frequencies of the Helmholtz resonator A and the resonant supercharging passage B are matched to eliminate the influence of an air cleaner etc. on resonance supercharging and reduce intake noise. (Japanese Unexamined Patent Publication No. 55-87822). However, in Helmholtz resonator A of this conventional device, the resonant frequency does not change, and its vibration absorption effect is effective only in the vicinity of the resonant frequency. Therefore, in a region away from the engine rotational speed region corresponding to this resonance frequency, the intake vibration frequency deviates from the resonance frequency of the resonator A, so that the vibration absorption effect is significantly reduced. Therefore, in an automobile internal combustion engine having a wide normal engine rotation range, the effect of reducing intake noise cannot be said to be sufficient. This idea was made in view of the above circumstances.
In the middle of the engine intake passage, there is an inner cylinder and an outer cylinder that are overlapped so as to be relatively movable, and the inner cylinder and the outer cylinder are moved relative to each other by fluid pressure introduced into a sealed annular gap formed in the overlapping part. By connecting a Helmholtz resonator whose resonant frequency increases as the engine speed increases, the intake passage on the downstream side of this connection becomes a resonant supercharging passage, and the resonant frequency of the Helmholtz resonator becomes a resonant supercharging passage. The object of the present invention is to solve the conventional problems by configuring the vibration frequency to change substantially in accordance with the change in the intake vibration frequency. Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In FIG. 2 showing the first embodiment, the engine body 1
An intake duct 14 is connected to the intake manifold 12 connected to the air intake duct 14 and is opened to the atmosphere via an air cleaner 13.
Connect. A Helmholtz resonator 15 is connected between the air cleaner 13 of the intake duct 14 and the intake manifold 12, and the Helmholtz resonator 15 is configured so that its resonant frequency increases as the engine rotational speed increases. In this case, the intake duct downstream of the connection part 14a of the resonator 15 is a resonance pipe 14b, and this resonance pipe 1
4b and the intake passage downstream of the connecting portion 14a is defined as a resonant supercharging passage. 23 is an exhaust manifold. FIG. 3 shows details of the structure of the Helmholtz resonator. In the figure, this Helmholtz resonator 1
5 is composed of a resonance tube 16 and a resonance container 17. The resonance container 17 has a fixed container 17A as an outer cylinder to which the resonance tube 16 is connected, and a movable container 17B as an inner cylinder that is slidably overlapped with the fixed container 17A. A spring 18 is interposed between the fixed container 17A and the inner surface of the resonance tube connection portion of the fixed container 17A. Moreover, a seal member 20 for sealing a gap 19 formed by overlapping both containers 17A and 17B is attached to the inner peripheral edge of the opening of the fixed container 17A and the outer peripheral edge of the opening of the movable container 17B. For example, engine lubricating oil is introduced into the gap 19 through a pipe 21, the pressure of which increases as the engine rotational speed increases. Next, the action will be explained. When the oil pressure of the lubricating oil introduced into the gap 19 through the piping 21 increases as the engine rotational speed increases, the movable container 17B slides to the left in FIG. 3 against the elastic force of the spring 18. do. Therefore, the volume of the resonance container 17 becomes smaller. The resonant frequency 1 of the Helmholtz resonator 15 is given by the following formula: If the cross-sectional area of the resonant tube is A 1 , the length is L 1 , and the volume of the resonant container is V 1

