JPS63171356A - Detector for measuring concentration of oxygen - Google Patents

Detector for measuring concentration of oxygen

Info

Publication number
JPS63171356A
JPS63171356A JP62001663A JP166387A JPS63171356A JP S63171356 A JPS63171356 A JP S63171356A JP 62001663 A JP62001663 A JP 62001663A JP 166387 A JP166387 A JP 166387A JP S63171356 A JPS63171356 A JP S63171356A
Authority
JP
Japan
Prior art keywords
layer
sol
thickness
detector
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001663A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Terakado
一佳 寺門
Sadayasu Ueno
上野 定寧
Norio Ichikawa
市川 範男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62001663A priority Critical patent/JPS63171356A/en
Priority to KR1019870015506A priority patent/KR880009273A/en
Priority to GB08800305A priority patent/GB2200460A/en
Priority to FR8800093A priority patent/FR2609550A1/en
Priority to DE3800370A priority patent/DE3800370A1/en
Priority to CN198888100069A priority patent/CN88100069A/en
Publication of JPS63171356A publication Critical patent/JPS63171356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Abstract

PURPOSE:To enhance heat resistance and response, by a method wherein a diffusion layer is formed into a double structure and one layer is formed coarsely in a relatively thick state by a plasma spraying method while the other layer is formed as an extremely dense and relatively thin layer by a sol/gel method. CONSTITUTION:An element main body 1 is composed of a zirconia solid electrolyte partially stabilized by yttrium oxide and platinum is plated to the inner and outer surfaces of the element main body 1 as reactive electrodes 2a, 2b. Further, a magnesia spinnel is applied as the first layer 3a of a gas diffusion resistance layer by a plasma spraying method and the thickness of the layer 3a is set to 10-500mum, desirably, 20-200mum. Furthermore, the second layer 3b is formed on the layer 3a as a highly dense ceramic film by a sol/gel method in a thickness of 0.01-20mum, desirably 0.5-5mum. By reducing the thickness of the total layer as mentioned above, heat resistance and response can be enhanced.

Description

【発明の詳細な説明】 〔)産業上の利用分野〕 本発明は酸素濃度測定用検出器に係わり、特に内燃機関
の制御に用いられるもので低濃度空燃比(リーン)から
高濃度空燃比(リッチ)までの広範囲にわたって使用可
能なワイドレンジ化されたこの種検出器に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a detector for measuring oxygen concentration, and is particularly used for controlling an internal combustion engine, and is used to control oxygen concentration from a low concentration air-fuel ratio (lean) to a high concentration air-fuel ratio (lean). This type of detector has a wide range that can be used in a wide range of applications up to rich.

〔従来の技術〕[Conventional technology]

従来のストイックセンサ(理論空燃比λ=1を検出する
)やリーンセンサ(低濃度域のみ検出する)では酸素拡
散層がマグネシアスピネル粉末を用いたプラズマ溶射に
より50〜450μmの厚さで形成されており、その気
孔率は約5〜10%。
In conventional stoic sensors (detects the theoretical air-fuel ratio λ = 1) and lean sensors (detects only the low concentration range), the oxygen diffusion layer is formed with a thickness of 50 to 450 μm by plasma spraying using magnesia spinel powder. Its porosity is approximately 5-10%.

平均細孔径では水銀ポロシメータによる測定では約20
0〜500人の性質を有するものである。
The average pore diameter is approximately 20 when measured using a mercury porosimeter.
It has the characteristics of 0 to 500 people.

しかし自動車の燃焼効率を高めるためには濃度の高いリ
ッチ側から希薄燃焼のり−ン側までワイドレンジに空燃
比を制御する必要がある。
However, in order to improve the combustion efficiency of automobiles, it is necessary to control the air-fuel ratio over a wide range from the rich side with high concentration to the lean burn side.

ところがリッチ側の酸素濃度を測定するためには、上述
した従来の酸素拡散抵抗層より拡散抵抗空燃比センサを
用いた自動車用燃焼システムは排気ガス中の酸素濃度を
測定することにより燃焼状態を把握し、ガソリンの供給
量と空気量を制御する回路に情報をフィードバックし、
ガソリンと空気量の混合比率(空気過剰率A/F)を制
御するものであるが、理論空燃比λ=l (A/F=1
4.7/1)より大きい領域、即ちリーン側では排ガス
中の成分はほとんど02であり、未燃ガスのG O、H
C、Hzは極めて微欧である。(第3図)ここでは02
.は拡散層を通って外側の反応電極で触媒反応によりイ
オン化し、酸素イオンは排ガス側から大気側へ移動する
。(第4図)この際、拡散抵抗層を通過する酸素を拡散
抵抗層により律速させる必要があるため拡散抵抗層には
ある適度の緻密さが要求される0反応電極に到達した酸
素は上述のようにイオン化するが空燃比により排ガス中
の酸素濃度が異なるため出力としては第5図のように限
界電流特性を示す。
However, in order to measure the oxygen concentration on the rich side, an automotive combustion system that uses a diffusion resistance air-fuel ratio sensor rather than the conventional oxygen diffusion resistance layer described above needs to grasp the combustion state by measuring the oxygen concentration in the exhaust gas. and feeds back information to the circuit that controls the amount of gasoline supplied and the amount of air.
It controls the mixture ratio of gasoline and air amount (excess air ratio A/F), and the stoichiometric air-fuel ratio λ=l (A/F=1
4.7/1) In the larger region, that is, on the lean side, the components in the exhaust gas are mostly 02, and the unburned gas G O, H
C, Hz is extremely small. (Figure 3) Here 02
.. passes through the diffusion layer and is ionized by a catalytic reaction at the outer reaction electrode, and the oxygen ions move from the exhaust gas side to the atmosphere. (Figure 4) At this time, oxygen passing through the diffusion resistance layer needs to be rate-controlled by the diffusion resistance layer, so the diffusion resistance layer requires a certain degree of density.The oxygen that reaches the reaction electrode is However, since the oxygen concentration in the exhaust gas varies depending on the air-fuel ratio, the output shows a limiting current characteristic as shown in FIG.

