JPS63165062A - Melting, holding and feeding furnace - Google Patents

Melting, holding and feeding furnace

Info

Publication number
JPS63165062A
JPS63165062A JP21630386A JP21630386A JPS63165062A JP S63165062 A JPS63165062 A JP S63165062A JP 21630386 A JP21630386 A JP 21630386A JP 21630386 A JP21630386 A JP 21630386A JP S63165062 A JPS63165062 A JP S63165062A
Authority
JP
Japan
Prior art keywords
hot water
molten metal
chamber
water supply
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21630386A
Other languages
Japanese (ja)
Other versions
JPS646870B2 (en
Inventor
Koichi Yoshioka
吉岡 紘一
Yukihiko Niizawa
新沢 幸彦
Yasuhide Ozaki
尾崎 保英
Akira Kuramata
倉又 彰
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANABE KOGYO KK
Original Assignee
TANABE KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANABE KOGYO KK filed Critical TANABE KOGYO KK
Priority to JP21630386A priority Critical patent/JPS63165062A/en
Publication of JPS63165062A publication Critical patent/JPS63165062A/en
Publication of JPS646870B2 publication Critical patent/JPS646870B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To stabilize molten metal feeding quality and to improve feeding efficiency by providing a melting zone which melts and stores metal ingots continuously to a titled furnace and disposing a holding and feeding zone having a pressurized holding and feeding chamber and receiving chamber in combination with said zone. CONSTITUTION:A melting deck 4 is provided in a melting chamber 2 and a storage tank 5 is formed. A heating element 9 is installed over the entire surface in the upper part of the melting chamber 2 to melt the metal ingots 1 continuously. The molten metal is stored as the molten metal 6 in the storing chamber 5. The molten metal 6 is controlled in temp. by a device 15 for controlling the temp. of the melting chamber and is further pressurized and supplied to the holding and feeding chamber 40. The molten metal is further pressurized and is supplied to the holding and feeding chamber 40 from which the molten metal is fed through a molten metal outflow port 46 to a pouring machine under the control of a central control unit 66 for the holding and feeding chamber. The clean molten metal 6 from which oxide, etc., are removed is thereby stably fed to the casting machine with the high accuracy upon request from the casting machine. The feeding quality is thus stabilized and the feeding efficiency is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、溶解保持給湯炉に間する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a melting and holding hot water supply furnace.

[従来の技術] 従来、インゴット等の固形金属を溶解し、鋳型等に溶解
された金属溶湯を供給し、鋳物を生産する工程は種々知
られている。
[Prior Art] Conventionally, various processes have been known in which a solid metal such as an ingot is melted, the molten metal is supplied to a mold, etc., and a casting is produced.

例えば、第3図のように、固形金属を溶解デツキ73上
で、燃焼機器(バーナ)等を用いて溶解し、堰76で概
ね酸化物等を除去し、貯留槽75部分で促持し、給!1
177を用いてダイカストマシンプランジャスリーブ7
0等の鋳造機に供給する工程。
For example, as shown in FIG. 3, solid metal is melted on a melting deck 73 using a combustion device (burner), oxides etc. are generally removed in a weir 76, and the solid metal is accelerated in a storage tank 75, Salary! 1
Die casting machine plunger sleeve 7 using 177
The process of supplying to a 0-grade casting machine.

或いは、第4図のように、固形金属は予め(図示してな
い)溶解炉において溶解し、溶解済の溶湯を取り鍋79
等の運搬具にて運搬し、受湯口81から受け入れ、密閉
された保持炉から、定量供給装置を用いて加圧給湯し、
樋84を介してダイカストマシンプランジャスリーブ7
0等の鋳造機に供給する工程。
Alternatively, as shown in FIG. 4, the solid metal may be melted in advance in a melting furnace (not shown), and the molten metal may be poured into a ladle 79.
The molten metal is transported using a transportation device such as the above, received from the receiving port 81, and supplied under pressure from a sealed holding furnace using a quantitative supply device.
Die casting machine plunger sleeve 7 through gutter 84
The process of supplying to a casting machine such as 0.

[従来技術の問題点コ 従来実施されてきたインゴット等の固形金属を溶解し、
鋳型等に溶解された金属溶湯を供給し、鋳物を生産する
工程は、多品種少量生産、且つ又高品質の鋳物製品が産
業界の要求として強まってきた現状には徐々に適合しな
くなってきている。
[Problems with conventional technology] Conventionally, solid metals such as ingots are melted,
The process of producing castings by supplying molten metal to molds, etc. is gradually becoming unsuitable for the current situation where industrial demands for high-mix, low-volume production and high-quality cast products have become stronger. There is.

例えば第3図のような場合、近年急速に普及してきた手
法ではあるが、燃焼機器を用いて溶解している関係から
、溶湯内へのガス成分の吸収量は事実上、限界値近くに
達する傾向が有る。
For example, in the case shown in Figure 3, although this is a method that has become rapidly popular in recent years, the amount of gas components absorbed into the molten metal actually reaches a limit value due to the fact that combustion equipment is used for melting. There is a tendency.

そして、堰を用いて貯留槽への酸化物の持ち込みを少な
くするようにしているとは言え大量に発生する酸化物を
完全に防御することは難しく、溶解された溶湯が沈静時
間を持つことなく貯留槽に流入し、貯留槽の上部から給
湯機を用いて給湯されるため、溶湯と同時に貯留槽上部
に浮遊する酸化物等を鋳造機に持ち込むことは避けがた
く、高品質の鋳物の生産には適合しにくい。
Although weirs are used to reduce the amount of oxides brought into the storage tank, it is difficult to completely prevent the oxides that are generated in large quantities, and the molten metal does not have time to settle down. Since hot water flows into the storage tank and is supplied from the top of the storage tank using a water heater, it is unavoidable that oxides, etc. floating in the top of the storage tank are brought into the casting machine at the same time as the molten metal, making it difficult to produce high-quality castings. is difficult to adapt to.

又、第4図の手法の場合、溶湯品質の上では問題は無い
が、別に溶解炉を持つ必要があり、しかも効率からみて
大型の集中溶解炉にならざるを得なかった。そのため、
鋳物の合金成分の多様化にはとうしても、対応しに<<
、生産計画における増・減産への即応もしにくい問題点
が有る。
Further, in the case of the method shown in FIG. 4, although there is no problem in terms of the quality of the molten metal, it is necessary to have a separate melting furnace, and moreover, from the viewpoint of efficiency, it is necessary to use a large centralized melting furnace. Therefore,
It is difficult to keep up with the diversification of alloy components in castings.
However, there is a problem in that it is difficult to respond immediately to production increases and decreases in production planning.

[発明の目的] 本発明は、上記従来の問題点等に鑑みて、金属塊を投入
口から、投入したならば金属塊の溶解を、安全かつ安定
的にして連続的に行い、溶解を中断することなく、貯留
槽に貯留された溶湯を溶解において生じた酸化物等や、
炉材等より派生する異物等に汚染することなく清浄性を
保ちつつ、保持給湯室へ移動し、保持給湯室にて安定的
に保持された溶湯の最も清浄な部分を鋳造機の要求する
所要量に合せ逐次、給湯することを可能とした、溶解保
持給湯炉を提供することを目的とする。
[Object of the Invention] In view of the above-mentioned conventional problems, the present invention provides a method for continuously melting metal lumps in a safe and stable manner once the metal lumps are introduced through the inlet, and discontinuing the melting. Oxides, etc. generated when melting the molten metal stored in the storage tank,
The casting machine requires the cleanest part of the molten metal to be moved to the holding hot water supply chamber and stably held in the holding hot water supply chamber while maintaining cleanliness without being contaminated by foreign substances derived from furnace materials, etc. The purpose of the present invention is to provide a melting and holding hot water supply furnace that can supply hot water sequentially according to the amount.

[問題点を解決するための手段] 上記目的を達成するために、本発明は金属塊を投入する
投入口を有し、溶解する溶解デツキと溶解した金属溶湯
を貯留する貯湯槽を有する溶解ゾーンに、外部の溶解室
加圧制御装置の信号により開閉制御される溶解室加圧口
及び、この溶解室加圧制御装置の信号によって溶解ゾー
ン内の圧力を排出するための溶解室排出口を有し、前記
貯iWA槽と連通された給湯室と、この検温室内に溶湯
流入口が位置し外部の溶湯流出口にあふれだし圧力を検
知する検温センサを有する検温管と、前記検温センサの
信号で圧力を測定する溶解室差圧制御部とで構成される
溶解ゾーンと、前記溶解ゾーンを圧縮された気体により
加圧することにより、あふれ出た溶湯を検温樋を介して
受け入れるための受湯口をを前記検温樋に接して位置し
、受湯室内に溶湯流出口を位置した受湯管を有し、前記
受湯管を介して受け入れた溶湯を受湯室と連通し保持す
るための保持給湯室を有し、外部の保持給湯富加圧制御
装置により開閉制御される保持給湯室加圧口及びこの保
持給湯室加圧制御装置の信号によって保持給湯ゾーン内
の圧力を外部に排出するための保持給湯室排出口を有し
、前記保持給湯室内にm湯流入口が位置し炉外の溶湯流
出口に給湯開始圧力を検知する給湯センサを有する給湯
管と前記給湯センサの信号で圧力測定する保持給湯室差
圧制御部とで構成される保持給湯ゾーンとを具備し溶解
保持給湯炉を成立したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a melting zone having an inlet for introducing metal lumps, a melting deck for melting, and a hot water storage tank for storing the melted metal. It has a melting chamber pressurizing port whose opening and closing are controlled by signals from an external melting chamber pressurizing control device, and a melting chamber outlet for discharging the pressure in the melting zone by signals from the melting chamber pressurizing control device. a hot water supply chamber communicated with the iWA storage tank; a temperature measuring tube having a temperature sensor for detecting the pressure of a molten metal inlet located in the temperature measuring chamber and overflowing to an external molten metal outlet; A melting zone consists of a melting chamber differential pressure control unit that measures pressure, and a receiving port for receiving overflowing molten metal via a temperature gutter is created by pressurizing the melting zone with compressed gas. A holding hot water supply chamber that is located in contact with the temperature measuring gutter and has a hot water receiving pipe with a molten metal outlet located in the hot water receiving chamber, and for communicating and holding the molten metal received through the hot water receiving chamber with the hot water receiving chamber. and a holding hot water supply chamber pressurizing port whose opening and closing are controlled by an external holding hot water supply rich pressure control device, and a holding hot water supply chamber for discharging the pressure in the holding hot water supply zone to the outside by a signal from the holding hot water supply chamber pressurization control device. A hot water supply pipe having a chamber discharge port, a hot water inlet located in the holding hot water supply chamber, and a hot water supply sensor that detects the start pressure of hot water supply at the molten metal outlet outside the furnace, and a holding hot water supply whose pressure is measured by a signal from the hot water supply sensor. The present invention is characterized in that it is equipped with a holding hot water feeding zone composed of a room differential pressure control section and a holding hot water feeding zone, thereby establishing a melting holding hot water feeding furnace.

