JPS63178849A - Oxidation catalyst - Google Patents

Oxidation catalyst

Info

Publication number
JPS63178849A
JPS63178849A JP62009967A JP996787A JPS63178849A JP S63178849 A JPS63178849 A JP S63178849A JP 62009967 A JP62009967 A JP 62009967A JP 996787 A JP996787 A JP 996787A JP S63178849 A JPS63178849 A JP S63178849A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
oxidation catalyst
mixed powder
manganese dioxide
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62009967A
Other languages
Japanese (ja)
Inventor
Motoaki Sato
元昭 佐藤
Fumihiko Imoji
出雲路 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62009967A priority Critical patent/JPS63178849A/en
Publication of JPS63178849A publication Critical patent/JPS63178849A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge the effective reaction surface area of the title catalyst and to enhance the efficiency in removing carbon monoxide by depositing the mixed powder of manganese dioxide and another metal oxide on the surface of a granular thermoplastic resin. CONSTITUTION:The granular thermoplastic resin and the mixed powder of manganese dioxide and another metal oxide are charged, for example, in a rotary evaporator, rotated while being heated, and mixed to deposit the mixed powder on the surface of the thermoplastic resin, and the oxidation catalyst is produced. The heating is carried out at a temp. within + or -5 deg.C of the m.p. of the thermoplastic resin. Polyethylene, polypropylene, polyamide, etc., can be exemplified as the thermoplastic resin, and the grain diameter is controlled to about 1.0-2.0mm. Meanwhile, the oxides of copper, cobalt, chromium, iron, titanium, etc., and activated alumina, etc., are used as another metal oxide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化触媒に関するものである。更に詳しくは、
ガス安全マスク、地下駐車場等で一酸化炭素除去剤とし
て用いられる酸化触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxidation catalyst. For more details,
It relates to oxidation catalysts used as carbon monoxide removers in gas safety masks, underground parking lots, etc.

(従来の技術および発明が解決しようとする問題点) 従来、−酸化炭素除去剤として、二酸化マンガンの塊状
物と酸化銅(II)の塊状物を粗砕して適当な粒径に整
粒し混合したもの、あるいは二酸化マンガン粉末と酸化
銅(If)粉末を混合した後アルミナセメント等の結合
剤を加え成形したもの等が用いられている。
(Prior art and problems to be solved by the invention) Conventionally, as a carbon oxide removal agent, manganese dioxide lumps and copper (II) oxide lumps were coarsely crushed and sized to an appropriate particle size. A mixture of manganese dioxide powder and copper oxide (If) powder is used, or a mixture of manganese dioxide powder and copper oxide (If) powder is used, followed by adding a binder such as alumina cement and forming the mixture.

しかし、前述のような粗砕、整粒によって得られる除去
剤は有効な反応表面積が小さいという欠点を有し、一方
結合剤で成形して得られる除去剤は表面の活性部分が結
合剤で覆われるため、除去能力が劣るという問題点があ
る。
However, the remover obtained by crushing and sizing as described above has the disadvantage of having a small effective reaction surface area, while the remover obtained by molding with a binder has the active part of the surface covered with the binder. There is a problem that the removal ability is inferior because of the

(問題点を解決するための手段) 本発明者等は上記問題点を解決するために鋭意検討を行
った結果、熱可塑性樹脂を基体とすることにより、有効
な反応表面積が大きい酸化触媒が得られるという知見を
得七本発明を完成させるに至った。
(Means for Solving the Problems) The present inventors have conducted extensive studies to solve the above problems, and have found that an oxidation catalyst with a large effective reaction surface area can be obtained by using a thermoplastic resin as a base. We have obtained the knowledge that the present invention can be completed.

すなわち、本発明は粒状の熱可塑性樹脂の表面に二酸化
マンガンと他の金属酸化物との混合粉末を担持してなる
酸化触媒である。
That is, the present invention is an oxidation catalyst formed by supporting a mixed powder of manganese dioxide and other metal oxides on the surface of a granular thermoplastic resin.