ここで限界電流を示す次の理論式(1)を説明する。Here, the following theoretical formula (1) representing the limiting current will be explained.

F :ファラデイ定数 R:気体定数 Dot:酸素分子の拡散定数 T :絶対温度 E :ガス(酸素)拡散抵抗層の拡散率Q :ガス(酸
素)拡散抵抗層の有効拡散距離s  :ft!極面積 Pot:酸素分圧 この(1)式は公知であり各項の値により図5の限界電
流が定まる訳であるが、各定数をまとめて示すと(1)
式は次の(2)式になる。
F: Faraday constant R: Gas constant Dot: Diffusion constant of oxygen molecules T: Absolute temperature E: Diffusion rate of gas (oxygen) diffusion resistance layer Q: Effective diffusion distance of gas (oxygen) diffusion resistance layer s: ft! Pole area Pot: Oxygen partial pressure This equation (1) is well known and the limiting current shown in Fig. 5 is determined by the value of each term, but when each constant is shown collectively, (1)
The formula is the following formula (2).

T p ” K−一            ・・・(
2)  Q 即ち、限界電流rpは、ガス拡散抵抗層の緻密さに相当
するaと電極面積Sで定まるものである。
T p ”K-1...(
2) Q That is, the limiting current rp is determined by a, which corresponds to the density of the gas diffusion resistance layer, and the electrode area S.

電極面積Sが小さいと限界電流も低くなるが、あまり小
さいと反応速度や精度に影−響するため、ある面積を確
保しなければならない、ゆえに、限界電流Ipはガス拡
散抵抗層の有効拡散距離aに左右されることとなり、Q
が大きい程、即ちガス拡散抵抗層が緻密である程、IP
は小さくなり、リッチ領域での検出制御に有効となるも
のである。
If the electrode area S is small, the limiting current will also be low, but if it is too small, it will affect the reaction speed and accuracy, so a certain area must be secured.Therefore, the limiting current Ip is the effective diffusion distance of the gas diffusion resistance layer. It depends on a, and Q
is larger, that is, the denser the gas diffusion resistance layer is, the IP
is small, which is effective for detection control in rich areas.

リッチ側では排ガス中にはo2少なく未燃ガスのCO、
HC、Hzが多いため、拡散層にはこれら未燃ガスが通
過し、酸素イオンはり−ンの場合とは逆に大気側から固
体電解質を通り、外側電極上で未燃ガスと反応すること
となる。ところが、未燃ガス成分の粒子の大きさは、0
2粒子よりはるかに小さいため、拡散層を通過する量を
従来の拡散層では律速不可能となり、リッチ側制御かで
きなくなる。即ち、リッチ側制御を行なうためには、未
燃ガス粒子の拡散を律速し得る緻密な拡散層が必要とな
る訳である。
On the rich side, there is less O2 in the exhaust gas and unburned gas CO,
Since there are a lot of HC and Hz, these unburned gases pass through the diffusion layer, and contrary to the case of oxygen ions, they pass from the atmosphere side through the solid electrolyte and react with the unburnt gases on the outer electrode. Become. However, the particle size of the unburned gas component is 0.
Since it is much smaller than 2 particles, the amount passing through the diffusion layer cannot be controlled by the conventional diffusion layer, and only rich side control is possible. That is, in order to perform rich side control, a dense diffusion layer that can control the rate of diffusion of unburned gas particles is required.

しかし、緻密化によって拡散層が排ガス中の不純物によ
って目詰りを生じて検出器の耐用寿命を低下させたり、
反応電極までの到達時間が長くなね り検出器として応答速度を悪化させる要因を含んではな
らない。これらの条件を単一の層の気孔率や厚さだけを
変えて滴定させることはできなかった。
However, due to densification, the diffusion layer may become clogged with impurities in the exhaust gas, reducing the useful life of the detector.
It must not contain any factors that degrade the response speed of the detector due to the long time it takes to reach the reaction electrode. It was not possible to titrate these conditions by changing only the porosity or thickness of a single layer.