[実  施  例] 以下、本発明の実施例について、図面を参照しながら説
明する。
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の一実施例に係る溶解保持給
湯炉の構造を示す図である。同図において、溶解保持給
湯炉は耐火性、断熱性を有する定型、不定型の数種の炉
材からなり、金属塊lが溶解される溶解室2と、溶解さ
れた金属溶湯(溶湯)を検温するための給湯室3等から
形成された溶解ゾーンと、検温されてくる溶湯を受け入
れるための受湯室55と、溶湯を保持し鋳造機に給湯す
るための保持給湯室40等から形成される保持給湯ゾー
ンとで構成されている。
FIGS. 1 and 2 are diagrams showing the structure of a melting and holding hot water supply furnace according to an embodiment of the present invention. In the figure, the melting, holding and feeding furnace consists of several types of furnace materials, regular and irregular, that have fire resistance and heat insulation properties, and includes a melting chamber 2 in which a metal ingot l is melted, and a melting chamber 2 in which a metal ingot l is melted, and a melting chamber 2 in which a metal lump l is melted, It is formed of a melting zone formed from a hot water supply chamber 3 etc. for temperature measurement, a hot water receiving chamber 55 for receiving the molten metal whose temperature is measured, and a holding hot water supply chamber 40 for holding the molten metal and supplying it to the casting machine. It consists of a holding hot water supply zone and a hot water supply zone.

金属塊1は、溶解等に適した大きさのインゴットである
。上記溶解室2は、密閉されたほぼ箱型に形成されてお
り、この内部には、金属塊1を配置するための台状に形
成した溶解デツキ4と、溶湯を貯留するための貯湯槽5
とが形成されている。上記溶解デツキ4の上面位置は、
溶解室2の高さ方向の中程に形成され、かつ貯湯槽5側
にやや傾斜(約5°)しており、溶湯が貯湯槽5内に流
れ込み、金属溶湯(溶湯)6として貯留されるようにな
っている。本実施例における溶解デツキ4と貯湯槽5と
が占める底面積の割合は、はぼ6対4である。上記溶解
デツキ4が形成された側の溶解室2上部側の側壁には、
金属塊lの投入口7が形成され、かつこの投入口7を外
部から覆い密閉するための蓋8が設けられている。上記
溶解室2内の上部全面には、棒状炭化珪素あるいはニク
ロム線を配したパネルヒータ等の抵抗式の溶解室発熱体
9が設けられ、またこの溶解室発熱体9は、図示しない
電源に接続されている。
The metal lump 1 is an ingot of a size suitable for melting and the like. The melting chamber 2 is formed into a closed box shape, and inside thereof is a melting deck 4 formed in the shape of a table for placing the metal lump 1, and a hot water storage tank 5 for storing the molten metal.
is formed. The upper surface position of the melting deck 4 is as follows:
It is formed in the middle of the melting chamber 2 in the height direction and is slightly inclined (approximately 5 degrees) toward the hot water storage tank 5 side, and the molten metal flows into the hot water storage tank 5 and is stored as molten metal (molten metal) 6. It looks like this. In this embodiment, the ratio of the bottom area occupied by the melting deck 4 and the hot water storage tank 5 is approximately 6:4. On the upper side wall of the melting chamber 2 on the side where the melting deck 4 is formed,
An inlet 7 for the metal lump 1 is formed, and a lid 8 is provided to cover and seal the inlet 7 from the outside. A resistance-type melting chamber heating element 9 such as a panel heater made of rod-shaped silicon carbide or nichrome wire is provided on the entire upper surface of the melting chamber 2, and this melting chamber heating element 9 is connected to a power source (not shown). has been done.

上記溶解室2には、その上部壁を・貫通して検出端が内
部の金属塊lの近傍に配置された、雰囲気温度測温体1
0とその横側壁を斜めに貫通して検出端が貯湯槽の溶湯
6内に配置された溶解室溶湯温度測温体11とが設けら
れている。また、上記溶解室2には、その上部壁を貫通
して検出端が貯湯槽5の溶湯6上面近傍に配置された溶
解室溶湯レベルセンサ12が設けられている。そして、
上記雰囲気温度測温体10と溶解室溶湯温度測温体11
とは、それぞれ溶解室温度調節計13と溶解室過熱警報
計14とを介して、また溶解室溶湯レベルセンサ12は
直接に、溶解室温度制御装置(プログラマブルコントロ
ーラまたはシーケンサ)15に制御されるよう接続され
ている。上記雰囲気温度測温体10は溶解デツキ上の金
属塊l近傍の雰囲気温度を検出し、溶解室溶湯温度測温
体11は溶湯6の温度を検出する。そして、上記溶解室
温度制御装置15は、前記検出温度とそれぞれ溶解室温
度調節計13及び溶解室過熱警報計14で設定された温
度とを比較して温度制御を行う。
In the melting chamber 2, an atmosphere temperature measuring element 1 is provided, which penetrates the upper wall of the melting chamber 2 and has a detection end disposed near the metal lump l inside.
0 and a melting chamber molten metal temperature measuring body 11 which diagonally penetrates the lateral side wall thereof and whose detection end is disposed within the molten metal 6 of the hot water storage tank is provided. Further, the melting chamber 2 is provided with a melting chamber molten metal level sensor 12 which penetrates the upper wall thereof and whose detection end is disposed near the upper surface of the molten metal 6 in the hot water storage tank 5. and,
The above-mentioned ambient temperature temperature sensor 10 and melting chamber molten metal temperature sensor 11
This means that the melting chamber molten metal level sensor 12 is directly controlled by a melting chamber temperature control device (programmable controller or sequencer) 15 via a melting chamber temperature controller 13 and a melting chamber overheat alarm meter 14, respectively. It is connected. The ambient temperature measuring element 10 detects the ambient temperature near the metal lump 1 on the melting deck, and the melting chamber molten metal temperature measuring element 11 detects the temperature of the molten metal 6. Then, the melting chamber temperature control device 15 performs temperature control by comparing the detected temperature with the temperatures set by the melting chamber temperature controller 13 and the melting chamber overheat alarm meter 14, respectively.

すなわち、上記溶解室温度制御装置15は、前記比較温
度に基づき溶解室発熱体9への熱量を制御(例えばPI
D制m>することにより温度制#(過熱防止等を含む)
を行う。また、上記温度制御装置15は、溶解室溶湯レ
ベルセンサ12により貯湯槽5の溶湯をレベル検知する
ことにより、溶解デツキ4より上まで溶湯が上昇しない
よう過溶解を防止する。
That is, the melting chamber temperature control device 15 controls the amount of heat supplied to the melting chamber heating element 9 based on the comparison temperature (for example, the PI
Temperature control # (including overheating prevention, etc.) by
I do. Furthermore, the temperature control device 15 detects the level of the molten metal in the hot water storage tank 5 using the melting chamber molten metal level sensor 12, thereby preventing over-melting so that the molten metal does not rise above the melting deck 4.

上記給湯室3は、密閉され上記溶解室2よりもやや小さ
い箱型に形成されており、この溶解室2の側壁に貯湯槽
5と底面を共通レベルにして連通し、かつ一体的に形成
されている。また、上記給湯室3は溶解デッキ4上面よ
り高く、かつ溶解室2よりもやや低く形成されている。
The hot water supply chamber 3 is sealed and formed into a box shape that is slightly smaller than the melting chamber 2, and is integrally formed with the hot water storage tank 5 on the side wall of the melting chamber 2, communicating with the hot water tank 5 with the bottom surface at a common level. ing. Further, the hot water supply chamber 3 is formed higher than the upper surface of the melting deck 4 and slightly lower than the melting chamber 2.

すなわち、給湯室3と貯湯室5とは、繍長く連通し溶湯
6を貯留する溶湯槽を形成している。本実施例ては、貯
湯槽5と給湯室3とが占めろ底面積の割合は、はぼ2対
1である。前記貯湯槽5と給湯室3との合計貯留容積は
金属塊lが全部溶解したときに十分な容積に形成されて
いる。
That is, the hot water supply chamber 3 and the hot water storage chamber 5 form a molten metal tank that communicates with each other in a long manner and stores the molten metal 6. In this embodiment, the ratio of the floor area occupied by the hot water storage tank 5 and the hot water supply chamber 3 is about 2:1. The total storage volume of the hot water storage tank 5 and the hot water supply chamber 3 is formed to be a sufficient volume when all the metal lumps 1 are melted.

また、上記溶解室2の上部には気体を導入して、この溶
解ゾーンを加圧する溶解室加圧口16と、気体を排出し
て圧力を逃す溶解室排気口17とが設けられている。上
記溶解室加圧口16は外部において配管され、途中に溶
解室加圧弁18を介装して加圧源19に接続されている
。この加圧源19は、例えば、コンプレッサにより圧縮
された空気あるいは不活性ガス等の圧力気体を供給でき
る装置等である。上記溶解室加圧弁18は、後述する溶
解室加圧制御装置20の所定の制御信号に基づいて開閉
する電磁弁等である。また、上記溶解室排気口17は外
部において配管により溶解室排気弁21に接続され、大
気に開口されるようになっている。上記溶解室排気弁2
1は、溶解室加圧口8装置20の所定の制御信号に基づ
いて開閉する電磁弁等である。
Further, in the upper part of the melting chamber 2, there are provided a melting chamber pressurizing port 16 for introducing gas and pressurizing the melting zone, and a melting chamber exhaust port 17 for discharging the gas and releasing the pressure. The melting chamber pressurizing port 16 is piped externally and is connected to a pressurizing source 19 with a melting chamber pressurizing valve 18 interposed therebetween. This pressurization source 19 is, for example, a device capable of supplying pressurized gas such as air compressed by a compressor or an inert gas. The melting chamber pressurizing valve 18 is a solenoid valve or the like that opens and closes based on a predetermined control signal from a melting chamber pressurizing control device 20, which will be described later. Further, the melting chamber exhaust port 17 is externally connected to a melting chamber exhaust valve 21 by piping, and is opened to the atmosphere. Above melting chamber exhaust valve 2
Reference numeral 1 denotes a solenoid valve or the like that opens and closes based on a predetermined control signal of the melting chamber pressurizing port 8 device 20.

上記給湯室3の上部には、その内圧を測定するための溶
解室圧力測定口22が設けられている。
A melting chamber pressure measurement port 22 is provided at the upper part of the hot water supply chamber 3 to measure its internal pressure.

この溶解室圧力測定口22は、外部において配管で溶解
室差圧発信器24に接続されている。この溶解室差圧発
信器24は、2つの測定室24a。
This melting chamber pressure measurement port 22 is externally connected to a melting chamber differential pressure transmitter 24 via piping. This dissolution chamber differential pressure transmitter 24 has two measurement chambers 24a.

241)を有し、一方の測定室24aは上記配管に直接
接続され他方の測定室24bは上記配管の途中に電磁弁
25を介装して接続されており、2つの測定室24a、
測定室24bに加わる圧力の差が検出されるものである
。上記溶解室差圧発信器24は、溶解室差圧調節計26
に接続され両者により溶解室差圧検出部を構成する。ま
た、上記溶解室圧力測定口22は溶解室圧力調節計27
に接続されている。そして上記溶解室差圧調節計26と
溶解室圧力調節計27、及び溶解室加圧弁18と、溶解
室排気弁21と電磁弁25とはそれぞれ所定の制御が行
われるように溶解室加圧制御装置20に接続されている
241), one measurement chamber 24a is directly connected to the piping, and the other measurement chamber 24b is connected with a solenoid valve 25 interposed in the middle of the piping, and the two measurement chambers 24a,
The difference in pressure applied to the measurement chamber 24b is detected. The dissolution chamber differential pressure transmitter 24 is a dissolution chamber differential pressure regulator 26.
and the two constitute a dissolution chamber differential pressure detection section. Further, the melting chamber pressure measurement port 22 is connected to a melting chamber pressure regulator 27.
It is connected to the. The melting chamber pressure regulator 26, the melting chamber pressure regulator 27, the melting chamber pressurizing valve 18, the melting chamber exhaust valve 21, and the electromagnetic valve 25 are controlled to pressurize the melting chamber so that predetermined controls are performed, respectively. It is connected to the device 20.