本発明の酸化触媒は粒状の熱可塑性樹脂と二酸化マンガ
ンと他の金属酸化物との混合粉末を原料として用い、こ
れらの原料を例えばロータリーエバポレーターに装入し
、加熱しながら回転させ混合することにより得ることが
できる。
The oxidation catalyst of the present invention uses a mixed powder of granular thermoplastic resin, manganese dioxide, and other metal oxides as a raw material, and by charging these raw materials into, for example, a rotary evaporator and rotating and mixing them while heating. Obtainable.

このとき加熱を行うのは、熱可塑性樹脂の表面に二酸化
マンガンと他の金属酸化物との混合粉末を担持させ易く
するためであり、その加熱温度は用いた熱可塑性樹脂の
融点の±50℃であることが好ましい。これより低い温
度の場合、混合粉末の担持がうまく行なわれないおそれ
があり、高い温度の場合、熱可塑性樹脂全部が溶けてし
まうおそれがある。
The purpose of heating at this time is to make it easier to support the mixed powder of manganese dioxide and other metal oxides on the surface of the thermoplastic resin, and the heating temperature is ±50°C of the melting point of the thermoplastic resin used. It is preferable that If the temperature is lower than this, there is a risk that the mixed powder will not be supported properly, and if the temperature is high, there is a risk that the entire thermoplastic resin will melt.

重合体、ナイロン、ポリスチレン、スチレン−イソプレ
ン共重合体またはこれらの2種以上の混合物を挙げるこ
とができる。その粒径は一酸化炭素除去用の酸化触媒の
一般的な粒径である1、0〜2.0mmでよい。
Polymers, nylon, polystyrene, styrene-isoprene copolymers, or mixtures of two or more thereof can be mentioned. The particle size may be 1.0 to 2.0 mm, which is the general particle size of oxidation catalysts for removing carbon monoxide.

また他の金属酸化物としては、銅、コバルト。Other metal oxides include copper and cobalt.

クロム、鉄、チタンの酸化物または活性アルミナ等を用
いることができるが、特に本発明においては酸化銅(n
)が好ましく用いられる。
Although oxides of chromium, iron, titanium, activated alumina, etc. can be used, copper oxide (n
) is preferably used.

混合粉末の混合比は、用いる他の金属酸化物によって異
なるが、酸化銅(I)の場合、用いた二酸化マンガンの
25重量%以上混合することが好ましく、二酸化マンガ
ンと酸化銅(II)の混合比が60=40のときが最も
好ましい。
The mixing ratio of the mixed powder varies depending on the other metal oxides used, but in the case of copper (I) oxide, it is preferable to mix at least 25% by weight of the manganese dioxide used, and the mixture of manganese dioxide and copper (II) oxide Most preferred is a ratio of 60=40.

得られる酸化触媒の有効な反応表面積を大きくするため
には、熱可塑性樹脂の表面に担持する混合粉末の粒径を
小さくすればよいが、1DOμm以下とすることが好ま
しい。更に、用いる混合粉末の量が多ければ、樹脂に担
持する混合粉末の量が増し、有効な反応表面積は大きく
なるので、用いる混合粉末の重量は樹脂の重量の3倍以
上であることが好ましい。
In order to increase the effective reaction surface area of the resulting oxidation catalyst, the particle size of the mixed powder supported on the surface of the thermoplastic resin may be reduced, but it is preferably 1 DO μm or less. Furthermore, if the amount of the mixed powder used is large, the amount of the mixed powder supported on the resin increases, and the effective reaction surface area increases, so it is preferable that the weight of the mixed powder used is at least three times the weight of the resin.

(実施例) 以下、実施例忙基づき本発明を説明するが、本発明はこ
れらに限定されるものではない。
(Examples) The present invention will be described below based on Examples, but the present invention is not limited thereto.

実施例に 酸化マンガンと酸化銅(n)の重量比が60:40で、
粒径が10μm以下の混合粉末と粒径tO〜2.0mの
エチレン−酢酸ビニル共重合体の粒状物(融点75℃)
を重量比5:1としてロータリーエバポレーターに装入
した。次いで、油浴を用い110℃に加熱しながらロー
タリーエバポレーターを1時間回転させ、エチレン−酢
i11!ビニル共重合体の粒状物表面に混合粉末を担持
させた。
In the example, the weight ratio of manganese oxide and copper oxide (n) was 60:40,
Granules of mixed powder with a particle size of 10 μm or less and ethylene-vinyl acetate copolymer with a particle size of tO ~ 2.0 m (melting point 75°C)
were charged into a rotary evaporator at a weight ratio of 5:1. Next, a rotary evaporator was rotated for 1 hour while heating to 110°C using an oil bath, and the ethylene-vinegar i11! The mixed powder was supported on the surface of the vinyl copolymer particles.