この点に鑑み拡散層を密度の異なる2層構造とすること
が、特開昭53−13980号公報及び特開昭53−1
16896号公報等、で提案されている。
In view of this point, it is proposed that the diffusion layer has a two-layer structure with different densities, as disclosed in JP-A-53-13980 and JP-A-53-1.
It has been proposed in Publication No. 16896, etc.

前記ではプラズマ溶射法でアルミナを電極に近い第1層
は密に30μm、その外側の第2層は同じ方法で粗に8
0μm形成している。後者では同じくプラズマ溶射法で
マグネシウムスピネルを第1層は粗に300μm、第2
層は密に2m形成している。
In the above, the first layer of alumina close to the electrode was coated with plasma spraying to a thickness of 30 μm, and the second layer on the outside was coated with a coarse layer of 8 μm using the same method.
It is formed with a thickness of 0 μm. In the latter case, the first layer of magnesium spinel was coated with a rough thickness of 300 μm, and the second layer was coated with magnesium spinel using the same plasma spraying method.
The layer is densely formed to a thickness of 2 m.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、拡散層の厚さや緻密さと耐熱性生、産
性あるいは応答性との関係について配慮されておらず、
前者では外側の粗で厚い層が冷熱サイクルによってクラ
ックを生じる問題がある。後者では外側の密で厚い層を
形成するのが難しくまた抵抗が大きくなりすぎて応答性
が悪くなる為実用的でない。
The above conventional technology does not consider the relationship between the thickness and density of the diffusion layer and heat resistance, productivity, or response.
In the former case, there is a problem in that the rough and thick outer layer cracks due to heating and cooling cycles. The latter is not practical because it is difficult to form a dense and thick outer layer and the resistance becomes too large, resulting in poor response.

本発明の目的は最適なガスの拡散機能を有するガス拡散
層を備えた酸素濃度測定用検出器を得る点にある。
An object of the present invention is to obtain a detector for measuring oxygen concentration that is equipped with a gas diffusion layer having an optimal gas diffusion function.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は拡散層を2重構造とし、一つの層をり粗で蜘
の比較的厚く形成し、もう一つの層を非常に密で比較的
薄い層とし、これをゾル・ゲル法で形成することにより
達成できる。
The above purpose is to make the diffusion layer a double structure, one layer is coarse and relatively thick, and the other layer is very dense and relatively thin, and this is formed by the sol-gel method. This can be achieved by

最適には、電極側の第1層をプラズマ溶射て10〜50
0μm、その外側の第2層をゾル・ゲル法で0.01〜
20μmに形成すると良い。
Optimally, the first layer on the electrode side should be plasma sprayed to a thickness of 10-50%.
0μm, and the second layer on the outside is 0.01~ by sol-gel method.
It is preferable to form it to a thickness of 20 μm.

〔作用〕[Effect]

この様に構成された検出器は、ゾル・ゲル法により一方
の層を形成するので、その層は薄いにもかかわらず気孔
率が小さくて十分な拡散律速機能を奏する。この層が薄
いので拡散抵抗層全体の厚さが薄くなり、固体電解質と
の熱膨張係数の差による熱ひずみの発生が少なくなり、
クラックが発磁しにくくなる。
In a detector configured in this manner, one layer is formed by the sol-gel method, so that although the layer is thin, it has a small porosity and exhibits a sufficient diffusion-limiting function. Since this layer is thin, the overall thickness of the diffusion resistance layer is reduced, and thermal strain due to the difference in thermal expansion coefficient with the solid electrolyte is reduced.
Cracks become less likely to generate magnetism.

・ 〔実施例〕 本発明になる検出器の一実施例の基本構成及び酸素拡散
層の作用について以下に述べる。外側電極上の第1層目
はプラズマ溶射で形成されたマグネシアスピネル層であ
る。この第1層は第2層のゾル・ゲル法によって形成さ
れる拡散層より粗であることが重要で、特に電極上での
触媒反応と密接な関係があり、また検出器としての応答
性を良くするために適度な密度が必要である。この目安
としては!&適な尺度ではないが、気孔率として5〜1
0%程度、水銀ポロシメータによる平均細孔径が300
〜400人である。又第1層の膜厚は10〜500μm
であり不用意に厚くすることは固体電解質との熱膨張係
数の違いによりクラックを発生し易いので望ましくは2
0〜200μmが適切である。
- [Example] The basic configuration of an example of the detector according to the present invention and the action of the oxygen diffusion layer will be described below. The first layer on the outer electrode is a magnesia spinel layer formed by plasma spraying. It is important that this first layer is rougher than the second layer, a diffusion layer formed by the sol-gel method, as it has a close relationship with the catalytic reaction on the electrode, and also improves the responsiveness of the detector. Appropriate density is required for good performance. As a guideline! & Although it is not a suitable scale, the porosity is 5 to 1
Approximately 0%, average pore diameter measured by mercury porosimeter is 300
~400 people. The thickness of the first layer is 10 to 500 μm.
Therefore, if the thickness is carelessly increased, cracks are likely to occur due to the difference in thermal expansion coefficient between the solid electrolyte and the solid electrolyte.
0 to 200 μm is suitable.