【式】(Kは係数)で与えられる。 従つて、ヘルムホルツ共鳴器15の共鳴周波数が
機関回転速度の増大に伴なつて連続的に増大する
ことになる。そして、この共鳴周波数の変化は機
関回転速度の増大に応じて増大する共鳴過給通路
内の吸気振動周波数と略一致しながら増大するよ
うに構成してある。このため、機関回転速度の広
い範囲に亘つて接続部14aより上流側の吸気ダ
クト14内へは吸気振動が伝達されずヘルムホル
ツ共鳴器15による吸振効果を有効に作用させる
ことができ吸気騒音を大幅に低減することができ
る。しかも、固定容器17Aと可動容器17Bと
の間の間隙部19に潤滑油圧を作用させることに
よつて、ヘルムホルツ共鳴器15の内容積を可変
させているので、過給機付内燃機関において機関
回転数の増大に応じて増大する過給圧が作用する
過給機下流側に配置しても機関回転増大時に過給
圧に打ち勝つて共鳴器15の内容積を小さくする
ことができる。従つて、過給機付内燃機関に対し
てもそのまま適用することができる。また、ヘル
ムホルツ共鳴器15の共鳴周波数は、共嗚過給の
共嗚機関回転速度で、共鳴過給通路の共鳴周波数
と一致するようになつている。 また、共鳴管の長さを可変とすることによりヘ
ルムホルツ共鳴器の共鳴周波数を変化させるよう
にしてもよい。 例えば、第4図及び第5図に示すように、機関
本体11に接続する吸気マニホルド12が合流す
る合流部25内部にヘルムホルツ共鳴器15の共
鳴管16を設ける。この共鳴管16を第6図に示
す如く共鳴容器17に接続する固定管16Aと該
固定管16Aにスライド可能に重合する可動管1
6Bとで構成し、その重合により形成される間隙
部19に配管21により機関潤滑油を供給するよ
うにする。 この場合、機関回転速度の増大に伴なつて間隙
部19内の油圧が上昇すると可動管16Bがスプ
リング18に抗して第6図中左方向に移動し共鳴
管16の長さが短くなり、ヘルムホルツ共鳴器1
5の共鳴周波数が機関回転速度の増大と共に増大
する。 以上述べたように本考案によれば、機関回転速
度の増大に応じてヘルムホルツ共鳴器の共鳴周波
数を増大させ、しかもこの共鳴周波数を共鳴過給
通路内の吸気振動周波数と略一致させつつ増大さ
せるよう構成したので、機関運転領域の広い範囲
に亘つて吸気騒音を効果的に低減させることがで
き吸気騒音低減効果を大幅に向上させることがで
きる。 また、ヘルムホルツ共鳴器を、相対移動可能な
内筒と外筒を重合させその重合部の密閉環状間隔
部に流体圧を導入し、この流体圧で両筒を相対移
動させて共鳴周波数を可変とする構成としたの
で、過給機付内燃機関において過給圧の作用する
過給機下流側に設けても流体圧の作用によつて正
常に動作させることができるので、過給機付内燃
機関にも適用できる。
It is given by [Formula] (K is a coefficient). Therefore, the resonant frequency of the Helmholtz resonator 15 increases continuously as the engine rotational speed increases. The change in resonance frequency is configured to increase while substantially matching the intake vibration frequency in the resonance supercharging passage, which increases as the engine rotational speed increases. Therefore, over a wide range of engine rotational speeds, intake vibrations are not transmitted into the intake duct 14 upstream of the connecting portion 14a, and the vibration absorption effect of the Helmholtz resonator 15 can be effectively applied, significantly reducing intake noise. can be reduced to Moreover, by applying lubricating oil pressure to the gap 19 between the fixed container 17A and the movable container 17B, the internal volume of the Helmholtz resonator 15 is varied, so that the engine rotation speed is reduced in a supercharged internal combustion engine. Even if the resonator 15 is placed on the downstream side of the supercharger where the supercharging pressure that increases as the number of resonators increases, the internal volume of the resonator 15 can be reduced by overcoming the supercharging pressure when the engine rotation increases. Therefore, it can be applied as is to a supercharged internal combustion engine. Further, the resonant frequency of the Helmholtz resonator 15 is made to match the resonant frequency of the resonant supercharging passage at the mutual engine rotation speed of the mutual supercharging. Furthermore, the resonance frequency of the Helmholtz resonator may be changed by making the length of the resonance tube variable. For example, as shown in FIGS. 4 and 5, a resonance pipe 16 of a Helmholtz resonator 15 is provided inside a merging section 25 where the intake manifold 12 connected to the engine body 11 merges. As shown in FIG. 6, a fixed tube 16A connects this resonance tube 16 to a resonance container 17, and a movable tube 1 slideably overlaps with the fixed tube 16A.
6B, and engine lubricating oil is supplied through a pipe 21 to the gap 19 formed by the polymerization. In this case, when the oil pressure in the gap 19 increases as the engine rotational speed increases, the movable tube 16B moves to the left in FIG. 6 against the spring 18, and the length of the resonance tube 16 becomes shorter. Helmholtz resonator 1
5 resonance frequency increases with increasing engine speed. As described above, according to the present invention, the resonant frequency of the Helmholtz resonator is increased in accordance with an increase in engine rotational speed, and this resonant frequency is increased while substantially matching the intake vibration frequency in the resonant supercharging passage. With this configuration, intake noise can be effectively reduced over a wide range of engine operating ranges, and the intake noise reduction effect can be greatly improved. In addition, in a Helmholtz resonator, an inner cylinder and an outer cylinder that are movable relative to each other are overlapped, fluid pressure is introduced into a sealed annular space between the overlapping parts, and the resonant frequency is made variable by using this fluid pressure to move both cylinders relative to each other. Because of this structure, even if it is installed downstream of the supercharger where supercharging pressure acts in a supercharged internal combustion engine, it can be operated normally by the action of fluid pressure. It can also be applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す略示構成図、第2図は本
考案の1実施例を示す略示平面図、第3図は同上
実施例の要部拡大断面図、第4図は本考案の第2
実施例を示す略平面図、第5図は第4図中−
矢視図、第6図は同上実施例の要部断面図を示
す。 12……吸気マニホルド、14a……接続部、
14b……共鳴管、15……ヘルムホルツ共鳴
器、16……共鳴管、16A……固定管、16B
……可動管、17……共鳴容器、17A……固定
容器、17B……可動容器、19……間隙部。
Fig. 1 is a schematic configuration diagram showing a conventional example, Fig. 2 is a schematic plan view showing an embodiment of the present invention, Fig. 3 is an enlarged sectional view of the main part of the same embodiment, and Fig. 4 is a schematic diagram of the present invention. the second of
A schematic plan view showing the embodiment, FIG. 5 is in FIG.
The arrow view and FIG. 6 show a sectional view of a main part of the same embodiment. 12...Intake manifold, 14a...Connection part,
14b... Resonance tube, 15... Helmholtz resonator, 16... Resonance tube, 16A... Fixed tube, 16B
...Movable tube, 17... Resonance container, 17A... Fixed container, 17B... Movable container, 19... Gap part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 共鳴過給形吸気通路を有する内燃機関におい
て、機関吸気通路の途中に、相対移動可能に重合
する内筒と外筒を有して前記重合部に形成した密
閉環状間隙部に導入する流体圧によつて内筒と外
筒とが相対移動することにより機関回転速度の増
大に応じてその共鳴周波数が増大するヘルムホル
ツ共鳴器を接続し、この接続部より下流側吸気通
路を共鳴過給通路とすると共に、前記ヘルムホル
ツ共鳴器の共鳴周波数を前記共鳴過給通路内の吸
気振動周波数と略等しくなるように構成したこと
を特徴とする内燃機関の吸気騒音防止装置。
In an internal combustion engine having a resonant supercharging type intake passage, an inner cylinder and an outer cylinder are arranged in the middle of the engine intake passage and overlap each other so as to be relatively movable, and the fluid pressure introduced into a sealed annular gap formed in the overlap part is provided. Therefore, a Helmholtz resonator whose resonant frequency increases as the engine speed increases due to relative movement between the inner cylinder and the outer cylinder is connected, and the intake passage downstream of this connection is made a resonant supercharging passage. In addition, an intake noise prevention device for an internal combustion engine, characterized in that the resonant frequency of the Helmholtz resonator is configured to be approximately equal to the intake vibration frequency in the resonant supercharging passage.
JP9145182U 1982-06-21 1982-06-21 Internal combustion engine intake noise prevention device Granted JPS58193017U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9145182U JPS58193017U (en) 1982-06-21 1982-06-21 Internal combustion engine intake noise prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9145182U JPS58193017U (en) 1982-06-21 1982-06-21 Internal combustion engine intake noise prevention device