上記溶解室温度制御装置15と溶解室加圧制御装置20
とは溶解室中央制御装置32により制御される。この溶
解室中央制御装置32は、後述の保持給湯室中央制御装
置66からの検温要求に対して、溶解室温度制御装置1
5と溶解室加圧制御装置20との調整を行うものである
。すなわち、検温要求があった場合に、溶湯6が十分に
貯留されていなかったり、あるいは溶湯温度が適切でな
いときには、溶解室加圧制御装置20による加圧を行わ
ないようにする。また、検温要求があっても金属塊l、
溶湯6がなかったりしたときには、金属塊1を投入する
指示等を出す。
The melting chamber temperature control device 15 and the melting chamber pressure control device 20
is controlled by the dissolution chamber central control device 32. This melting chamber central control device 32 responds to a temperature measurement request from a holding hot water supply room central control device 66, which will be described later, by controlling the melting chamber temperature control device 1.
5 and the melting chamber pressurization control device 20. That is, when there is a temperature measurement request, if the molten metal 6 is not sufficiently stored or the molten metal temperature is not appropriate, the melting chamber pressurization control device 20 does not pressurize. In addition, even if there is a request for temperature measurement, metal lumps,
When there is no molten metal 6, an instruction to add metal lump 1 is issued.

さらに、上記給湯室3には、セラミックス等の耐熱性の
材質からなる検温管28が設けられている。この検温管
28は、その一端部が溶湯流入口29として、上記給湯
室3の底部側中層において開口され、他端部が溶湯流出
口30として給湯室3上部に開口されている。この溶湯
流出口30には、電極式、光電式、音波式、電磁式等の
いずれかで構成される検温センサ31が設けられている
。この検温センサ31は溶湯の通過を検知し、溶解室加
圧制御装量20に伝達する。溶湯流出口30は検温樋5
0を介して受湯管49に連なる。
Further, the hot water supply chamber 3 is provided with a temperature measuring tube 28 made of a heat-resistant material such as ceramics. The temperature measuring tube 28 has one end opened at the middle layer on the bottom side of the hot water supply chamber 3 as a molten metal inlet 29, and the other end opened at the upper part of the hot water supply chamber 3 as a molten metal outlet 30. The molten metal outlet 30 is provided with a temperature sensor 31 configured of one of an electrode type, photoelectric type, sonic type, electromagnetic type, and the like. The temperature sensor 31 detects the passage of the molten metal and transmits it to the melting chamber pressurization control unit 20. Molten metal outlet 30 is temperature gutter 5
0 to the hot water receiving pipe 49.

上記受湯管49は、前記検温樋50に接して受湯口53
を位置し、上記受1室55内に溶湯流出口54を位置さ
せるように配置されている。前記受湯口53には何かの
トラブルにより溶湯が受湯管49よりあふれて外部へ流
出した場合に流出した溶湯を検知するためのオーバフロ
ーセンサ51が設置されている。上記受湯室55は上記
給湯室3と同程度の大きさで箱型に形成され、王妃保持
給湯室40の側壁に保持給湯室40の底面を共通レベル
にして連通し溶解ゾーンより前記検温管28、検温樋5
0、受湯管49を介して移動してきた金属溶湯(溶湯)
42を、上記保持給湯室40とともに保持している。 
前記保持給湯室40は、密閉されたほぼ箱型に形成され
ており、本実施例における保持給湯室40と上記受湯室
55との溶湯保持容積の割合はほぼ5対1である。上記
保持給湯室40の上記検温樋50と直角方向に位置する
側壁の、溶湯42の最大保持時の溶湯上面レベルより上
の位置に保持給湯室40内の掃除口(点検口を兼ねる)
56が形成され、かつ、この掃除口56を外部から覆い
密閉するための蓋5日が設けられている。
The hot water receiving pipe 49 is connected to the hot water receiving port 53 in contact with the temperature measuring gutter 50.
, and the molten metal outlet 54 is located within the receiving chamber 55. An overflow sensor 51 is installed in the molten metal inlet 53 to detect the molten metal that has flown out from the molten metal in the event that the molten metal overflows from the molten metal receiving pipe 49 due to some trouble. The hot water receiving chamber 55 is formed into a box shape with a size similar to that of the hot water supply chamber 3, and communicates with the side wall of the queen holding hot water supply chamber 40 with the bottom surface of the holding hot water supply chamber 40 at a common level, and is connected to the temperature measuring tube from the melting zone. 28, Temperature gutter 5
0. Molten metal (molten metal) moving through the receiving pipe 49
42 is held together with the holding hot water supply chamber 40.
The holding hot water supply chamber 40 is formed in a substantially sealed box shape, and the ratio of molten metal holding volume between the holding hot water supply chamber 40 and the hot water receiving chamber 55 in this embodiment is approximately 5:1. A cleaning opening (also serves as an inspection port) in the holding hot water supply chamber 40 located above the level of the upper surface of the molten metal when the molten metal 42 is held at maximum, on the side wall of the holding hot water supply chamber 40 located in a direction perpendicular to the temperature measuring gutter 50
56 is formed, and a lid for covering and sealing the cleaning opening 56 from the outside is provided.

上記保持給湯室40の上部前面には棒状炭化珪素あるい
はニクロム線を配したパネルヒータ等の抵抗式の保持給
湯室発熱体41が設けられ、また、この保持給湯室発熱
体41は図示しない電源に接続されている。
At the front of the upper part of the holding hot water supply chamber 40, there is provided a resistance type holding hot water heating chamber heating element 41 such as a panel heater made of rod-shaped silicon carbide or nichrome wire. It is connected.

上記保持給湯室40には受湯室と対角の位置の一部傾斜
した上部壁部を貫通して検出端が溶湯42の底部中層に
配置された保持給湯室溶湯温度測温体57が設けられて
いる。また上記保持給湯室40には、その上部壁を貫通
して検出端が溶湯42上面近傍に配置された保持給湯室
溶湯レベルセンサ52が設けられている。そして、上記
保持給湯室溶湯温度測温体57は保持給湯室温度調節計
65を介し、また、保持給湯室溶湯レベルセンサ52は
直接に、保持給湯室中央制御装置(プログラマブルコン
トローラまたはシーケンサ)66に接続されている。上
記保持給湯室溶湯温度測温体57は溶湯42の温度を検
出する。前記保持給湯室温度調節計65は、前記検出温
度と設定された温度とを比較し保持給湯室発熱体41へ
の熱量を制御く例えばPID制御)することにより保持
給湯ゾーンの溶湯の温度制御を行う。
The holding hot water supply chamber 40 is provided with a holding hot water supply chamber molten metal temperature measuring body 57 whose detection end is disposed at the bottom middle layer of the molten metal 42 and penetrates through the partially inclined upper wall at a position diagonal to the hot water receiving chamber. It is being Further, the holding/molten metal supplying chamber 40 is provided with a holding/molten metal level sensor 52 that penetrates the upper wall thereof and has a detection end disposed near the upper surface of the molten metal 42 . The holding hot water supply room molten metal temperature measuring body 57 is connected to the holding hot water heating room temperature controller 65, and the holding hot water heating room molten metal level sensor 52 is directly connected to the holding hot water heating room central control device (programmable controller or sequencer) 66. It is connected. The holding chamber molten metal temperature measuring body 57 detects the temperature of the molten metal 42 . The holding hot water supply chamber temperature controller 65 controls the temperature of the molten metal in the holding hot water supply zone by comparing the detected temperature with a set temperature and controlling the amount of heat supplied to the holding hot water supply chamber heating element 41 (for example, PID control). conduct.

上記保持給湯室40の上部には気体を導入してこの保持
給湯ゾーンを加圧する、保持給湯室加圧口67と、気体
を排出して圧力を逃す保持給湯室排気口69とが設けら
れている。上記保持給湯室加圧口67は外部において配
管され、途中に保持給湯室加圧弁59を介装して加圧源
19に接続されている。(加圧源19は溶解ゾーン、保
持給湯ゾーン共用)上記保持給湯室加圧弁59は、後述
する保持給湯室加圧制御装置64の所定の制御信号に基
づいて開閉する電磁弁等である。また、上記保持給湯室
排気口69は外部において配管により保持給湯室排気弁
48に接続され、大気に間口されるようになっている。
At the upper part of the holding hot water supply chamber 40, there are provided a holding hot water supply chamber pressurizing port 67 for introducing gas to pressurize the holding hot water supply zone, and a holding hot water supply chamber exhaust port 69 for discharging the gas and releasing the pressure. There is. The holding hot water supply chamber pressurizing port 67 is connected to the pressurizing source 19 through piping provided on the outside and a holding hot water supply chamber pressurizing valve 59 interposed therebetween. (The pressurization source 19 is shared by the melting zone and the holding hot water supply zone) The holding hot water supply chamber pressurizing valve 59 is an electromagnetic valve or the like that opens and closes based on a predetermined control signal of a holding hot water supply chamber pressurization control device 64, which will be described later. Further, the holding hot water supply chamber exhaust port 69 is externally connected to the holding hot water supply chamber exhaust valve 48 by piping, and is opened to the atmosphere.

前記保持給湯室排気弁48は、保持給湯室加圧制御装置
64の所定の制御信号に基づいて開閉する電磁弁等であ
る。
The holding hot water supply chamber exhaust valve 48 is a solenoid valve or the like that opens and closes based on a predetermined control signal from the holding hot water supply chamber pressurization control device 64.

上記保持給湯室40の上部には、保持給湯ゾーン内の圧
力を測定するための保持給湯室圧力測定口68が設けら
れている。この保持給湯室圧力測定日68は、外部にお
いて配管で保持給湯室差圧発信器61に接続されている
。この保持給湯室差圧発信器61は、2つの測定室61
a、61bを有し、一方の測定室61aは上記配管に直
接接続され、他方の測定室61bは上記の配管の途中に
電磁弁60を介装して接続されており、2つの測定室6
1a、61bに加わる圧力の差が検出されるものである
。上記保持給湯室差圧発信器61は、保持給湯室差圧調
節計62に接続され両者により、保持給湯室差圧検出部
を構成する。また上記保持給湯室圧力測定口68は保持
給湯室圧力調節計63に接続されている。そして上記保
持ml室差圧調節計62と、保持給湯室圧力調節計63
、及び保持給湯室加圧弁59と保持給湯室排気弁48と
電磁弁60とはそれぞれ所定の制御が行われるように保
持給湯室加圧制御装置64に接続されている。
A holding hot water supply chamber pressure measurement port 68 is provided at the upper part of the holding hot water supply chamber 40 for measuring the pressure within the holding hot water supply zone. This holding hot water supply chamber pressure measurement date 68 is externally connected to a holding hot water supply chamber differential pressure transmitter 61 via piping. This holding hot water supply chamber differential pressure transmitter 61 has two measuring chambers 61.
one measurement chamber 61a is directly connected to the above-mentioned piping, and the other measurement chamber 61b is connected to the above-mentioned piping with a solenoid valve 60 interposed in the middle.
The difference in pressure applied to 1a and 61b is detected. The holding hot water supply chamber differential pressure transmitter 61 is connected to a holding hot water supply chamber differential pressure regulator 62, and the two constitute a holding hot water supply chamber differential pressure detection section. Further, the holding hot water supply chamber pressure measuring port 68 is connected to a holding hot water supply chamber pressure regulator 63. and the holding ml chamber differential pressure regulator 62 and the holding hot water supply chamber pressure regulator 63.
, the holding hot water supply chamber pressurizing valve 59, the holding hot water supply chamber exhaust valve 48, and the solenoid valve 60 are each connected to a holding hot water supply chamber pressurizing control device 64 so as to perform predetermined control.