第2Mはゾル・ゲル法で形成された非常に緻密なセラミ
ックス層であり、この層は特にリッチ領域の検出のため
に、未燃ガスである。Go、HC。
The second M is a very dense ceramic layer formed by a sol-gel method, and this layer is unburned gas, especially for the detection of rich regions. Go, H.C.

H2の微細粒子の拡散を制限律速させるためにある。膜
厚は厚すぎるとガス拡散が行なわれにくくなるので0.
01〜20μm望ましくは0.5〜5μ−ある、 ・ 実施例について更に詳細に説明する。第5図は本発明の
自動車の制御に用いられる限界電流式酸素濃度測定用検
出器の断面図である。即ち、素子本体1は酸化イツトリ
ウム(以後Y2O2と略す)によって部分安定化した酸
化ジルコニア(以後Zr0zと略す)固体電解質であり
、これに反応電極2a、2bとして白金(以後P、と略
す、)を素子内外面にメッキされている。外側型%2b
は前記理論式(1)における特性に影響を及ぼす電極面
積に係わるため、Ptメッキの際、マスキングにより精
度良く形成されている。また、外側?!!極につながる
リード電極4は同時にマスキングしたP、メッキにより
形成するが、排ガスとの反応を完全に遮断するため薄い
ガラス絶縁層で覆われている。さて1本発明に重要なガ
ス拡散抵抗層3a、3bであるが、まず第1層3aとし
てプラズマ溶射法によりマグネシアスピネルを溶射した
This is to limit and rate the diffusion of H2 fine particles. If the film thickness is too thick, gas diffusion will be difficult, so set the film thickness to 0.
01 to 20 μm, preferably 0.5 to 5 μm. Examples will be described in more detail. FIG. 5 is a sectional view of a limiting current type oxygen concentration measuring detector used for controlling an automobile according to the present invention. That is, the element main body 1 is a solid electrolyte of zirconia oxide (hereinafter abbreviated as Zr0z) partially stabilized with yttrium oxide (hereinafter abbreviated as Y2O2), and platinum (hereinafter abbreviated as P) is added to this as reaction electrodes 2a and 2b. The inside and outside surfaces of the element are plated. Outside mold%2b
Since it is related to the electrode area which affects the characteristics in the above-mentioned theoretical formula (1), it is formed with high precision by masking during Pt plating. Also, outside? ! ! Lead electrodes 4 connected to the poles are formed by masking P and plating at the same time, but are covered with a thin glass insulating layer to completely block reaction with exhaust gas. Regarding the gas diffusion resistance layers 3a and 3b, which are important to the present invention, first, magnesia spinel was sprayed as the first layer 3a by a plasma spraying method.

その表面SEM像を第9図に示す、半溶融状態の粉末が
付着している様子が分かる。ここで重要なのは、1つの
粉末が堆積するすき間だけからガスが拡散するのみでは
なく、表面の微細なりラック(0,1〜0.2−以下)
からも拡散するということである。これはセラミックス
溶射の特徴である。溶射粉末として平均粒径約15μm
のマグネシアスピネル(M g O・A Q zoa)
を用いて、1分間に約10gの供給量で溶射した。とこ
ろで粉末は、微粒なためとその性質上、吸湿性が非常に
高く、室内の湿度に左右され易く、安定な粉末供給が回
置となる。供給量が変動すると反応電極上に堆積する成
膜速度も変化し、被覆の緻密さへ大きく影響する。従っ
て限界電流特性が変動することとなり、安定した酸素濃
度測定用検出器が提供できなくなる。このため溶射用粉
末は常に一定の乾燥状態で供給する必要がある。本実施
例の生産設備においてはこの問題を解決するために粉末
供給装置には粉末を80〜100℃に乾燥する予熱装置
が付設している。また、プラズマガスはアルゴン(Ar
)とチッ素(NZ)の混合ガスを用い、(溶射出、力は
800A、50Vの条件である。溶射状態は素子を約6
.0Orpmで回転させ、前記条件にて半溶融状態のマ
グネシアスピネル粉末が射出するプラズマ溶射用ガンを
、回転している素子に対して相対速度1000 m/w
inで溶射し、第1層の被膜として約80μm形成した
。この被膜の緻密さは気孔率を測定すると5〜10%、
水銀ポロシメータによると平均細孔径が300Ajii
後である。第1層の表面SEM像を参考図1に示す。
A SEM image of the surface is shown in FIG. 9, and it can be seen that semi-molten powder is attached. What is important here is that gas not only diffuses from the gap where one powder is deposited, but also that the surface has a fine rack (0.1 to 0.2 - or less).
This means that it also spreads from This is a characteristic of ceramic spraying. Average particle size as thermal spray powder: approx. 15μm
Magnesia spinel (M g O・A Q zoa)
Thermal spraying was carried out at a feed rate of approximately 10 g per minute. By the way, powder has very high hygroscopicity due to its fine particle nature and is easily affected by indoor humidity, so stable powder supply is only possible through rotation. When the supply amount changes, the rate at which the film is deposited on the reaction electrode also changes, which greatly affects the density of the coating. Therefore, the limiting current characteristics will fluctuate, making it impossible to provide a stable oxygen concentration measurement detector. For this reason, thermal spray powder must always be supplied in a constant dry state. In order to solve this problem in the production equipment of this embodiment, a preheating device for drying the powder to 80 to 100° C. is attached to the powder supply device. In addition, the plasma gas is argon (Ar
) and nitrogen (NZ), the thermal spraying conditions were 800A and 50V.
.. A plasma spray gun that is rotated at 0 rpm and injects semi-molten magnesia spinel powder under the above conditions is set at a relative speed of 1000 m/w to the rotating element.
The first layer was thermally sprayed to a thickness of about 80 μm. The density of this film is 5 to 10% when measured in terms of porosity.
According to a mercury porosimeter, the average pore diameter is 300 Ajii.
Later. Reference FIG. 1 shows a surface SEM image of the first layer.

