JPS63173415A - Drive method for semiconductor device - Google Patents

Drive method for semiconductor device

Info

Publication number
JPS63173415A
JPS63173415A JP394187A JP394187A JPS63173415A JP S63173415 A JPS63173415 A JP S63173415A JP 394187 A JP394187 A JP 394187A JP 394187 A JP394187 A JP 394187A JP S63173415 A JPS63173415 A JP S63173415A
Authority
JP
Japan
Prior art keywords
gate
pulse
time
turn
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP394187A
Other languages
Japanese (ja)
Other versions
JP2635565B2 (en
Inventor
Katsuhiko Takigami
滝上 克彦
Tsuneo Ogura
常雄 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP394187A priority Critical patent/JP2635565B2/en
Priority to US07/101,790 priority patent/US4821083A/en
Priority to EP87308676A priority patent/EP0262958B1/en
Priority to DE3751268T priority patent/DE3751268T2/en
Publication of JPS63173415A publication Critical patent/JPS63173415A/en
Priority to US07/701,002 priority patent/US5132767A/en
Application granted granted Critical
Publication of JP2635565B2 publication Critical patent/JP2635565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To decrease the tail current by constituting the titled device by a double gate GTO and a gate pulser and giving a difference to the start point time of two gate pulses in impressing a turn-off gate pulse especially so as to reduce the drop time without increase in the turn-off loss and power loss at forward voltage drop. CONSTITUTION:The device consists of a double gate GTO1, a reference gate pulse generating circuit 2, 2nd and 3rd pulses 3, 5 and an off-gate pulse delay circuit 4 and a reference pulse S1 and a low potential are isolated. The reference pulse S1 is repeated at an interval of t5-t1, a 1st gate pulse S2 gives an output from a time t1 to t2 and it is repeated. A turn-on signal S3 is synchronized with the said signal S1 and a turn-off signal S3 is retarded by the off-pulse of the gate S1 by t=t4-t3. The signal S5 is provided and a 2nd gate output is positive at a time t1 and an off-pulse at a time t4. The generation time of the signal S2 and the turn-off pulse of the S4 is made different by t to operate a double gate GTO1. Thus, the problem of long fall time of the anode current is solved by sucking a current by using two gates and the problem of the large initial value of the tail current is solved by using the 1st gate to suppress the injection of positive holes respectively.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明はゲートターンオフサイリスタでかつアノード
側Nベース(以下アノードベース)とカソード側Pベー
ス(以下カソードベース)の双方にゲート電極を設けた
ゲートターンオフサイリスタ(以下ダブルゲートGTO
)を駆動する方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention is a gate turn-off thyristor, and has gates on both the anode side N base (hereinafter referred to as anode base) and the cathode side P base (hereinafter referred to as cathode base). Gate turn-off thyristor with electrodes (hereinafter referred to as double gate GTO)
) on how to drive.

(従来技術) ダブルゲートGTOは現在開発途上のもので使用されて
いない。そのため問題点が明らかではないが、現在市販
されているシングルゲートGTOの特性の中で欠点が明
らかになっているので、その問題点を従来技術の問題と
し以下に記述する。
(Prior Art) Double gate GTO is currently under development and is not in use. Therefore, the problem is not clear, but since a drawback has become clear in the characteristics of single gate GTOs currently on the market, the problem will be described below as a problem of the prior art.

(発明が解決しようとする問題点) 第7図はシングルゲートGTOと周辺回路である。(Problem that the invention attempts to solve) FIG. 7 shows a single gate GTO and peripheral circuits.

同図において101はシングルゲートGTO1102は
ターンオンゲート電源、103はスイッチ素子、104
はターンオフゲート電源、105はスイッチ素子、10
6は主電源、107は負荷である。
In the figure, 101 is a single gate GTO 1102 is a turn-on gate power supply, 103 is a switch element, and 104 is a turn-on gate power supply.
is a turn-off gate power supply, 105 is a switch element, 10
6 is a main power supply, and 107 is a load.