前記保持給湯室加圧制御装置64と、保持給湯室温度調
節計65と、保持給湯室溶湯レベルセンサ52とはそれ
ぞれ保持給湯室中央制御装置66に接続され保持給湯ゾ
ーンの制御において、重要な役割を果す。
The holding hot water supply chamber pressurization control device 64, the holding hot water supply chamber temperature controller 65, and the holding hot water supply chamber molten metal level sensor 52 are each connected to the holding hot water supply chamber central control device 66, and play an important role in controlling the holding hot water supply zone. fulfill.

この保持給湯室中央制御装置66は前述の溶解室中央制
御装置32に検温要求を発信したり、図示しない外部の
鋳造機との給湯要求信号等のやりとりを調整制御する。
This holding hot water supply chamber central control device 66 sends a temperature measurement request to the above-mentioned melting chamber central control device 32, and adjusts and controls exchange of hot water supply request signals and the like with an external casting machine (not shown).

更に、上記保持給湯室40には、セラミックス等の耐熱
性の材質からなる給湯管43が設けられている。この給
湯管43は、その一端部が溶湯流入口45として、上記
保持給湯室40の底部中層に開口され、他端部が溶湯流
出口46として、保持給湯室の一部傾斜した上部壁部の
上記保持給湯室溶湯温度測温体57の近傍に開口されて
いる。
Further, the holding hot water supply chamber 40 is provided with a hot water supply pipe 43 made of a heat-resistant material such as ceramics. One end of the hot water supply pipe 43 is opened as a molten metal inlet 45 at the bottom middle layer of the holding hot water supply chamber 40, and the other end is opened as a molten metal outlet 46 on the partially inclined upper wall of the holding hot water supply chamber. The holding hot water supply chamber is opened near the molten metal temperature measuring body 57.

この溶湯流出口46には、電極式、光電式、音波式、電
磁式等のいずれかで構成される給湯センサ44が設けら
れている。この給湯センサ44は、m kmの通過を検
知し、上記保持給湯室加圧制御装置64に伝達する。上
記溶湯流出口46は給湯材47を介してダイカストマシ
ンプランジャスリーブ70等に連なる。
This molten metal outlet 46 is provided with a hot water supply sensor 44 configured of one of an electrode type, photoelectric type, sonic type, electromagnetic type, and the like. This hot water supply sensor 44 detects the passage of m km and transmits it to the holding hot water supply chamber pressurization control device 64. The molten metal outlet 46 is connected to a die casting machine plunger sleeve 70 and the like via a hot water supply material 47.

次に上記構成の溶解保持給湯炉の動作について説明する
Next, the operation of the melting and holding hot water supply furnace having the above configuration will be explained.

まず、溶解のための所定量(この実施例では、120に
87時間)の金属塊1を投入口7から入れ、溶解デツキ
4上に配置して、蓋8を閉じて密閉する。ついで、溶解
室温度調節計13を金属塊1が溶融する温度にセットす
るとともに、過熱警報計14を過加熱されない温度にセ
ットしてから、溶解室温度制御装置15により加熱を開
始する。
First, a predetermined amount of metal ingot 1 for melting (in this example, 120 to 87 hours) is put into the inlet 7, placed on the melting deck 4, and the lid 8 is closed to seal it. Next, the melting chamber temperature controller 13 is set to a temperature at which the metal lump 1 melts, and the overheat alarm meter 14 is set to a temperature that will not cause overheating, and then the melting chamber temperature controller 15 starts heating.

これにより、徐々に温度が上昇して金属塊1が溶融して
、溶解デツキ4から貯湯槽5内に流れ込み貯留される。
As a result, the temperature gradually rises and the metal lump 1 is melted, flowing from the melting deck 4 into the hot water storage tank 5 and stored therein.

この溶湯は金属溜!i6として、貯湯槽5内から、ざら
に給湯室3に静かに移動して、所定の液面レベルまで溶
解が継続する。金属塊1の溶解温度及び溶湯6の温度は
溶解室温度制御装置15により制御され、かつ液面レベ
ルも溶解室溶湯レベルセンサ12により検知され、過溶
解しないレベルに制御される。このとき、溶解された金
属塊lから発生する異物等は溶湯と分離されおおむね溶
湯表面上に浮遊した状態で貯留される。
This molten metal is a metal reservoir! At i6, the hot water is gently moved from the hot water storage tank 5 to the hot water supply chamber 3, and the melting continues until a predetermined liquid level is reached. The melting temperature of the metal lump 1 and the temperature of the molten metal 6 are controlled by a melting chamber temperature control device 15, and the liquid level is also detected by a melting chamber molten metal level sensor 12, and is controlled to a level that does not cause over-melting. At this time, foreign matter generated from the molten metal lump l is separated from the molten metal and is generally stored in a suspended state on the surface of the molten metal.

次に、保持給湯室中央制御装置66から溶解室中央制御
装置32が溶湯6の検温要求信号を受け取ると、溶解室
中央制御装@32の制御のもとに、溶解室加圧制御装置
20が溶解室排気弁21を閉じ溶解室加圧弁18を開く
。これにより、加圧919から、圧縮された空気あるい
は不活性ガス等の気体が給湯室3内に流入し、内圧が上
昇する。この内圧の上昇により、移渇室3内に沈静化さ
れ保持された溶湯は、溶湯流入口29から検温管28に
流入し、溶湯流出口30から流出し、検温樋50を介し
て保持給湯ゾーンの受湯管49の受湯口53へ移湯され
ていく。
Next, when the melting chamber central controller 32 receives a temperature measurement request signal for the molten metal 6 from the holding hot water supply chamber central controller 66, the melting chamber pressurization controller 20 is activated under the control of the melting chamber central controller @32. The dissolution chamber exhaust valve 21 is closed and the dissolution chamber pressurization valve 18 is opened. As a result, compressed air or a gas such as an inert gas flows into the hot water supply chamber 3 from the pressurization 919, and the internal pressure increases. Due to this increase in internal pressure, the molten metal that has been stabilized and held in the transfer chamber 3 flows into the temperature measuring tube 28 from the molten metal inlet 29, flows out from the molten metal outlet 30, and passes through the temperature measuring gutter 50 to the holding hot water supply zone. The hot water is transferred to the hot water receiving port 53 of the hot water receiving pipe 49.

このとき、検温センサ31が溶湯を検出したタイミング
により電磁弁25を閉じる。これにより溶湯流出口30
から溶湯が流出した瞬間における給湯室3内の圧力が溶
解室差圧発信器24の測定室24bにセットされる。 
ここで、上記溶解室加圧制御装置(プログラマブルコン
トローラまたはシーケンサ)20はこの時点での給湯室
3内の内圧を溶解室圧力測定口22から溶解室圧力調節
計27を介して測定し、あらかじめ個々の溶解保持給湯
炉溶解ゾーンについて個々に検定し、規定されている安
全限界圧の範囲内であるかを判断し、規定されている値
に相当するならば加圧を続ける。また、範囲外ならば、
加圧は停止される。
At this time, the solenoid valve 25 is closed at the timing when the temperature sensor 31 detects molten metal. As a result, the molten metal outlet 30
The pressure inside the hot water supply chamber 3 at the moment when the molten metal flows out is set in the measurement chamber 24b of the melting chamber differential pressure transmitter 24.
Here, the melting chamber pressure control device (programmable controller or sequencer) 20 measures the internal pressure in the hot water supply chamber 3 at this point from the melting chamber pressure measurement port 22 via the melting chamber pressure regulator 27, and The melting and holding furnace melting zone is individually verified to determine whether it is within the specified safe limit pressure, and if it corresponds to the specified value, pressurization is continued. Also, if it is out of range,
Pressurization is stopped.

そして、加圧が継続されるならば当然溶湯は検温管28
内を上昇しつづけ検温樋50への供給がつづけられる。
If the pressurization continues, the molten metal will naturally reach the thermometer tube 28.
The temperature continues to rise within the temperature gutter 50, and the supply to the temperature gutter 50 continues.

その後、上記給湯室3内の圧力は、前記検温センサ31
検知時の圧力とその後の増圧量を継続的に溶解室差圧発
信器24及び溶解室差圧調節計26等からなる差圧検出
部を介して測定することにより、より定量的かつ安全な
その後の絶対増加量を測定し、前記の安全限界圧同様個
々の溶解保持給湯炉溶解ゾーンについて個々に検定し、
そしてあらかじめ第6図のように作成された単位時間当
り移濃量−圧力関係グラフに基づいて、溶解室加圧制御
装置20は溶解室差圧調節計26設定された増圧量に到
達したならば、加圧を溶解室加圧弁18の閉止により中
断させる。
Thereafter, the pressure inside the hot water supply chamber 3 is determined by the temperature sensor 31.
By continuously measuring the pressure at the time of detection and the amount of pressure increase thereafter via a differential pressure detection unit consisting of a dissolution chamber differential pressure transmitter 24, a dissolution chamber differential pressure controller 26, etc., more quantitative and safe measurement can be achieved. The subsequent absolute increase is measured and verified individually for each melting and holding furnace melting zone in the same way as the safe limit pressure described above.
Then, based on the concentration transfer amount per unit time-pressure relationship graph created in advance as shown in FIG. For example, pressurization is interrupted by closing the melting chamber pressurizing valve 18.

ここで検温センサ31の検知位置は、給湯室3の形状的
変化(スケール等の炉床への堆積、あるいは、側部への
付着を含めた変化)にかかわらず移Iにおける定点とな
り、前記溶解室差圧調節計26に設定された増圧量は定
量的に検温する上での絶対値的制御要素として重要なも
のとなる。
Here, the detection position of the temperature sensor 31 becomes a fixed point in the transfer I, regardless of any changes in the shape of the hot water supply chamber 3 (changes including accumulation of scale on the hearth or adhesion to the sides), The amount of pressure increase set in the room differential pressure controller 26 is important as an absolute value control element for quantitative temperature measurement.

このとき、溶湯は当然移湯管28の溶湯流出口30から
あふれ続けており、検温樋50を介して保持給湯ゾーン
の受湯管49に検温された溶湯の減少量相当分の圧力減
少(当然温度上昇によって気体が膨張することに基づく
圧力増加は考慮されなければならない、)により、あふ
れ出すことができなくなるまで、検温は移濶管28より
つづけられる。しかし、実用上あふれ出せなくなるまで
放置しても意味がない。何故ならば、前記の圧力減少に
伴いあふれ出る溶湯の流速は加圧停止後しばらくして、
急速に小さくなり検温として許容しがたい流速となる。
At this time, the molten metal naturally continues to overflow from the molten metal outlet 30 of the molten metal transfer pipe 28, and the pressure decreases by the amount equivalent to the decrease in the molten metal whose temperature is measured in the molten metal receiving pipe 49 of the holding hot water supply zone via the temperature gutter 50 (naturally). (The pressure increase due to the expansion of the gas due to the temperature increase must be taken into account.) Temperature measurement continues through the transfer tube 28 until overflow is no longer possible. However, there is no point in leaving it until it can no longer overflow in practical terms. This is because the flow rate of the molten metal that overflows as the pressure decreases as described above increases after a while after the pressurization stops.
The flow rate decreases rapidly and becomes unacceptable for temperature measurement.