次に第2層[1の高緻密層であるが、ゾル・ゲル法によ
り約1μmのセラミック(以後S iOzと略す)膜を
第1層上に形成した。ゾル・ゲル法による被覆はシリカ
ゾルを用いた。プラズマ溶射を行なった素子を常温でシ
リカゾル中にディッピングし、700℃で30分焼成す
る。この工程を2回繰り返すことにより膜厚を約1μm
とした。この第2層は非常に緻密であり、その電子顕微
鏡による断面のSEM像を参考図2に示す。
Next, the second layer [1, which was a highly dense layer, was formed by a sol-gel method to form a ceramic (hereinafter abbreviated as SiOz) film on the first layer. Silica sol was used for coating by the sol-gel method. The element subjected to plasma spraying is dipped in silica sol at room temperature and baked at 700°C for 30 minutes. By repeating this process twice, the film thickness is approximately 1 μm.
And so. This second layer is very dense, and an SEM image of its cross section taken with an electron microscope is shown in Reference FIG. 2.

以上の工程によりガスの拡散を律速し得る高緻密層を最
外層に有し、その下に適度なガス拡散が可能でPt電極
との反応速度を迅速にするに有効なガス拡散抵抗層を有
する検出素子が完成する。
Through the above steps, the outermost layer has a highly dense layer that can control the rate of gas diffusion, and below that, there is a gas diffusion resistance layer that allows appropriate gas diffusion and is effective in speeding up the reaction rate with the Pt electrode. The detection element is completed.

第1図にこの検出索子1を用いて製作した[5濃度測定
用検出器を示す、検出素子1は栓体5に固定されている
。栓体の先には、検出素子を保護するための外筒7が備
えてあり、また、素子の内部には、素子を600〜70
0℃に加熱し素子材質のジルコニアを電解質たらしめる
ためにヒータ6が内蔵されている。さらに外側反応電極
2b、内側型Iji!289ヒータ6のそれぞれに電気
的信号の取り出しや電圧を印加するためのリード線8が
設置されている。この様にして製作された酸素濃度測定
用検出器を自動車の排気管に取付け、ヒータを通電して
素子本体の固体電解質を約700℃に加熱して素子に電
圧を印加して行くと酸素濃度測定用検出器の出力特性第
2図の実線で示される様に特にリッチ側でλ=0.6 
までリニアな出力として空燃比を検出できることが確認
された。従来の拡散膜での特性は破線で示す様に、リッ
チ側ではλ=0.8 までの検出しか出来ず、より濃度
の高いリッチ領域では出力が飽和するという不具合であ
ったものが本発明により大巾に改善された訳である。こ
れにより運転性に置き換えると、平地での通常走行(4
0〜60)am/h)ではリーン領域制御で経済運転と
なり、又、山間道路等の登り坂走行ではリッチ領域制御
で出力が向上し全体として運転性が改善できることとな
る。また、酸素センサ(ストイックセンサ)で3元フィ
ードバック制御(排ガス中のGo、HC,NOX制御)
を行なっている現行エンジンでは、コールドスタート時
や、急加速時等には、λが0.6程度までリッチになる
場合があるため、本発明による検出器は、リーンバーン
エンジン(希薄燃焼制御用エンジン)のみならず、現行
のエンジンにおけるワイドレンジ空燃比制御にも使用可
能となり燃費の向上、運転性の向上、さらには安全性の
向上等に有効となる波及効果がある。
FIG. 1 shows a concentration measuring detector manufactured using this detection element 1. The detection element 1 is fixed to the stopper 5. The end of the stopper is equipped with an outer cylinder 7 for protecting the detection element, and the inside of the element contains 600 to 70
A heater 6 is built in to heat the device to 0° C. and turn the element material zirconia into an electrolyte. Furthermore, the outer reaction electrode 2b and the inner type Iji! A lead wire 8 is installed in each of the H.289 heaters 6 for extracting electrical signals and applying voltage. The oxygen concentration measuring detector manufactured in this way is attached to the exhaust pipe of a car, the heater is energized to heat the solid electrolyte in the device body to about 700°C, and voltage is applied to the device, and the oxygen concentration increases. Output characteristics of the measurement detector As shown by the solid line in Figure 2, especially on the rich side, λ = 0.6.
It was confirmed that the air-fuel ratio can be detected as a linear output. As shown by the broken line, the characteristics of conventional diffusion films were such that they could only detect up to λ = 0.8 on the rich side, and the output was saturated in the rich region where the concentration was higher. This is a huge improvement. If this is translated into drivability, normal driving on flat ground (4
In the range of 0 to 60 am/h), lean region control provides economical driving, while rich region control improves output and improves overall drivability when driving uphill, such as on mountain roads. In addition, 3-way feedback control (Go, HC, NOX control in exhaust gas) with oxygen sensor (stoic sensor)
In current engines that perform this, λ may become rich to about 0.6 during a cold start or sudden acceleration, so the detector according to the present invention It can be used not only for wide-range air-fuel ratio control in current engines (engines), but also for wide-range air-fuel ratio control in current engines, which has a ripple effect that is effective in improving fuel efficiency, drivability, and safety.