その後熱水洗を行ない、水酸化す) IJウムを用いて
pHを調整しほぼ中性とし、乾燥して酸化触媒を得た。
Thereafter, the mixture was washed with hot water, the pH was adjusted to almost neutral using IJium (hydroxide), and the mixture was dried to obtain an oxidation catalyst.

得られた酸化触媒を用いて、−酸化炭素除去の性能試験
を行った。試験は一酸化炭素濃度1500ppmに調整
した空気をカラムにて空間速度(時間当たりに触媒層を
通過する流量を触媒量で割った値)eV−120(17
分)、線速度(時間当たりの通過流量を通過面積で割っ
た値)LV−5,98(m7分)で連続して流して行っ
た。3分後に酸化触媒を通過した空気の一酸化炭素濃度
を表−1に示す。
Using the obtained oxidation catalyst, a performance test for removing carbon oxide was conducted. The test was carried out using air adjusted to a carbon monoxide concentration of 1500 ppm in a column at a space velocity (value obtained by dividing the flow rate passing through the catalyst layer per hour by the amount of catalyst) eV-120 (17
The flow was carried out continuously at a linear velocity (value obtained by dividing the passing flow rate per hour by the passing area) of LV-5.98 (m7 minutes). Table 1 shows the carbon monoxide concentration of the air that passed through the oxidation catalyst after 3 minutes.

実施例2 熱可塑性樹脂として粒径1.0〜2.0關のポリエチレ
ン粒状物(融点118℃)を用い、加熱温度を140℃
とした以外は実施例1と同様の方法で酸化触媒を得た。
Example 2 Polyethylene granules (melting point 118°C) with a particle size of 1.0 to 2.0°C were used as the thermoplastic resin, and the heating temperature was 140°C.
An oxidation catalyst was obtained in the same manner as in Example 1 except that:

得られた酸化触媒を用いて実施例1と同様の一酸化炭素
除去の性能試験を行った。その結果を表−IK示す。
The same carbon monoxide removal performance test as in Example 1 was conducted using the obtained oxidation catalyst. The results are shown in Table IK.

比較例 二酸化マンガンと酸化銅(l[)の重量比が60:40
の混合粉末に結合剤としてアルミナセメントを加え塊状
とした後、粒径1.D〜2.0關に粉砕整粒して酸化触
媒を得た。
Comparative example: The weight ratio of manganese dioxide and copper oxide (l[) is 60:40.
After adding alumina cement as a binder to the mixed powder and making it into a lump, the particle size was 1. The oxidation catalyst was obtained by pulverizing and sizing to D~2.0.

得られた酸化触媒を用いて実施例1と同様の一酸化炭素
除去の性能試験を行った。その結果を表−1に示す。
The same carbon monoxide removal performance test as in Example 1 was conducted using the obtained oxidation catalyst. The results are shown in Table-1.

表−1 表−1において、本発明の酸化触媒は、通過した空気の
一酸化炭素の濃度が低いことがら、空気中の一酸化炭素
を除去する能力に優れていることがわかる。
Table 1 In Table 1, it can be seen that the oxidation catalyst of the present invention has an excellent ability to remove carbon monoxide from the air since the concentration of carbon monoxide in the air through which it passes is low.

(発明の効果) 以上述べたとおり、粒状の熱可塑性樹脂の表面に二酸化
マンガンと他の金属酸化物の混合粉末を担持した本発明
の酸化触媒は、結合剤を用いずに得ることができるので
、表面の活性部分は結合剤で覆われておらず、有効な反
応表面積も太きい。
(Effects of the Invention) As described above, the oxidation catalyst of the present invention in which a mixed powder of manganese dioxide and other metal oxides is supported on the surface of a granular thermoplastic resin can be obtained without using a binder. , the active part of the surface is not covered by the binder, and the effective reaction surface area is also large.