第8図は動作波形であって第5図を使っ3てその動作を
説明する。
FIG. 8 shows operating waveforms, and the operation will be explained using FIG. 5.

時点t1でスイッチ素子103をターンオン用電源10
2によってゲート電流1.が図示した矢印の向きに流れ
GTO101はターンオンする。
At time t1, the power supply 10 for turning on the switch element 103
2, the gate current 1. flows in the direction of the arrow shown, and the GTO 101 turns on.

時点t2以前にスイッチ素子103を開放し、時点t2
でスイッチ素子105をオンするとオフ電M 105に
よってゲート電流1.を図示の矢印と反対の向きに流れ
る。いわゆる電流吸い出しを行なう。
The switch element 103 is opened before time t2, and the switch element 103 is opened before time t2.
When the switch element 105 is turned on, the off-state current M 105 causes a gate current of 1. flows in the direction opposite to the arrow shown. So-called current extraction is performed.

そして電流IAの減少が始まるまでの時間(=t3tz
)を蓄積時間とよびGTO内部では、導通領域が狭くな
っていく(以下スクイズ)、さらに時点t8から工、が
減少し、同時にアノード電圧vAが増加する。■、は時
点t4まで急激に減少する、この時間(”ta  ta
)を降下時間とよんでいる。そして時点t4のアノード
電流工、の値をティルミ流初期値と云う。この時点t4
以後時点t、まで流れている■、をティルミ流と呼び、
又その時間(”tx  t、h)をテイル期間と呼んで
いる。このティルミ流は第7図のNベース中残留電荷が
排出されるために生じる電流である。
Then, the time until the current IA starts to decrease (=t3tz
) is called the accumulation time, and inside the GTO, the conduction region becomes narrower (hereinafter referred to as squeeze), and from time t8, the time decreases, and at the same time, the anode voltage vA increases. ■, decreases rapidly until time t4, at which time ("ta ta
) is called the descent time. The value of the anode current at time t4 is called the Tilmi flow initial value. At this point t4
From now on, ■, which flows until time t, is called the Tilmi flow,
This time (tx t, h) is called a tail period. This Tilmi current is a current generated because the residual charge in the N base shown in FIG. 7 is discharged.

以上説明の動作中に生じる電力損失p(=v^×■^)
は第8図最下段に示す波形になる。
Power loss p (=v^×■^) that occurs during the operation explained above
has the waveform shown in the bottom row of FIG.

この波形において電力損失が大きいのは時点t3から時
点t、までの間に発生する損失である。
In this waveform, the power loss that is large is the loss that occurs between time t3 and time t.

さらに細分化すると降下時間(=t4−t3)が長いと
損失が増す、ティルミ流初期値が大きいとテイル駆間の
増失が増すことが容易にわかる。
Breaking it down further, it is easy to see that the longer the descent time (=t4-t3), the greater the loss, and the greater the initial value of the Tilmi flow, the greater the gain and loss of tail travel.

シングルゲートGTOは上記2つの問題点に対し満足の
いく特性を示さなかった。そのため打解策として、GT
Oの内部のキャリアの寿命を短縮するために電子線の照
射や金属をドープしたが上記問題を解決するだけのプロ
セスを行なうと当然ターンオン損失及び順電圧降下が急
激に増加し真の解決にはならなかった。したがってター
ンオン損失。
Single-gate GTOs did not exhibit satisfactory characteristics with respect to the above two problems. Therefore, as a solution, GT
In order to shorten the lifetime of the carriers inside O, electron beam irradiation and metal doping were carried out, but if the process was carried out only to solve the above problems, the turn-on loss and forward voltage drop would of course increase rapidly, and it would not be possible to truly solve the problem. did not become. Hence the turn-on losses.

順電圧降下に伴なう電力損失の増加を伴なうことなく降
下時間の短縮とティルミ流値を減少させることが解決す
べき問題点である。
The problem to be solved is to shorten the drop time and reduce the Tilmi current value without increasing power loss due to forward voltage drop.