本発明は空燃比制御に用いる酸素濃度測定用検出器に係
わり、特に検出素子のガス拡散抵抗層に特徴があり、プ
ラズマ溶射層と高緻密層のゾル・9ゲル層による二重構
造に発明のポイントがあるが、まずプラズマ溶射では実
施例ではマグネシアスピネル粉末を用いた例を示したが
、粉末の種類には特に制御はなく、溶射後の被膜が例え
ば気孔率でいえば2〜20%、水銀ポロシメータでの平
均細孔径では200〜500人であれば本発明の効果を
発揮することが出きるものである。即ち、粉末が、アル
ミナやマグネシア、シリカ、チタニア。
The present invention relates to a detector for measuring oxygen concentration used for air-fuel ratio control, and is particularly characterized by the gas diffusion resistance layer of the detection element. There are some important points. First, in plasma spraying, an example was shown in which magnesia spinel powder was used, but there is no particular control on the type of powder, and the coating after spraying has a porosity of, for example, 2 to 20%. Based on the average pore diameter measured by a mercury porosimeter, the effects of the present invention can be exerted on 200 to 500 people. In other words, the powder is alumina, magnesia, silica, or titania.

ジルコニア、カルシア等といったセラミックスの単体、
あるいは複合粉末であっても有効で、且つ粉末粒径も問
わない、また、第二層目の高緻密層であるが、本実施例
ではゾル・ゲル法によるシリカ被膜を示したが、この材
質も、アルミナやジルコニア、チタニア、カルシア、マ
グネシア等でも同じ効果を出せることは言うまでもない
Single ceramics such as zirconia and calcia,
Alternatively, it is effective even if it is a composite powder, and the particle size of the powder does not matter.Also, the second highly dense layer is a silica coating made by the sol-gel method in this example, but this material Needless to say, the same effect can be achieved with alumina, zirconia, titania, calcia, magnesia, etc.

また、Ht密な層を電極上にゾル・ゲル法で形成した後
その外側なに粗な層をプラズマ溶射法で形成しても同様
の効果が得られる。
Furthermore, the same effect can be obtained by forming an Ht-dense layer on the electrode by the sol-gel method and then forming a rough layer on the outside by the plasma spraying method.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、層の厚さを薄くでき
るので耐熱性にすぐれ、且つ応答性のよ
As explained above, according to the present invention, since the layer thickness can be reduced, it has excellent heat resistance and responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸素濃度測定用検出器の断面図、第2
図は本発明によって得られる出力特性図、第3図は排ガ
スにおける空燃比とガス成分説明図、第4図は限界1′
lf流式空燃比制御の原理説明図、第5図は限界電流と
空燃比の関係説明図、第6図はガス拡散抵抗層を有する
検出素子の断面図、第7図は従来のガス拡散抵抗層説明
図、第8図は本発明のガス拡散抵抗層説明図、参考図1
はマグネシアスピネル溶射層の表面SEM像、参考図2
はゾル・ゲル法によるS x Oz高緻密層の断面図S
EM像である。 1・・・固体電解質、2・・・反応電極、3a・・・ガ
ス拡散抵抗層、3b・・・高緻密ガス拡散抵抗層、4・
・・リー代理人 弁理士 小川勝馬 ゛−′ 第1図 第2図 0、g  I      /・5 第30 第4−図 第60 第7図     第80 手続補正書 (方式)   1 %式% 事件の表示 昭和62年 特許願 第 1663 号発明の名称  
  酸素濃度測定用検出器補正をする者 事件との関係 特許出願人
Figure 1 is a sectional view of the oxygen concentration measuring detector of the present invention, Figure 2 is a cross-sectional view of the oxygen concentration measuring detector of the present invention;
The figure is an output characteristic diagram obtained by the present invention, Figure 3 is an explanatory diagram of the air-fuel ratio and gas components in exhaust gas, and Figure 4 is a limit 1'
A diagram explaining the principle of lf flow type air-fuel ratio control, Figure 5 is a diagram explaining the relationship between limiting current and air-fuel ratio, Figure 6 is a cross-sectional view of a detection element having a gas diffusion resistance layer, and Figure 7 is a conventional gas diffusion resistance. Layer explanatory diagram, Figure 8 is an explanatory diagram of the gas diffusion resistance layer of the present invention, reference diagram 1
is a surface SEM image of the magnesia spinel sprayed layer, reference figure 2
is a cross-sectional view of the S x Oz highly dense layer produced by the sol-gel method.
This is an EM image. DESCRIPTION OF SYMBOLS 1... Solid electrolyte, 2... Reaction electrode, 3a... Gas diffusion resistance layer, 3b... Highly dense gas diffusion resistance layer, 4...
...Lee's agent Patent attorney Katsuma Ogawa ゛-' Figure 1 Figure 2 0, g I / 5 Figure 4-Figure 60 Figure 7 Figure 80 Procedural amendment (method) 1 % formula % of the case Indication 1988 Patent Application No. 1663 Name of invention
Relationship with the case of a person who corrects a detector for measuring oxygen concentration Patent applicant