そこで、第5図に示すように、一点鎖線のあふれ出し開
始圧に所定のあふれだし圧(−PI)を加えた後、前記
溶解室加圧制御装置20で溶解室差圧調節計26のヒス
テリシス(調節動作すきま)をオン−オフ制御の繰り返
し制御として効果的に活用し検温操作として許容できる
溶湯の検温速度を確保する。
Therefore, as shown in FIG. 5, after adding a predetermined overflow pressure (-PI) to the overflow start pressure indicated by the dashed line, the melting chamber pressure control device 20 adjusts the hysteresis of the melting chamber differential pressure controller 26. (Adjustment operation gap) is effectively used as on-off control repeatedly to ensure a temperature measurement speed of molten metal that is acceptable for temperature measurement operation.

こうして、溶解室差圧調節計26のオンとオフとの圧力
レベルが異なることを利用して、第5図に示すように繰
り返し圧力の印加を行っているので、定量的な検温が効
果的に行われる。ついで保持給湯炉中央制御装置66か
らの停止指令あるいは、溶解炉加圧制御装置20の内部
タイマーによって、もしくは手動にて溶解室排気弁21
が開口され、圧力が低下して検温が停止される。
In this way, pressure is repeatedly applied as shown in Figure 5 by taking advantage of the difference in pressure level between on and off of the dissolution chamber differential pressure controller 26, making quantitative temperature measurement effective. It will be done. Then, the melting chamber exhaust valve 21 is activated by a stop command from the holding furnace central control device 66, by an internal timer of the melting furnace pressurization control device 20, or manually.
is opened, the pressure decreases, and temperature measurement is stopped.

この場合、溶湯流入口23が、給湯室3の底部側中層に
配置されているために、検温される溶湯には、表面上に
浮遊したあるいは炉底に沈積した酸化物等の不純物、炉
材等から派生する異物等は全く混入することがなくもっ
とも清浄な部分が検温される。
In this case, since the molten metal inlet 23 is located in the middle layer on the bottom side of the hot water supply chamber 3, the molten metal whose temperature is measured contains impurities such as oxides floating on the surface or deposited at the bottom of the furnace. The temperature will be measured in the cleanest area, without any foreign matter derived from the environment being mixed in.

その後溶解ゾーンでは、操業計画に従って投入口7から
金属塊1が投入され溶解が継続される。
After that, in the melting zone, the metal lump 1 is charged from the input port 7 according to the operation plan, and melting is continued.

溶解ゾーンから移層された溶湯は、上記受湯管49を介
して溶湯流出口54から上記受湯室55へ流出し、上記
保持給湯室40へと移動し保持されていく。
The molten metal transferred from the melting zone flows out from the molten metal outlet 54 to the molten metal receiving chamber 55 via the molten metal receiving pipe 49, moves to the molten metal holding chamber 40, and is held.

上記保持給湯室溶湯レベルセンサ52が、移濁されてき
た金属溶湯(溶湯)42を検知したならば、上記保持給
湯室中央制御装置66は直ちに、上記溶解室中央制御装
置32に対して検温の停止を指令する。
When the holding hot water supply room molten metal level sensor 52 detects the molten metal (molten metal) 42 that has become cloudy, the holding hot water supply room central control device 66 immediately sends a temperature measurement request to the melting chamber central control device 32. Command to stop.

溶湯42の検温に先立って予め溶湯の保持温度に上記保
持給湯室温調節計65がセットされ、検温されてきた溶
湯42は保持給湯室発熱体41により加熱保温される。
Prior to measuring the temperature of the molten metal 42, the holding hot water supply room temperature controller 65 is set in advance to the holding temperature of the molten metal, and the molten metal 42 whose temperature has been measured is heated and kept warm by the holding hot water supply chamber heating element 41.

続いて、図示されない鋳造機からの給湯要求信号を上記
の保持給湯室中央制御装置66が受け付けると、前記保
持給湯室中央制御装量66の制御のもとに、保持給湯室
加圧制御装置64が保持給湯室排気弁48を閉じ、保持
給湯室加圧弁59を開く。これにより、加圧源19から
、圧縮された空気あるいは不活性ガス等の気体が保持給
湯室40内に流入し、内圧が上昇する。この内圧の上昇
により、保持給湯室40内に沈静化され保持された溶湯
は、溶湯流入口46から給湯管43に流入し、溶湯流出
口46から流出し、給湯量47を介してダイカストマシ
ンプランジャスリーブ70等の鋳造機の受け入れ口へ給
湯されていく。
Subsequently, when the holding hot water supply chamber central control device 66 receives a hot water supply request signal from a casting machine (not shown), the holding hot water supply chamber pressurizing control device 64 is controlled by the holding hot water supply chamber central control unit 66 . closes the holding hot water chamber exhaust valve 48 and opens the holding hot water chamber pressurizing valve 59. As a result, compressed air or a gas such as an inert gas flows into the holding hot water supply chamber 40 from the pressurizing source 19, and the internal pressure increases. Due to this increase in internal pressure, the molten metal that has been stabilized and held in the holding and hot water supply chamber 40 flows into the hot water supply pipe 43 from the molten metal inlet 46, flows out from the molten metal outlet 46, and passes through the hot water supply amount 47 to the die casting machine plunger. The hot water is supplied to the receiving port of the casting machine such as the sleeve 70.

このとき、給湯センサ44が溶湯を検出したタイミング
により電磁弁60を閉じる。これにより溶湯流出口46
から溶湯が流出した瞬間における保持給湯室40内の圧
力が保持給湯室差圧発信器61の測定室61bにセット
される。
At this time, the solenoid valve 60 is closed at the timing when the hot water sensor 44 detects molten metal. As a result, the molten metal outlet 46
The pressure inside the holding hot water supply chamber 40 at the moment when the molten metal flows out is set in the measurement chamber 61b of the holding hot water supply chamber differential pressure transmitter 61.

ここて、上記保持給湯室加圧制御装置(プログラマブル
コントローラまたはシーケンサ)64はこの時点での保
持給湯室40内の内圧を保持給湯室圧力測定口68から
保持給湯室圧力調節計63を介して測定し、あらかじめ
個々の溶解保持給湯炉保持給湯ゾーンについて個々に検
定し、規定されている安全限界圧の範囲内であるかを判
断し規定されている値に相当するならば加圧を続ける。
Here, the holding hot water chamber pressurization control device (programmable controller or sequencer) 64 measures the internal pressure in the holding hot water chamber 40 at this point through the holding hot water chamber pressure measurement port 68 via the holding hot water chamber pressure regulator 63. However, each holding hot water supply zone in the melting holding hot water supply furnace is individually verified in advance to determine whether the pressure is within the prescribed safe limit pressure, and if the pressure corresponds to the prescribed value, pressurization is continued.

また、範囲外なら加圧は停止される。そして、加圧が継
続されるならば当然溶湯は給湯管43内を上昇しつづけ
給湯量47を介して、ダイカストマシンプランジャスリ
−170等鋳造機への給湯が続けられる。
Moreover, if it is outside the range, pressurization is stopped. If the pressurization continues, the molten metal naturally continues to rise in the hot water supply pipe 43 and continues to be supplied to the casting machine such as the die casting machine plunger three 170 via the hot water supply amount 47.

その後、上記保持給湯室40内の圧力は、前記給湯セン
サ44検知時の圧力とその後の増圧量を継続的に保持給
湯室差圧発信器61及び保持給湯室差圧調節計62等か
らなる差圧検出部を介して測定することにより、より定
量的かつ安全なその後の絶対増加量を測定し、前記の安
全限界圧同様個々の溶解保持給湯炉保持給湯ゾーンにつ
いて個々に検定し、モしてあらかしめ第7図のように作
成された単位時間当り給mf!l−圧力関係グラフに基
づいて、保持給湯室加圧制御装置64は保持給湯室差圧
調節計62に設定された増圧量に到達したならば、加圧
を保持給湯室加圧弁59の閉止により中止させる。
Thereafter, the pressure in the holding hot water supply chamber 40 is continuously maintained at the pressure at the time of detection by the hot water supply sensor 44 and the amount of pressure increase thereafter. By measuring through the differential pressure detection unit, the subsequent absolute increase can be measured more quantitatively and safely, and similarly to the above-mentioned safe limit pressure, each melting and holding furnace holding hot water supply zone can be verified individually. Salary per unit hour mf created as shown in Figure 7! Based on the l-pressure relationship graph, the holding hot water chamber pressurization control device 64 maintains pressurization and closes the hot water chamber pressurizing valve 59 when the pressure increase amount set in the holding hot water chamber differential pressure controller 62 is reached. It will be canceled due to

この場合に、第6図の単位時間当り検温量−圧力関係グ
ラフと第7図の単位時間当り給湯量−圧力関係グラフと
を比較して考察してみよう。
In this case, let's compare and consider the temperature measurement amount per unit time-pressure relationship graph in FIG. 6 and the hot water supply amount per unit time-pressure relationship graph in FIG.

検温の場合は、はぼ定量的に行われればよいのであるし
、前述したように、一定の検温状態を差圧調節計のヒス
テリシスを利用して繰り返すことが要点であり、給湯の
場合は後述するように限定された規定量を短時間に行い
、かつまた、精度よく繰り返し再現しなければならない
。したがって、検温においては、第6図の単位時間当り
検温量−圧力関係グラフは一つの目処ともいえるが給湯
においては第7図の単位時間当り給湯量−圧力間係グラ
フは精度を保証する上での、重要な指針であり、規定さ
れる範囲も自ずと狭められる。
In the case of temperature measurement, it only needs to be done quantitatively, and as mentioned above, the key is to repeat a constant temperature measurement state using the hysteresis of the differential pressure controller. It is necessary to carry out a limited prescribed amount in a short period of time, and to reproduce it repeatedly with high accuracy. Therefore, in temperature measurement, the graph of temperature measurement amount per unit time - pressure relationship in Figure 6 can be said to be a guide, but in hot water supply, the relationship graph of hot water supply amount per unit time - pressure relationship in Figure 7 is insufficient to guarantee accuracy. This is an important guideline, and the scope of the provisions will naturally be narrowed.

給湯センサ44の検知位置は、検温センサ31の場合と
同様に保持給湯室40の形状的変化(スケール等の炉床
への堆積、あるいは、側部への付着を含めた変化)にか
かわらず給湯における定点となり、前記保持給湯室差圧
調節計62に設定された増圧量は定量的に給湯する上で
の絶対値的制御要素として重要なものとなる。
The detection position of the hot water supply sensor 44 is the same as that of the temperature sensor 31, regardless of any changes in the shape of the holding hot water supply chamber 40 (changes including accumulation of scale on the hearth or adhesion to the sides). The amount of pressure increase set in the holding hot water supply room differential pressure controller 62 becomes an important absolute value control element in quantitatively supplying hot water.