Publications (2)

Publication Number Publication Date
JPS58193017U JPS58193017U (en) 1983-12-22
JPS6318755Y2 true JPS6318755Y2 (en) 1988-05-26

Family

ID=30099825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9145182U Granted JPS58193017U (en) 1982-06-21 1982-06-21 Internal combustion engine intake noise prevention device

Country Status (1)

Country Link
JP (1) JPS58193017U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335851Y2 (en) * 1984-12-28 1991-07-30
CN102606278A (en) * 2012-03-27 2012-07-25 上海交通大学 Air inlet device with elastic component
CN102606279A (en) * 2012-03-27 2012-07-25 上海交通大学 Air inlet system with movable component in air inlet tube
JP7191466B2 (en) * 2018-11-27 2022-12-19 株式会社Subaru internal combustion engine silencer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587822A (en) * 1978-12-21 1980-07-03 Autoipari Kutato Intezet Conduit system for introducing sucked gas into internal combustion engine
JPS5618787A (en) * 1979-07-25 1981-02-21 Fujitsu Ltd Time counting system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936694Y2 (en) * 1978-10-20 1984-10-09 日産デイ−ゼル工業株式会社 Intake silencer for internal combustion engines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587822A (en) * 1978-12-21 1980-07-03 Autoipari Kutato Intezet Conduit system for introducing sucked gas into internal combustion engine
JPS5618787A (en) * 1979-07-25 1981-02-21 Fujitsu Ltd Time counting system

Also Published As

Publication number Publication date
JPS58193017U (en) 1983-12-22

Similar Documents

Publication Publication Date Title
JP3034258B2 (en) Engine intake silencer
US7584821B2 (en) Adjustable helmholtz resonator
JPS6318755Y2 (en)
JPH0361005B2 (en)
JPS61190158A (en) Intake system silencer for internal-combustion engine
JPS6237940Y2 (en)
JP2537076B2 (en) Internal combustion engine intake system
JPS626251Y2 (en)
JPS6256325B2 (en)
JPS63309762A (en) Intake device for engine with supercharger
JPS62126223A (en) Exhaust device for multicylinder engine
JPH053709Y2 (en)
JPS6140909Y2 (en)
JP2003074428A (en) Intake device for multicylinder internal combustion engine
JPS61237823A (en) Intake equipment for multi-cylinder engine
JPS6246809Y2 (en)
JPH0716032Y2 (en) Variable intake system for multi-cylinder internal combustion engine
JPH0716031Y2 (en) Variable intake system for multi-cylinder internal combustion engine
JPH089369Y2 (en) Secondary air supply device for internal combustion engine
JP3325722B2 (en) Engine intake system
JP3585794B2 (en) Intake device for internal combustion engine
JPH0315779Y2 (en)
JPH08527Y2 (en) Intake muffler for internal combustion engine
JPH0640356U (en) Gasket structure for intake pipe of internal combustion engine
JP2507971Y2 (en) Engine intake system