Claims (1)

【特許請求の範囲】 1、酸素イオン伝導性金属酸化物から成る固体電解質素
子の表裏面に多孔質の薄膜状電極を設け、前記素子表面
電極を多孔質電気絶縁性金属酸化物より成るガス拡散抵
抗層で覆い、前記両電極間に一定電圧を印加することに
より前記素子が置かれる雰囲気中の酸素イオンを前記素
子内部に拡散させ、酸素イオンの濃度に対する限界電流
値を求めることにより酸素濃度を測定する限界電流式酸
素濃度測定用検出器であって、前記拡散抵抗層が粗な層
と非常に緻密な層の少なくとも2層以上の多重層から成
るものにおいて、粗な層が適度な粒度の電気絶縁性金属
酸化物を用いたプラズマ溶射法で形成され、非常に緻密
な層がゾル・ゲル法により形成された電気絶縁性金属酸
化物層であることを特徴とする酸素濃度測定用検出器。 2、特許請求の範囲第1項に記載したものにおいて、前
記プラズマ溶射法で形成される粗な層の厚さが10〜5
00μmで、前記ゾル・ゲル法で形成される非常に密な
層の厚さが0.01〜20μmであることを特徴とする
酸素濃度測定用検出器。 3、特許請求の範囲第1及至第2項に記載したものにお
いて、まず前記粗な層が外側電極表面上にプラズマ溶射
法で形成され、次いで前記密な層がゾル・ゲル法によっ
てその外側に形成されたことを特徴とする酸素濃度測定
用検出器。
[Scope of Claims] 1. Porous thin film electrodes are provided on the front and back surfaces of a solid electrolyte element made of an oxygen ion conductive metal oxide, and the element surface electrode is a gas diffusion layer made of a porous electrically insulating metal oxide. By covering with a resistive layer and applying a constant voltage between both electrodes, oxygen ions in the atmosphere in which the element is placed are diffused into the element, and the oxygen concentration is determined by determining the limiting current value for the oxygen ion concentration. In the limiting current type oxygen concentration measuring detector to be measured, in which the diffusion resistance layer is composed of at least two or more multilayers of a coarse layer and a very dense layer, the coarse layer has a moderate particle size. A detector for measuring oxygen concentration, which is formed by a plasma spraying method using an electrically insulating metal oxide, and the very dense layer is an electrically insulating metal oxide layer formed by a sol-gel method. . 2. In the product described in claim 1, the thickness of the rough layer formed by the plasma spraying method is 10 to 5.
00 μm, and the very dense layer formed by the sol-gel method has a thickness of 0.01 to 20 μm. 3. In the device described in claims 1 and 2, first the rough layer is formed on the outer electrode surface by plasma spraying, and then the dense layer is formed on the outside by sol-gel method. A detector for measuring oxygen concentration, characterized in that:
JP62001663A 1987-01-09 1987-01-09 Detector for measuring concentration of oxygen Pending JPS63171356A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62001663A JPS63171356A (en) 1987-01-09 1987-01-09 Detector for measuring concentration of oxygen
KR1019870015506A KR880009273A (en) 1987-01-09 1987-12-31 Oxygen concentration detector
GB08800305A GB2200460A (en) 1987-01-09 1988-01-07 Solid electrolyte oxygen concentration detector
FR8800093A FR2609550A1 (en) 1987-01-09 1988-01-07 DETECTOR OF THE OXYGEN CONTENT
DE3800370A DE3800370A1 (en) 1987-01-09 1988-01-08 Marginal current oxygen probe
CN198888100069A CN88100069A (en) 1987-01-09 1988-01-09 Oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001663A JPS63171356A (en) 1987-01-09 1987-01-09 Detector for measuring concentration of oxygen

Publications (1)

Publication Number Publication Date
JPS63171356A true JPS63171356A (en) 1988-07-15

Family

ID=11507760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001663A Pending JPS63171356A (en) 1987-01-09 1987-01-09 Detector for measuring concentration of oxygen

Country Status (6)