〔発明の構成〕[Structure of the invention]

(問題を解決するための手段) 本発明の手段は、 ダブルゲートGTOとそれを駆動す
るゲートパルサで構成し特にターンオフゲートパルスを
印加する際、二つのゲートパルスの開始時点に差を持た
せダブルゲートGτ0特有の動作を利用して前記ゲート
印加時間差を活かすものである。
(Means for solving the problem) The means of the present invention consists of a double gate GTO and a gate pulser that drives it, and in particular, when applying a turn-off gate pulse, the double gate GTO is The gate application time difference is utilized by utilizing the operation peculiar to Gτ0.

(作 用) 本発明の作用はアノードベース層に設けた第一ゲートに
正のバイアスを加えアノードベース層中の電子およびカ
ソードエミッタから注入されている電子を吸い出すと共
にアノードエミッタからの正孔の注入を抑制する。その
後カソードベース層に設けられた第二ゲートに負のバイ
アスを加え。
(Function) The function of the present invention is to apply a positive bias to the first gate provided in the anode base layer to suck out electrons in the anode base layer and electrons injected from the cathode emitter, and to inject holes from the anode emitter. suppress. A negative bias is then applied to the second gate provided in the cathode base layer.

カソードからの電子の注入を抑制すると共に、カソード
ソース層の正孔を吸い出す作用をする。
It suppresses the injection of electrons from the cathode and also functions to suck out holes from the cathode source layer.

(実施例) 以下に本発明の実施例を具体的に説明する。(Example) Examples of the present invention will be specifically described below.

第1図は、本発明を用いたダブルゲートGTOの使用例
である。
FIG. 1 is an example of the use of a double gate GTO using the present invention.

同図において 1はダブルゲートGTO12は基準ゲー
トパルス発生回路、3は第二ゲートパルサ、4はオフゲ
ートパルス遅延回路、5は第二ゲートパルサである。
In the figure, 1 is a double gate GTO 12 which is a reference gate pulse generation circuit, 3 is a second gate pulser, 4 is an off-gate pulse delay circuit, and 5 is a second gate pulser.

特に第一ゲートパルサ3は高電位で用いるので信号S1
と低電位とは絶縁された状態にある。
In particular, since the first gate pulser 3 is used at a high potential, the signal S1
and low potential are insulated.

第2図は上記第1図に示した信号81〜S、までのタイ
ムチャートである。
FIG. 2 is a time chart of signals 81 to S shown in FIG. 1 above.

基準パルスS1はtlで信号を発生し、tlで零になる
矩形波パルスで、間隔1.−1.で繰返している。
The reference pulse S1 is a rectangular wave pulse that generates a signal at tl and becomes zero at tl, with an interval of 1. -1. is repeated.

第一ゲートパルスS2は時点t工からt2までの間出力
し、これを繰返えす。
The first gate pulse S2 is output from time t to time t2, and this is repeated.

また信号S、はターンオン用(正に図示)が前記S1と
同期しており、ターンオフ用(負に図示)がΔ1=14
−1.だけ第一ゲートS8のオフパルスより遅れている
。この信号5sti−Hけて第二ゲート出力は時点t、
で正パルス、時点t4でオフパルスを発生する。
In addition, the signal S for turn-on (shown positively) is synchronized with the signal S1, and the signal S for turn-off (shown negatively) is Δ1=14
-1. lags behind the off-pulse of the first gate S8. This signal 5sti-H is then output from the second gate at time t,
A positive pulse is generated at time t4, and an off pulse is generated at time t4.

上述したように信号S2とS、のターンオフパルスの発
生時刻がΔtだけ異なることによってダブルゲートGT
O内部で生じる動作を第3図(a)(b)に示す。
As mentioned above, since the generation times of the turn-off pulses of the signals S2 and S differ by Δt, the double gate GT
The operations occurring inside O are shown in FIGS. 3(a) and 3(b).

第3図はターンオフ時の電流の流れ分布を模式的に表わ
したもので(a)(b)とも第二ゲートは開放されてい
るので省略しである。
FIG. 3 schematically shows the current flow distribution at turn-off, and the second gate in both (a) and (b) is omitted because it is open.