即ち、給湯管43と保持給湯室40との関係を流体力学
的見地から考察するならば、給湯管の溶流入口45は液
中に浸された「もぐリオリフイス」の役割を果している
こととなり、通過流量は次式で表せられる。
That is, if we consider the relationship between the hot water supply pipe 43 and the holding hot water supply chamber 40 from a hydrodynamic viewpoint, the melt inlet 45 of the hot water supply pipe plays the role of a "moguri reel chair" immersed in the liquid. The passing flow rate is expressed by the following formula.

Q= CA (2g H)05    [m31SeC
コここで、 C:流量係数 Aニオリフイス断面積   [m2] g:重力の加速度     [m/5ec2コH:水頭
差        [m] 給濶センサ44の検知位置を基準点(定点)として、給
湯センサ44の検知後の増圧量を水頭差として捉えるな
らば、給湯センサ44の検知後、外部へ給湯された溶湯
の減少量相当分の圧力減少く当然温度上昇によって気体
が膨張することに基づく圧力増加は考慮されなければな
らない。)により定量的な給湯が保証できなくなるまで
の間の一定時間(給湯定量時間要素)はこの増圧量が絶
対的な給湯量制御要素として働くことが理解できる。そ
して、この給湯定量時間要素はあらかじめ検定された、
上記の第7図の単位時間当り給湯量−圧力関係グラフに
基づく個別の組み合わせにより、おおよそ0.5秒〜1
5秒の間で規定されてくることが、我々の経験によって
知られている。
Q= CA (2g H)05 [m31SeC
Here, C: flow coefficient A niorifice cross-sectional area [m2] g: gravitational acceleration [m/5ec2H: water head difference [m] With the detection position of the water supply sensor 44 as a reference point (fixed point), the hot water supply sensor 44 If we consider the amount of pressure increase after detection as a water head difference, then after detection by the hot water supply sensor 44, the pressure will decrease by the amount equivalent to the decrease in the molten metal supplied to the outside.Of course, the pressure will increase due to the expansion of gas due to temperature rise. must be taken into account. ), it can be understood that for a certain period of time (fixed water supply time element) until quantitative hot water supply cannot be guaranteed, this pressure increase amount acts as an absolute hot water supply amount control element. This hot water supply fixed amount time element has been verified in advance.
Approximately 0.5 seconds to 1
It is known from our experience that the time limit is 5 seconds.

例えば、2に87秒ならばおおよそ5秒間である。For example, if 2 is 87 seconds, it is approximately 5 seconds.

したがって、上記のごとく保持給湯室加圧弁59の閉止
により保持給湯室への加圧が中止されたのち、保持給湯
室加圧制御装置64内の内部タイマに設定された、上記
の給湯定量時間要素が経過して、保持給湯室排気弁48
が間かれ、保持給湯室40の圧力が開放され、給湯は完
了し、保持給湯ゾーンは鋳造機からのPi湯指令の待機
状態となる。
Therefore, after the pressurization of the holding hot water supply chamber is stopped due to the closing of the holding hot water supply chamber pressurizing valve 59 as described above, the hot water supply fixed amount time element set in the internal timer in the holding hot water supply chamber pressurization control device 64 is set. has elapsed, the holding hot water supply chamber exhaust valve 48
, the pressure in the holding hot water supply chamber 40 is released, the hot water supply is completed, and the holding hot water supply zone enters a standby state for a Pi hot water command from the casting machine.

この場合検温のときと同様に溶湯流入口45が、保持給
湯室40の底部側中層に配置されているために、給湯さ
れる溶湯には、表面上に浮遊したあるいは炉底に沈積し
た酸化物等の不純物、炉材等から派生する異物等は全く
混入することがなくもっとも清浄な部分が@漏される。
In this case, as in the case of temperature measurement, the molten metal inlet 45 is arranged in the middle layer on the bottom side of the holding hot water supply chamber 40, so that the molten metal being supplied contains oxides floating on the surface or deposited at the bottom of the furnace. Impurities such as, foreign substances derived from furnace materials, etc. are not mixed in at all, and the cleanest part is leaked out.

なお、上記実施例において、溶解ゾーンと保持給湯ゾー
ンとは、設置される床面に対して同一のレベルに配置さ
れればよく、この二つのゾーンは一体的な構造として形
成されてもよいし、分離型に形成され密接した形で設置
されていてもよい。
In addition, in the above embodiment, the melting zone and the holding hot water supply zone may be arranged at the same level with respect to the floor surface on which they are installed, and these two zones may be formed as an integral structure. , they may be formed separately and installed in close contact.

また、検温管は給湯室溶湯レベルより十分に低い底部側
中層に溶湯流入口が配置され、保持給湯ゾーンの受湯管
49の受湯口53より高い位置に検温管50を備えつつ
、流出口28が配置されていればよい。
In addition, the temperature measuring tube has a molten metal inlet in the middle layer on the bottom side which is sufficiently lower than the molten metal level in the hot water supply chamber, and a temperature measuring tube 50 is provided at a position higher than the hot water receiving port 53 of the hot water receiving pipe 49 in the holding hot water supply zone. It is sufficient if it is placed.

さらに、受湯管49は、受湯室溶湯レベルより十分に低
い底部側中層に溶湯流入口が配置され、溶湯レベルより
十分に高い位置に配置されていればよい。
Further, the molten metal inlet of the molten metal receiving pipe 49 may be arranged in the middle layer on the bottom side which is sufficiently lower than the molten metal level in the molten metal receiving chamber, and the molten metal inlet may be arranged at a position sufficiently higher than the molten metal level.

そして、溶解ゾーンから保持給湯ゾーンへの検温は、保
持給湯ゾーンにおいて鋳造機への給湯が行われていると
きでも、行われていないいずれの場合でも行える。
The temperature measurement from the melting zone to the holding hot water supply zone can be performed whether or not hot water is being supplied to the casting machine in the holding hot water supply zone.

[発明の効果) 以上説明したように、本発明によって溶解室において金
属塊を投入口から投入したならば、金属塊が安全かつ安
定的にして熱収支的に高効率に溶解され、その溶解され
た金属溶湯を沈静化した最も清浄な部分を清浄なままで
、保持給湯室に自動的に移動し、保持し更にこの最も清
浄な溶湯を清浄なまま、安全にして安定的に、精度よく
定量的に、鋳造機に給湯することのできる、溶解保持給
湯炉が可能となった。
[Effects of the Invention] As explained above, according to the present invention, when a metal lump is introduced into the melting chamber through the inlet, the metal lump is melted safely and stably with high efficiency in terms of heat balance. The cleanest part of the molten metal that has settled down is automatically moved to the holding chamber and held, and the cleanest molten metal is safely, stably, and precisely quantified while still being clean. As a result, it has become possible to create a melting, holding, and melting furnace that can supply hot water to a casting machine.