Country Link
JP (1) JPS63171356A (en)
KR (1) KR880009273A (en)
CN (1) CN88100069A (en)
DE (1) DE3800370A1 (en)
FR (1) FR2609550A1 (en)
GB (1) GB2200460A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538612A (en) * 1987-12-09 1996-07-23 Ngk Spark Plug Co., Ltd. Oxygen sensor element
US4915814A (en) * 1987-09-30 1990-04-10 Hitachi, Ltd. Sensor for measurement of air/fuel ratio and method of manufacturing
JP2514701B2 (en) * 1988-12-02 1996-07-10 日本特殊陶業株式会社 Oxygen sensor
EP0376579B1 (en) * 1988-12-22 1993-08-04 Ngk Insulators, Ltd. One-end closed ceramic double tube and method of manufacturing the same
DE4107217A1 (en) * 1991-03-07 1992-09-10 Battelle Institut E V LIMIT CURRENT PROBE FOR MEASURING THE PARTIAL PRESSURE OF GASES
BR9407098A (en) * 1993-07-27 1996-09-03 Bosch Gmbh Robert Electrochemical sensor with a potential-free sensor element and process for its manufacture
US5593558A (en) * 1994-06-09 1997-01-14 Nippondenso Co., Ltd. Oxygen concentration detector
DE102006014892B4 (en) * 2005-03-31 2020-09-24 Ngk Spark Plug Co., Ltd. Gas sensor element, method for its manufacture, and gas sensor
CN100405050C (en) * 2006-03-23 2008-07-23 广州杰赛科技股份有限公司 Chip and two-way series sheet type oxygen sensor including such chip
WO2010106792A1 (en) * 2009-03-18 2010-09-23 株式会社アルバック Method for detecting oxigen, method for determining air leakage, gas component detector, and vacuum processor
CN106392350B (en) * 2016-09-08 2019-07-23 武汉钢铁集团气体有限责任公司 A kind of processing method and processing device of the branch tracheal rupture of inflammable cryogenic liquid storage tank

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2311165C2 (en) * 1973-03-07 1983-02-17 Robert Bosch Gmbh, 7000 Stuttgart Electrochemical measuring sensor for the determination of the oxygen content in exhaust gases, mainly from internal combustion engines
JPS51145390A (en) * 1975-06-10 1976-12-14 Nissan Motor Co Ltd Manufacturing method of a coated layer of oxygen senser
DE2711880C2 (en) * 1977-03-18 1985-01-17 Robert Bosch Gmbh, 7000 Stuttgart Polarographic probe for measuring oxygen concentration and process for its manufacture
US4177112A (en) * 1978-03-27 1979-12-04 Nippondenso Co., Ltd. Oxygen concentration detector and method of use thereof
JPS55166039A (en) * 1979-06-12 1980-12-24 Nissan Motor Co Ltd Air fuel ratio detector
JPS57147049A (en) * 1981-03-06 1982-09-10 Nissan Motor Co Ltd Oxygen sensor element
JPS5824855A (en) * 1981-08-05 1983-02-14 Nippon Denso Co Ltd Oxygen concentration detector
JPS60171447A (en) * 1984-02-17 1985-09-04 Hitachi Ltd Air/fuel ratio detection apparatus
JPH05313980A (en) * 1992-05-07 1993-11-26 Olympus Optical Co Ltd Information recording method

Also Published As

Publication number Publication date
DE3800370A1 (en) 1988-07-21
GB8800305D0 (en) 1988-02-10
GB2200460A (en) 1988-08-03
FR2609550A1 (en) 1988-07-15
CN88100069A (en) 1988-07-20
KR880009273A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
US4915814A (en) Sensor for measurement of air/fuel ratio and method of manufacturing
US4021326A (en) Electro-chemical sensor
JPS58124943A (en) Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor
JPS63171356A (en) Detector for measuring concentration of oxygen
US4265930A (en) Process for producing oxygen sensing element
EP1346210A2 (en) Gas sensor
US20090101502A1 (en) Thermal Shock Resistant Gas Sensor Element
US4650697A (en) Process of manufacturing oxygen sensor
JPH0122899B2 (en)
US4786476A (en) Gas sensor element using porously fired mass of titania
JP4051725B2 (en) Air-fuel ratio control method
JPS6145962A (en) Threshold current type oxygen sensor
JP2714064B2 (en) Air-fuel ratio detector
JP2915064B2 (en) Air-fuel ratio detector
JPS62179653A (en) Threshold current type oxygen sensor
JP2796300B2 (en) Air-fuel ratio detector
US4740288A (en) Oxygen-sensing element
JP3773014B2 (en) Gas sensor for natural gas engine
JPS5824850A (en) Film type oxygen sensor with heater and oxygen detector employing said sensor
JPH01219553A (en) Detector for measuring air-fuel ratio
JP2886892B2 (en) Air-fuel ratio measuring detector and method of manufacturing the same
JPH0731152B2 (en) Air-fuel ratio measurement detector
JPH01274057A (en) Oxygen concentration detector
JPS61241652A (en) Method for discriminating activation of oxygen concentration sensor
JPH07117523B2 (en) Oxygen concentration detector