同図(a)は第一ゲート40bに正バイアス6oをスイ
ッチ素子等で印加し、アノードベース層でスクイズが起
り始めた状態である。電子は第一ゲート40a、 40
bへ向って流れ始め、アノードエミッタPからの正孔の
注入領域はエミッタの中央へ縮小を始める同図(b)は
、上記(a)よりも時間が経過し、更にスクイズが進行
している。そしてアノードエミッタからの正孔の注入が
抑制されている。但し。
FIG. 5A shows a state in which a positive bias 6o is applied to the first gate 40b by a switch element or the like, and squeezing has begun to occur in the anode base layer. The electrons pass through the first gates 40a, 40
The hole injection region from the anode emitter P begins to shrink toward the center of the emitter. In the same figure (b), time has passed compared to the above (a), and the squeeze has progressed further. . In addition, injection of holes from the anode emitter is suppressed. however.

カソードエミッタNがらは電子の注入が抑制されること
なく続いている。
Electron injection into the cathode emitter N continues without being suppressed.

次に第4[悶(a) (b)に示すように第二ゲート5
0(a)(b)に負バイアス7oを図では省略されてい
るスイッチを用いて印加し、第一ゲート、第二ゲートを
共に稼動すると、最初は同図(a)のようにカソード側
にもスクイズが起り、かつカソードエミッタNからの電
子の注入が抑制され始める。
Next, as shown in the fourth [agony (a) and (b), the second gate 5
When a negative bias of 7o is applied to 0(a) and 0(b) using a switch not shown in the figure, and both the first and second gates are operated, the voltage is initially applied to the cathode side as shown in (a) of the same figure. Also, squeezing occurs, and injection of electrons from the cathode emitter N begins to be suppressed.

さらに時間の経過に伴なって同図(b)のようにアノー
ド20.カソード30からの正孔及び電子の注入が停止
し、二つのゲートからは残留した電荷の排出が行なわれ
る。
Furthermore, as time passes, the anode 20. The injection of holes and electrons from the cathode 30 is stopped, and the remaining charges are discharged from the two gates.

この状態がティルミ流が流れ始める時点の近傍である。This state is near the point at which the Tilmi flow begins to flow.

実際に回路に流れる電流・電圧の波形は、第5図に示す
ように、アノードカソード間の電流■4(実線)が第一
ゲートの信号s2を印加(t、)後第二ゲートの信号S
、を印加(むう)すると、急激に電流零に近ずくことを
示している。この時のvAは素子間電圧(第1図でも示
す)であり、約2000 Vである。
As shown in Fig. 5, the waveforms of current and voltage actually flowing in the circuit are such that the current between the anode and cathode is 4 (solid line), and after the signal s2 of the first gate is applied (t,), the signal S of the second gate is
It is shown that when , is applied, the current rapidly approaches zero. At this time, vA is the inter-element voltage (also shown in FIG. 1), which is approximately 2000V.

比較例として、第一ゲートの信号s2を第二ゲートの信
号S、より遅くすると、素子間に流れるメイン電流■、
は第6図に示すように、だらだらと低下し、スイッチン
グ特性を悪くしていることがゎがる。
As a comparative example, when the signal s2 of the first gate is made slower than the signal S of the second gate, the main current flowing between the elements becomes
As shown in FIG. 6, the voltage gradually decreases, which worsens the switching characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明の実施例で述べた動作と従来技術の問題とを比較
すると明らかなようにアノード電流の降下時間が長い問
題は二つのゲートにより電流を吸い出すので時間の短縮
がはかれる。
As is clear from comparing the operation described in the embodiment of the present invention with the problem of the prior art, the problem of the long fall time of the anode current can be solved by sucking out the current by two gates, thereby shortening the time.

また、ティルミ流の初期値が大きい問題点については第
一ゲートによって正孔の注入を抑制できるので大幅に減
少させることが出来る。
Further, regarding the problem of a large initial value of the Tilmi flow, the first gate can suppress the injection of holes, so it can be significantly reduced.