従って、−酸化炭素を除去する能力が著しく優れ、また
全体が二酸化マンガンと他の金属酸化物だけからなる酸
化触媒よりも安価に得られることから、−酸化炭素除去
剤として用いられる酸化触媒としては最適である。
Therefore, - it has a significantly superior ability to remove carbon oxide, and it is less expensive to obtain than an oxidation catalyst consisting entirely of manganese dioxide and other metal oxides; Optimal.

Claims (3)

【特許請求の範囲】[Claims] (1)粒状の熱可塑性樹脂の表面に二酸化マンガンと他
の金属酸化物との混合粉末を担持してなる酸化触媒。
(1) An oxidation catalyst formed by supporting a mixed powder of manganese dioxide and other metal oxides on the surface of a granular thermoplastic resin.
(2)熱可塑性樹脂として、ポリエチレン、ポリプロピ
レン、エチレン−酢酸ビニル共重合体、ナイロン、ポリ
スチレン、スチレン−イソプレン共重合体またはこれら
の2種以上の混合物を用いる特許請求の範囲第(1)項
に記載の酸化触媒。
(2) Claim (1) uses polyethylene, polypropylene, ethylene-vinyl acetate copolymer, nylon, polystyrene, styrene-isoprene copolymer, or a mixture of two or more thereof as the thermoplastic resin. The oxidation catalyst described.
(3)他の金属酸化物として、酸化銅(II)を用いる特
許請求の範囲第(1)項又は第(2)項に記載の酸化触
媒。
(3) The oxidation catalyst according to claim (1) or (2), in which copper (II) oxide is used as the other metal oxide.
JP62009967A 1987-01-21 1987-01-21 Oxidation catalyst Pending JPS63178849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62009967A JPS63178849A (en) 1987-01-21 1987-01-21 Oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009967A JPS63178849A (en) 1987-01-21 1987-01-21 Oxidation catalyst

Publications (1)

Publication Number Publication Date
JPS63178849A true JPS63178849A (en) 1988-07-22

Family

ID=11734699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009967A Pending JPS63178849A (en) 1987-01-21 1987-01-21 Oxidation catalyst

Country Status (1)

Country Link
JP (1) JPS63178849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829299A1 (en) * 1995-05-26 1998-03-18 Hitachi Chemical Co., Ltd. Environment purifying material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829299A1 (en) * 1995-05-26 1998-03-18 Hitachi Chemical Co., Ltd. Environment purifying material
EP0829299A4 (en) * 1995-05-26 1999-02-10 Hitachi Chemical Co Ltd Environment purifying material
US5997829A (en) * 1995-05-26 1999-12-07 Hitachi Chemical Company, Ltd. Environment purifying material

Similar Documents

Publication Publication Date Title
NO153136B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF NEW THERAPEUTIC ACTIVE NAFTHYDRINE DERIVATIVES
ES8603285A1 (en) Process and apparatus for the production of granules.
CN101190457B (en) Process for making iron powder or microalloyed steel powder from iron oxide powder by oxidation and reduction
JPS6215485B2 (en)
JPS63178849A (en) Oxidation catalyst
JPS6237325A (en) Calcined lump ore and its production
JPS5831978B2 (en) Kinobutsutsushihogokouzotai
JP4205242B2 (en) Granulation method of sintering raw material
JP6683155B2 (en) Method for producing granules containing carbon material
JPH044075A (en) Coating method of surface reforming agent
JPS63149333A (en) Coating method for powdery coke on green pellet for burnt agglomerated ore
CN105858661B (en) The hot method calcium carbide synthesis reactor of oxygen
JPS63149331A (en) Production of burnt agglomerated ore
JP3163455B2 (en) Granulation method of coarse and fine mixed powder granules and method for producing sintered ore
JPS63149336A (en) Production of burnt agglomerated ore
US2155372A (en) Process for the production of fertilizers
JPS55113801A (en) Production of fine particle zinc
US3717451A (en) Fluidized bed treatment of phosphorus-containing precipitator dust
JPH04210433A (en) Method for pelletizing coke breeze and anthracite and manufacture of sintered ore
JP4155438B2 (en) Method for producing spherical oxide powder
US4407737A (en) Catalysts for heterogeneous synthesis
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPH0261423B2 (en)
SU971897A1 (en) Method for preparing slag-forming granules for steel smelting production
RU2061060C1 (en) Mixture to produce synthetic lime-ferriferrous slag and process of its preparation