本発明による溶解保持給湯炉の実現によって、工場の一
端の入口からインゴットが搬入されるならば他端の出口
からは組立られ梱包された、商品が出荷されるという、
理想的な単一工場でのライン形成が可能となった。いう
なれば、工業炉のインライン化が電気溶解と電気保温及
び、空圧検温と空圧給湯との組み合わせの実現により可
能性を創造した。
By realizing the melting and holding hot water supply furnace according to the present invention, ingots are brought in from the entrance at one end of the factory, and assembled and packaged products are shipped from the exit at the other end.
It has become possible to form an ideal line in a single factory. In other words, in-line industrial furnaces have created possibilities by combining electric melting, electric heat retention, pneumatic temperature measurement, and pneumatic hot water supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例に係る、溶解保持
給湯炉の構造を示す図であり、第1図(a)は第2図(
a)のA−A線断面図、第1図(b)は第2図(a)の
B−B線断面図、第1図(c)は第2図(a)のC−C
線断面図、第2図(a)は溶解保持給湯炉の平面図、第
2図(b)は第1図(b)のD−D線断面図、第3図は
溶解保持炉と給湯機を用いた従来の実施例、 第4図は保持給湯炉と運搬用取り鍋を用いた従来の実施
例、 第5図は検温中における溶解ゾーン内の圧力変化を示す
動作特性グラフ、 第6図は個別的に検定される単位時間当り検温量−圧力
関係グラフ、 第7図は個別的に検定される単位時間当り給湯量−圧力
関係グラフである。 1・・・・・・・・・・・・金属塊、 2・・・・・・・・・・・・溶解室、 3・・・・・・・・・・・・給湯室、 4・・・・・・・・・・・・溶解デツキ、5・・・・・
・・・・・・・貯留槽、 6・・・・・・・・・・・・金属8J濶(溶湯)、7・
・・・・・・・・・・・投入口、 8・・・・・・・・・・・・蓋、 9・・・・・・・・・・・・溶解室発熱体、lO・・・
・・・・・・・・・雰囲気温度測温体、11・・・・・
・・・・・・・溶解室溶湯温度測温体、12・・・・・
・・・・・・・溶解室溶湯レベルセンサ、13・・・・
・・・・・・・・溶解室温度調節計、14・・・・・・
・・・・・・過熱警報計、15・・・・・・・・・・・
・溶解室温度制御装置、16・・・・・・・・・・・・
溶解室加圧口、17・・・・・・・・・・・・溶解室排
気口、18・・・・・・・・・・・・溶解室加圧弁、1
9・・・・・・・・・・・・加圧源、20・・・・・・
・・・・・・溶解室加圧制御装置、21・・・・・・・
・・・・・溶解室排気弁、22・・・・・・・・・・・
・溶解室圧力測定口、24・・・・・・・・・・・・溶
解室差圧発信器、25・・・・・・・・・・・・電磁弁
、26・・・・・・・・・・・・溶解室差圧調節計、2
7・・・・・・・・・・・・溶解室圧力調節計、28・
・・・・・・・・・・・検温管、29・・・・・・・・
・・・・溶湯流入口、30・・・・・・・・・・・・溶
湯流出口、31・・・・・・・・・・・・検温センサ、
32・・・・・・・・・・・・溶解室中央制御装置、4
0・・・・・・・・・・・・保持給湯室、41・・・・
・・・・・・・・保持給湯室発熱体、42・・・・・・
・・・・・・金属溶湯、43・・・・・・・・・・・・
給湯管、44・・・・・・・・・・・・給湯センサ、4
5・・・・・・・・・・・・溶湯流入口、46・・・・
・・・・・・・・溶湯流出口、47・・・・・・・・・
・・・給湯量、48・・・・・・・・・・・・保持給湯
室排気弁、49・・・・・・・・・・・・受湯管、50
・・・・・・・・・・・・検温樋、51・・・・・・・
・・・・・オーバフローセンサ52・・・・・・・・・
・・・保持給湯室溶湯レベルセンサ、53・・・・・・
−・・・・・受湯口、54・・・・・・・・・・・・溶
湯流出口、55・・・・・・・・・・・・受湯室、56
・・・・・・・・・・・・掃除口、57・・・・・・・
・・・・・保持給湯室溶湯温度測温体、58・・・・・
・・・・・・・蓋、 59・・・・・・・・・・・・保持給湯室加圧弁、60
・・・・・・・・・・・・電磁弁、61・・・・・・・
・・・・・保持給湯室差圧発信器、61a、61b・・
・・・・・・・・・・測定室、62・・・・・・・・・
・・・保持給湯室差圧調節計、63・・・・・・・・・
・・・保持給湯室圧力調節計、64・・・・・・・・・
・・・保持給湯室加圧制御装置、65・・・・・・・・
・・・・保持給湯室温度調節計、66・・・・・・・・
・・・・保持給湯室中央制御装置、67・・・・・・・
・・・・・保持給湯室加圧口、68・・・・・・・・・
・・・保持給湯室圧力測定口、69・・・・・・・・・
・・・保持給湯室排気口、70・・・・・・・・・・・
・ダイカストマシンプランジャスリーブ、 71・・・・・・・・・・・・溶解保持炉72・・・・
・・・・・・・・燃焼機 73・・・・・・・・・・・・溶解デツキ74・・・・
・・・・・・・・溶解槽 75・・・・・・・・・・・・貯留槽 76・・・・・・・・・・・・堰 77・・・・・・・・・・・・給湯機 78・・・・・・・・・・・・蓋 79・・・・・・・・・・・・取り鍋 80・・・・・・・・・・・・保持炉 81・・・・・・・・・・・・受湯口 82・・・・・・・・・・・・溶湯 83・・・・・・・・・・・・給湯管 84・・・・・・・・・・・・給湯樋 ΔP1・・・・・・・・・・・・あふれ出し圧、ΔP2
・・・・・・・・・・・・ヒステリシス圧。 特許出願人    田辺工業株式会社 図面のjD1’j(内容に変更なし) 第2図(a)       第2図(b)Iコ L 手続補正書く方式) %式% 1、事件の表示 昭和61年 特許願 第216303号2、発明の名称 溶解保持給、湯炉 3、MI正をする者 事件との関係 特許出願人 (発送日) Bil!和63年 1月26日5、補正の
対象 図面の第2図 6、補正の内容 手続補正書(方式) 昭和61年12月23日 t 、 事件ノm示frflft+G1乍q : 7.
2.4 jl ヤm昭和61年 特許願 第21630
3号2、発明の名称 溶解保持給湯炉 3、補正をする者 事件との関係 特許出願人 (発送日)昭和−一年一一月一一日 5、補正の対象 明細書の 「2、特許請求の範囲」の欄及び「3、発明
の詳細な説明」の欄 及び「4、図面の簡単な説明」の欄 6、補正の内容 明細書中下記の内容を補正する。 ■ 「2、特許請求の範囲」を別紙のとおりに補正する
。 ■ 第5頁第15行目「貯留槽に貯留された」とあるの
を「貯湯槽に貯留された」と補正する。 ■ 第6頁第9行目「溶解室排出口を有し」とあるのを
「溶解室排気口を有し」と補正する。 ■ 第7頁第4行目「保持給湯室排出口を有し」とある
のを「保持給湯室排気口を有し」と補正する。 ■ 第23頁第13行目「溶湯流入口23」とあるのを
「溶湯流入口29」と補正する。 ■ 第32頁第17行目「5・・・・・・・・・・・・
貯留槽、」とあるのを「6・・・・・・・・・・・・貯
湯槽、」と補正する。 ■ 第34頁第6行目「42・・・・・・・・・・・・
金属溶湯、」とあるのを「42・・・・・・・・・・・
・金属溶湯(溶湯)、」と補正する。 ■ 第33頁第15行目から第16行目において「24
・・・・・・・・・・・・溶解室差圧発信器、25・・
・・・・・・・・・・電磁弁、     」とあるのを
「24・・・・・・・・・・・・溶解室差圧発信器、2
4a、24b・・・・・・・・・・・・測定室、25・
・・・・・・・・・・・電磁弁、    」と補正する
。 2、特許請求の範囲 金属塊1の溶解室投入口7を有し、この金属塊1を保持
し溶解に必要な熱量を受けさせるための溶解ゾーンの溶
解デツキ4と、溶解した金属溶湯(溶湯)6を貯留する
貯湯槽5と、溶解した溶湯の貯留量を検知する溶解室溶
湯レベルセンサ12と、前記溶解デツキ4上の金属塊1
の溶解に必要な所定の熱量を供給する溶解室発熱体9と
、溶湯の温度及び雰囲気の温度をそれぞれ測定するため
の測温体10,11と、外部の溶解室加圧制御装置11
20の信号により開閉制御される溶解室加圧口16及び
この溶解室加圧制御装置20の信号によって溶解ゾーン
内の圧力を排出するための溶解室排1017を有し前記
貯湯槽5と連通した給湯室3と、前記給湯室3内に溶湯
流入口29が位置し外部の溶湯流出口30にあふれ出し
圧力を検知する検温センサ31を有する検温管2日と、
前記検温センサ31の信号で圧力を測定する溶解室差圧
制御部とで構成される溶解ゾーンと、前記溶解ゾーンを
圧縮された気体により加圧することにより、あふれ出た
金属溶湯を検温I!50を介して受け入れる為の受湯口
53を前記検温樋50に接して位置し、受湯室55内に
溶湯流出口54を位置した受湯管49を有し、前記受湯
管49を介して受湯室55に受け入れた金属?iJ湯(
溶湯)42を受湯室55と連通し、保持するための保持
給湯室40を有し、前記保持給湯室40に保持された溶
湯の保持量を検知する保持給湯室溶湯レベルセンサ52
と、前記保持給湯室4θ内の溶湯の保温に必要な所定の
熱量を供給する保持給湯室発熱体41と、溶湯の温度を
測定するための測温体57と、外部の保持給湯室加圧制
御装置64により開閉制御される保持給湯室加圧口67
及びこの保持給湯室加圧制御装置64の信号によフて保
持給湯ゾーン内の圧力を外部に排出するための保持給湯
室排気口69を有し、前記保持給湯室40内に溶湯流入
口45が位置し炉外の溶湯流出口46に給湯開始圧力を
検知する給湯センサ44を有する給湯管43と、前記給
湯センサ44の信号で圧力測定する保持給湯室差圧制御
部とで構成される保持給湯ゾーンとを具備したことを特
徴とする溶解保持給湯炉。
1 and 2 are diagrams showing the structure of a melting and holding hot water supply furnace according to an embodiment of the present invention, and FIG.
1(b) is a sectional view taken along line BB of FIG. 2(a), and FIG. 1(c) is a sectional view taken along line C-C of FIG. 2(a).
Line sectional view, Figure 2 (a) is a plan view of the melting and holding furnace, Figure 2 (b) is a sectional view taken along line D-D of Figure 1 (b), and Figure 3 is the melting and holding furnace and water heater. Fig. 4 is a conventional example using a holding hot water supply furnace and a transporting ladle; Fig. 5 is an operating characteristic graph showing pressure changes in the melting zone during temperature measurement; Fig. 6 is a graph of the relationship between temperature measurement amount per unit time and pressure that is individually verified, and FIG. 7 is a graph of the relationship between the amount of hot water supplied per unit time and pressure that is individually verified. 1...Metal ingot, 2...Dissolution chamber, 3...Hot water supply room, 4.・・・・・・・・・・・・Dissolution deck, 5・・・・・・
......Storage tank, 6...Metal 8J (molten metal), 7.
・・・・・・・・・・・・Inlet, 8・・・・・・・・・Lid, 9・・・・・・・・・Dissolution chamber heating element, lO・・・
......Atmosphere temperature measuring element, 11...
...... Melting chamber molten metal temperature measuring element, 12...
...... Melting chamber molten metal level sensor, 13...
...... Melting chamber temperature controller, 14...
・・・・・・Overheating alarm meter, 15・・・・・・・・・・・・
- Melting chamber temperature control device, 16...
Melting chamber pressurizing port, 17...... Melting chamber exhaust port, 18...... Melting chamber pressurizing valve, 1
9...... Pressure source, 20...
...Dissolution chamber pressurization control device, 21...
・・・・・・Melting chamber exhaust valve, 22・・・・・・・・・・・・
- Melting chamber pressure measurement port, 24...... Melting chamber differential pressure transmitter, 25...... Solenoid valve, 26...・・・・・・Dissolution chamber differential pressure controller, 2
7・・・・・・・・・・・・Dissolution chamber pressure controller, 28・
・・・・・・・・・Thermometer tube, 29・・・・・・・・・
......Molten metal inlet, 30...Molten metal outlet, 31...Temperature sensor,
32・・・・・・・・・Dissolution chamber central control device, 4
0......Holding hot water supply room, 41...
......Holding hot water supply room heating element, 42...
・・・・・・Molten metal, 43・・・・・・・・・・・・
Hot water pipe, 44...Hot water sensor, 4
5...... Molten metal inlet, 46...
...... Molten metal outlet, 47...
...Hot water supply amount, 48......Holding hot water supply room exhaust valve, 49...Hot water receiving pipe, 50
・・・・・・・・・Temperature gutter, 51・・・・・・
...Overflow sensor 52...
...Holding hot water supply chamber molten metal level sensor, 53...
-...Made inlet, 54...Molten metal outlet, 55...Made inlet, 56
......Cleaning port, 57...
...Holding hot water supply chamber molten metal temperature measuring element, 58...
・・・・・・・・・Lid, 59・・・・・・・・・Holding hot water supply chamber pressurizing valve, 60
・・・・・・・・・・・・Solenoid valve, 61・・・・・・・
...Holding hot water supply room differential pressure transmitter, 61a, 61b...
・・・・・・・・・Measurement room, 62・・・・・・・・・
...Holding hot water supply room differential pressure controller, 63...
・・・Holding hot water supply chamber pressure controller, 64・・・・・・・・・
...Holding hot water supply room pressurization control device, 65...
...Holding hot water supply room temperature controller, 66...
...Holding hot water supply room central control device, 67...
...Holding hot water supply chamber pressurizing port, 68...
...Holding hot water supply chamber pressure measurement port, 69...
・・・Holding hot water supply room exhaust port, 70・・・・・・・・・・・・
・Die-casting machine plunger sleeve, 71... Melting and holding furnace 72...
...... Combustion machine 73 ...... Melting deck 74 ...
......Dissolution tank 75...Storage tank 76...Weir 77... ...Water heater 78...Lid 79...Ladle 80...Holding furnace 81.・・・・・・・・・・・・Mold inlet 82・・・・・・・・・Molten metal 83・・・・・・・・・Hot water supply pipe 84・・・・・・・・・...Hot water gutter ΔP1... Overflow pressure, ΔP2
・・・・・・・・・Hysteresis pressure. Patent applicant: Tanabe Kogyo Co., Ltd. Drawing jD1'j (no change in content) Figure 2 (a) Figure 2 (b) IcoL Procedure amendment writing method) % formula % 1, Indication of the incident 1986 Patent Application No. 216303 2, Title of the invention: Melting and holding supply, Hot water furnace 3, Relationship with the MI correction case Patent applicant (shipment date) Bill! January 26, 1988 5, Figure 2 of the drawing to be amended 6, Contents of the amendment Procedural amendment (method) December 23, 1986 t, Incident information frflft + G1 乍q: 7.
2.4 Jl Yam 1986 Patent Application No. 21630
3 No. 2, Name of the invention Melting and Holding Hot Water Furnace 3, Relationship with the case of the person making the amendment Patent applicant (Shipping date) November 11, 1927 5, ``2, Patent of the specification subject to the amendment The following content in the description will be amended in the column ``Scope of Claims'', the column ``3. Detailed Description of the Invention'', and the column 6 in ``4. Brief Description of the Drawings''. ■ Amend "2. Scope of Claims" as shown in the attached sheet. ■ On page 5, line 15, "stored in a hot water tank" is corrected to "stored in a hot water tank." ■ In the 9th line of page 6, the phrase ``The dissolution chamber has an exhaust port'' has been corrected to ``The dissolution chamber has an exhaust port.'' ■ In the 4th line of page 7, the statement ``Has a holding hot water supply chamber exhaust port'' has been corrected to ``Has a holding hot water supply chamber exhaust port.'' (2) On page 23, line 13, "molten metal inlet 23" is corrected to "molten metal inlet 29." ■ Page 32, line 17 “5・・・・・・・・・・・・
"Storage tank," is corrected to "6... Hot water storage tank." ■ Page 34, line 6 “42・・・・・・・・・・・・
``Molten metal'' is replaced with ``42...
・Molten metal (molten metal),” is corrected. ■ On page 33, lines 15 to 16, “24
...... Melting chamber differential pressure transmitter, 25...
......Solenoid valve," should be replaced with "24...... Melting chamber differential pressure transmitter, 2.
4a, 24b...Measurement room, 25.
・・・・・・・・・・・・Solenoid valve,'' is corrected. 2. Claims A melting deck 4 in the melting zone for holding the metal lump 1 and receiving the amount of heat necessary for melting the metal lump 1, and a melting deck 4 for holding the metal lump 1 and receiving the amount of heat necessary for melting the metal lump 1; ) 6, a melting chamber molten metal level sensor 12 that detects the amount of stored molten metal, and a metal lump 1 on the melting deck 4.
a melting chamber heating element 9 that supplies a predetermined amount of heat necessary for melting, temperature measuring elements 10 and 11 for measuring the temperature of the molten metal and the temperature of the atmosphere, respectively, and an external melting chamber pressurization control device 11.
20, and a melting chamber outlet 1017 for discharging the pressure in the melting zone according to the signal of the melting chamber pressurization control device 20, and communicated with the hot water storage tank 5. a hot water supply chamber 3; a thermometer tube 2 having a temperature sensor 31 in which a molten metal inlet 29 is located in the hot water supply chamber 3 and detects the pressure overflowing to an external molten metal outlet 30;
The temperature of the overflowing molten metal is measured by pressurizing the melting zone with compressed gas and a melting chamber differential pressure control unit that measures the pressure based on the signal from the temperature sensor 31. The molten metal receiving pipe 49 has a molten metal receiving port 53 located in contact with the temperature gutter 50 for receiving molten metal through the molten metal receiving chamber 50, and a molten metal outlet 54 located in the molten metal receiving chamber 55. Metal received in hot water receiving room 55? iJ hot water (
A holding chamber molten metal level sensor 52 that communicates with a receiving chamber 55 and has a holding chamber 40 for holding the molten metal (molten metal) 42, and detects the amount of molten metal held in the holding chamber 40.
, a holding hot water supply chamber heating element 41 that supplies a predetermined amount of heat necessary for keeping the molten metal in the holding hot water supply chamber 4θ warm, a temperature measuring element 57 for measuring the temperature of the molten metal, and an external holding hot water supply chamber pressurizing Holding hot water supply chamber pressurizing port 67 whose opening and closing are controlled by the control device 64
It also has a holding hot water supply chamber exhaust port 69 for discharging the pressure in the holding hot water supply zone to the outside according to a signal from the holding hot water supply chamber pressurization control device 64, and a molten metal inlet 45 in the holding hot water supply chamber 40. A holding pipe 43 is located at a molten metal outlet 46 outside the furnace and has a hot water supply sensor 44 that detects the start pressure of hot water supply, and a holding hot water supply chamber differential pressure control unit that measures the pressure based on the signal of the hot water supply sensor 44. A melting and holding hot water supply furnace characterized by comprising a hot water supply zone.

Claims (1)

【特許請求の範囲】[Claims] 金属塊1の溶解室投入口7を有し、この金属塊1を保持
し溶解に必要な熱量を受けさせるための溶解ゾーンの溶
解デッキ4と、溶解した金属溶湯(溶湯)6を貯留する
貯湯槽5と、溶解した溶湯の貯留量を検知する溶解室溶
湯レベルセンサ12と、前記溶解デッキ4上の金属塊1
の溶解に必要な所定の熱量を供給する溶解室発熱体9と
、溶湯の温度及び雰囲気の温度をそれぞれ測定するため
の測温体10、11と、外部の溶解室加圧制御装置20
の信号により開閉制御される溶解室加圧口16及びこの
溶解室加圧制御装置20の信号によつて溶解ゾーン内の
圧力を排出するための溶解室排出口17を有し前記貯湯
槽5と連通した移湯室3と、前記移湯室3内に溶湯流入
口29が位置し外部の溶湯流出口30にあふれ出し圧力
を検知する移湯センサ31を有する移湯管28と、前記
移湯センサ31の信号で圧力を測定する溶解室差圧制御
部とで構成される溶解ゾーンと、前記溶解ゾーンを圧縮
された気体により加圧することにより、あふれ出た金属
溶湯を移湯樋50を介して受け入れる為の受湯口53を
前記移湯樋50に接して位置し、受湯室55内に溶湯流
出口54を位置した受湯管49を有し、前記受湯管49
を介して受湯室55に受け入れた金属溶湯(溶湯)42
を受湯室55と連通し、保持するための保持給湯室40
を有し、前記保持給湯室40に保持された溶湯の保持量
を検知する保持給湯室溶湯レベルセンサ52と、前記保
持給湯室40内の溶湯の保温に必要な所定の熱量を供給
する保持給湯室発熱体41と、溶湯の温度を測定するた
めの測温体57と、外部の保持給湯室加圧制御装置64
により開閉制御される保持給湯室加圧口67及びこの保
持給湯室加圧制御装置64の信号によって保持給湯ゾー
ン内の圧力を外部に排出するための保持給湯室排気口6
9を有し、前記保持給湯室40内に溶湯流入口45が位
置し炉外の溶湯流出口46に給湯開始圧力を検知する給
湯センサ44を有する給湯管43と、前記給湯センサ4
4の信号で圧力測定する保持給湯室差圧制御部とで構成
される保持給湯ゾーンとを具備したことを特徴とする溶
解保持給湯炉。
A melting deck 4 in a melting zone that has a melting chamber input port 7 for the metal lump 1, holds the metal lump 1 and receives the amount of heat necessary for melting, and a hot water storage for storing the molten metal (molten metal) 6. a tank 5, a melting chamber molten metal level sensor 12 that detects the amount of stored molten metal, and a metal lump 1 on the melting deck 4.
a melting chamber heating element 9 that supplies a predetermined amount of heat necessary for melting, temperature measuring elements 10 and 11 for measuring the temperature of the molten metal and the temperature of the atmosphere, respectively, and an external melting chamber pressurization control device 20.
It has a melting chamber pressurizing port 16 whose opening and closing are controlled by a signal from the melting chamber pressurizing port 16 and a melting chamber outlet 17 which discharges the pressure in the melting zone by a signal from the melting chamber pressurizing control device 20. A molten metal transfer chamber 3 that communicates with the molten metal, a molten metal inlet 29 located in the molten metal transfer chamber 3, and a molten metal transfer pipe 28 having a molten metal transfer sensor 31 that detects the pressure of overflowing to an external molten metal outlet 30, By pressurizing the melting zone with a melting chamber differential pressure control unit that measures the pressure based on the signal from the sensor 31 and compressed gas, the overflowing molten metal is transferred via the trough 50. The molten metal receiving pipe 49 has a molten metal receiving port 53 located in contact with the transfer trough 50 for receiving molten metal, and a molten metal outlet 54 located in the molten metal receiving chamber 55.
Molten metal (molten metal) 42 received into the receiving chamber 55 via
The holding hot water supply chamber 40 communicates with the hot water receiving chamber 55 and holds the hot water.
a holding hot water supply chamber molten metal level sensor 52 for detecting the amount of molten metal held in the holding hot water supply chamber 40; and a holding hot water supply chamber 52 for supplying a predetermined amount of heat necessary for keeping the molten metal in the holding hot water supply chamber 40 warm. A chamber heating element 41, a temperature measuring element 57 for measuring the temperature of molten metal, and an external holding hot water supply chamber pressurization control device 64
A holding hot water supply chamber pressurizing port 67 whose opening and closing are controlled by a holding hot water supply chamber pressurizing port 67 and a holding hot water supply chamber exhaust port 6 for discharging the pressure in the holding hot water supply zone to the outside by a signal from this holding hot water supply chamber pressurizing control device 64.
9, a molten metal inlet 45 is located in the holding hot water supply chamber 40, and a molten metal outlet 46 outside the furnace has a hot water supply sensor 44 for detecting the start pressure of hot water supply;
What is claimed is: 1. A melting and holding hot water supply furnace comprising: a holding hot water supply zone comprising a holding hot water supply chamber differential pressure control section which measures pressure using the signal No. 4;
JP21630386A 1986-09-13 1986-09-13 Melting, holding and feeding furnace Granted JPS63165062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21630386A JPS63165062A (en) 1986-09-13 1986-09-13 Melting, holding and feeding furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21630386A JPS63165062A (en) 1986-09-13 1986-09-13 Melting, holding and feeding furnace

Publications (2)

Publication Number Publication Date
JPS63165062A true JPS63165062A (en) 1988-07-08
JPS646870B2 JPS646870B2 (en) 1989-02-06

Family

ID=16686408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21630386A Granted JPS63165062A (en) 1986-09-13 1986-09-13 Melting, holding and feeding furnace

Country Status (1)

Country Link
JP (1) JPS63165062A (en)

Also Published As

Publication number Publication date
JPS646870B2 (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US5056692A (en) Dispensing apparatus for molten metal
US5794682A (en) Nozzle plant equipped with such a nozzle, for the continuous casting of metal products
JPH037468B2 (en)
JPS63165062A (en) Melting, holding and feeding furnace
US4961772A (en) Method and apparatus for continuously melting glass and intermittently withdrawing melted glass
JP2002507486A (en) Method and apparatus for treating molten magnesium and magnesium alloys
US6600768B2 (en) Induction melting furnace with metered discharge
JP2939146B2 (en) Automatic pouring control method for pressurized pouring furnace
JPS6360066A (en) Continuous molten metal receiving device for automatic metering device of molten metal
JPS6363565A (en) Automatic measuring instrument for molten metal
KR20030028178A (en) Supplement system for hot dip galvanizing solution
JPH0149584B2 (en)
JPS6359789B2 (en)
JPS6236057Y2 (en)
JP4239160B2 (en) Low pressure casting system
JPS6359790B2 (en)
JPS6360067A (en) Solid metal charging port for automatic metering device of molten metal
JPS6224840A (en) Continuous casting facility for making tube
JPH01127154A (en) Molten metal container
JP3535215B2 (en) Melt holding furnace
JP2709679B2 (en) Pre-level hot water supply control method, inert gas hot water pipe air supply pre-level hot water supply control method, continuous hot water pre-level hot water supply control method, and continuous hot water inert gas hot water pipe air supply pre-level hot water supply control method
JPH02290663A (en) Submerged burner type low pressure casting furnace
KR20120094261A (en) Purging device for inert gas and continuous casting method using the same
JPH0268485A (en) Continuous melting-feeding furnace
JPH0890200A (en) Method for improving accuracy of molten metal supply in method for controlling pre-level molten metal supply

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term