以上の効果は、最終的には電力損喪を大幅に減少させる
ことにある。また電力損失を少なく出来る事はスイッチ
ング頻度を高められるから高周波の駆動を容易ならしめ
る効果がある。
The above effect ultimately results in a significant reduction in power loss. Furthermore, reducing power loss increases switching frequency, which has the effect of facilitating high-frequency driving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダブルゲートGTOを用いる時の基本回路、第
2図はゲートパルスのタイムチャート、第3図はダブル
ゲートのターンオフを第一ゲートのみで行なっている時
点の電流の流れ図、第4図は第一、第二ゲート双方でオ
フバイアスを印加している時の電流の流れ図、第5図は
本発明の実施例の回路波形を示す波形図、第6図は比較
例の波形図、第7図はシングルゲートGTOと周辺回路
図、第8図は電圧、電流波形と電力損失波形を示す波形
図である。 1・・・ダブルゲートGT03・・・第一のゲートパル
サ5・・・第二のゲートパルサ 20・・・アノード電
極30・・・カソード電極    40・・・第一ゲー
ト電極50・・・第二ゲート電極   60・・・第一
ゲート電源70・・・第二ゲート電源   101・・
・シングルゲートGTO106・・・主電源     
 107・・・負荷代理人 弁理士  則 近 憲 佑 同     竹 花 票久男 ダラルゾートGT□印の珈ヱδ、 第  1  図 ケート八0ルスの タイム手X−ト 第  2 図 *−*−ト印hc++=よりスフCデカ(始まった−1
1の1に潴りυしくb) オーケート14リアノード五−Fの又フイズバ遁1にダ
11→スのメ九才しタフンレケとトC,TOのクーンλ
7+31+=t−;lするt筋しり夕糺肛第  3  
図 左工硅1印/7=l駄crsr電戚が布→r=、+=r
−トゾズツ「h3動しbj士1め電夕九のメ迅一式%式
Figure 1 is the basic circuit when using a double gate GTO, Figure 2 is a gate pulse time chart, Figure 3 is a current flow diagram when the double gate is turned off only by the first gate, and Figure 4 is is a current flow diagram when off-bias is applied to both the first and second gates, FIG. 5 is a waveform diagram showing circuit waveforms of an embodiment of the present invention, FIG. 6 is a waveform diagram of a comparative example, and FIG. FIG. 7 is a diagram of a single gate GTO and its peripheral circuitry, and FIG. 8 is a waveform diagram showing voltage, current waveforms, and power loss waveforms. 1... Double gate GT03... First gate pulser 5... Second gate pulser 20... Anode electrode 30... Cathode electrode 40... First gate electrode 50... Second gate electrode 60...First gate power supply 70...Second gate power supply 101...
・Single gate GTO106...Main power supply
107...Load agent Patent attorney Rule Chika Ken Yudo Takehana vote Hisao Dalalzoto GT = more Sufu C deka (started -1
1 of 1 υ and b) Okay 14 Rear node 5-F's Mata Fuizba release 1 Da 11 → Su's Me 9 years old Tafunreke and ToC, TO's Kuhn λ
7 + 31 + = t-; l's t muscle evening 3rd
Figure left: 1 mark / 7 = crsr wire = cloth → r =, + = r
- Tozozutsu "h3 movement bj person 1st electric train 9th set % type % type %

Claims (1)

【特許請求の範囲】[Claims] 第一の導電型を有するアノードエミッタ層と、このアノ
ードエミッタ層との間にPN接合を形成し、第二の導電
型を有するアノードベース層と、このアノードベース層
との間にPN接合を形成し、第一の導電型を有するカソ
ードベース層と、このカソードベース層との間にPN接
合を形成し第二の導電型を有するカソードエミッタ層を
形成してなる半導体かもしくはアノードエミッタとアノ
ードベース間を部分的に低抵抗で接続している前記半導
体でかつ、アノードベース層に電極を設けこれを第一ゲ
ートとし、カソードベース層に電極を設けこれを第二ゲ
ートとする四層の半導体装置とこれを駆動するゲートパ
ルス発生器とからなる装置のゲート駆動法において、前
記半導体装置に印加するターンオフパルスを、前記第一
および第二のゲートに印加する時点が第二のゲートより
も第一のゲートの方を早くして前記半導体装置を駆動す
ることを特徴とする半導体装置の駆動法。
A PN junction is formed between an anode emitter layer having a first conductivity type and this anode emitter layer, and a PN junction is formed between an anode base layer having a second conductivity type and this anode base layer. and a semiconductor formed by forming a PN junction between a cathode base layer having a first conductivity type and a cathode emitter layer having a second conductivity type, or an anode emitter and an anode base. A four-layer semiconductor device comprising the above-mentioned semiconductor in which the electrodes are partially connected with low resistance, and the anode base layer has an electrode, which serves as a first gate, and the cathode base layer has an electrode, which serves as a second gate. and a gate pulse generator for driving the semiconductor device, the turn-off pulse applied to the semiconductor device is applied to the first and second gates at a point where the turn-off pulse is applied to the first and second gates. A method for driving a semiconductor device, characterized in that the semiconductor device is driven by making the gate of the semiconductor device faster.
JP394187A 1986-09-30 1987-01-13 Driving method of semiconductor device Expired - Fee Related JP2635565B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP394187A JP2635565B2 (en) 1987-01-13 1987-01-13 Driving method of semiconductor device
US07/101,790 US4821083A (en) 1986-09-30 1987-09-28 Thyristor drive system
EP87308676A EP0262958B1 (en) 1986-09-30 1987-09-30 Thyristor drive system
DE3751268T DE3751268T2 (en) 1986-09-30 1987-09-30 Thyristor driver system.
US07/701,002 US5132767A (en) 1986-09-30 1991-05-13 Double gate GTO thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP394187A JP2635565B2 (en) 1987-01-13 1987-01-13 Driving method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS63173415A true JPS63173415A (en) 1988-07-18
JP2635565B2 JP2635565B2 (en) 1997-07-30

Family

ID=11571152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP394187A Expired - Fee Related JP2635565B2 (en) 1986-09-30 1987-01-13 Driving method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2635565B2 (en)

Also Published As

Publication number Publication date
JP2635565B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US4663547A (en) Composite circuit for power semiconductor switching
US20020180276A1 (en) Circuit for generating high voltage pulse
EP0262958B1 (en) Thyristor drive system
JP2002300016A (en) Gate drive means and gate drive circuit
JPS63173415A (en) Drive method for semiconductor device
Song et al. A new 1200 V HVIC with high side edge trigger in order to solve the latch on failure by the negative VS surge
US3927332A (en) Drive circuit for controlling conduction of a semiconductor device
US3940633A (en) GTO turn-off circuit providing turn-off gate current pulse proportional to anode current
JP3005367B2 (en) Drive circuit
US3261985A (en) Cross-current turn-off silicon controlled rectifier
US5132767A (en) Double gate GTO thyristor
Aristov et al. Reverse switch-on dynistor switches of gigawatt-power microsecond pulses
JPS5932011B2 (en) Thyristor extinction device
JPS59147524A (en) Pulse generator circuit
JPS63209166A (en) Thyristor
RU2113744C1 (en) Method for changing over switch-type high-voltage semiconductor structures (options)
US3529181A (en) Thyristor switch
US3315092A (en) Driver circuit for magnetic core device employing additional charge path for controlled yet rapid recycling thereof
JPH023974A (en) Method of driving gate turn-off thyristor
US3441873A (en) Thyristor switch circuit having diode controlled firing means
JP3048507B2 (en) GTO gate circuit
JPS6386566A (en) Gate turn-off thyristor device
US3413569A (en) Repetitively operating thyristor switch circuit with rapid turn-off action
US3459972A (en) Thyristor switch pulse generating circuit having means to improve shape of output pulse
SU1704244A1 (en) Method for switching thyristor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees