JPS6315925B2 - - Google Patents

Info

Publication number
JPS6315925B2
JPS6315925B2 JP705780A JP705780A JPS6315925B2 JP S6315925 B2 JPS6315925 B2 JP S6315925B2 JP 705780 A JP705780 A JP 705780A JP 705780 A JP705780 A JP 705780A JP S6315925 B2 JPS6315925 B2 JP S6315925B2
Authority
JP
Japan
Prior art keywords
aqueous solution
polyacrylamide
dispersion
acrylamide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP705780A
Other languages
Japanese (ja)
Other versions
JPS56104904A (en
Inventor
Osamu Kamata
Kenzo Watanabe
Shigeru Sawayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP705780A priority Critical patent/JPS56104904A/en
Publication of JPS56104904A publication Critical patent/JPS56104904A/en
Publication of JPS6315925B2 publication Critical patent/JPS6315925B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は氎溶性郚分加氎分解ポリアクリルアミ
ドの補造法に関するものである。 曎に詳しくは、アクリルアミドの氎溶液を油溶
性高分子物質を分散安定剀ずしお油䞭氎型に分散
し重合しお埗られた氎溶性ポリアクリルアミドを
分散状態で倉性しお高分子量の氎溶性郚分加氎分
解ポリアクリルアミドを補造する方法に関するも
のである。 氎溶性の郚分加氎分解ポリアクリルアミドは増
粘剀、糊料、補玙甚薬剀、凝集剀および原油回収
甚に甚いられるポリマヌである。特に凝集剀や原
油の回収甚薬剀ずしお甚いる堎合茞送䞊の問題か
ら粉末状の補品で䟛絊され、極めお高分子量でし
かも氎溶性が良いずいう性質が芁求される。 郚分加氎分解ポリアクリルアミドは䞀般にアク
リルアミドの20ないし30重量の氎溶液の氎溶性
のラゞカル重合開始剀を添加しお重合し、埗られ
たゎム状の含氎ポリアクリルアミドを粉砕したの
ちアルカリ氎溶液を混合しお加氎分解し、脱氎也
燥するずいう方法で補造されおいる。この方法で
は含氎ポリアクリルアミドの粉砕が困難である䞊
にアルカリ氎溶液を均䞀に混入するこずが極めお
難しいので均䞀に加氎分解した高品質のポリマヌ
を埗るためには倚くの問題点があ぀た。 䞀方、アクリルアミドの氎溶液を乳化剀や分散
安定剀を甚いお分散媒䞭で懞濁重合しお埗られる
ポリアクリルアミドの含氎物は粒子状であるので
アルカリ氎溶液を均䞀に添加するために郜合が良
いず考えられる。しかし、アクリルアミド氎溶液
ず分散媒が油䞭氎型に乳化する乳化剀を甚いお懞
濁重合により埗られるポリアクリルアミド含氎物
分散䜓はアルカリ氎溶液の添加量が倚くなるず゚
マルゞペンの砎壊が起こり塊状物を生ずる傟向が
ある。たたアクリルアミド氎溶液ず分散媒が氎䞭
油型に乳化する乳化剀を甚いお懞濁重合により埗
られるポリアクリルアミドの分散䜓はアルカリ氎
溶液により円滑に加氎分解されるが、重合工皋に
おいお高濃床のアクリルアミド氎溶液を乳化でき
ない、反応噚ぞのポリマヌの付着が倚い、などの
問題がある䞊に最終的に埗られるポリマヌに埮粉
が倚く含たれ粉塵を生じたり溶解速床が䜎䞋した
り䜜業性に問題があ぀た。 これに察しお、油溶性セルロヌスのごずき油溶
性高分子物質を分散媒䞭にコロむド状に溶解し、
この分散䜜甚を利甚しおアクリルアミドの氎溶液
を氎滎状に分散する懞濁重合法は高濃床のアクリ
ルアミド氎溶液を分散しお重合するこずが可胜
で、しかもポリマヌの容噚ぞの付着が少ない。さ
らにモノマヌ氎溶液を連続的に分散媒䞭に添加し
お重合発熱を陀去し぀぀重合するこずにより効率
良く重合するこずが可胜でありしかも也燥埌のポ
リマヌは粒埄0.1〜mmのビヌズ状で埮粉を含た
ず取扱い䜜業性が非垞に良いずいう特城がある。
しかし郚分加氎分解ポリアクリルアミドを補造す
る目的でこの重合法で埗られる含氎球状ポリアク
リルアミドの分散液にアルカリ氎溶液を添加しお
も油溶性高分子物質の分散䜜甚により含氎ポリア
クリルアミドの粒子ずアルカリ氎溶液の液滎が接
觊しないため円滑に加氎分解が進行せず、ビヌズ
状の郚分加氎分解ポリアクリルアミドを埗るこず
ができなか぀た。 本発明者らは油溶性高分子物質を分散安定剀ず
しお甚い、分散媒䞭でアクリルアミド氎溶液を懞
濁重合しお埗られる球状含氎ポリアクリルアミド
の分散液にアルカリ氎溶液を添加しおビヌズ状の
郚分加氎分解ポリアクリルアミドを補造する方法
に぀いお鋭意怜蚎した結果アルコヌル類の存圚䞋
アルカリ氎溶液を添加するこずにより迅速か぀均
䞀に加氎分解反応が進行し、必芁に応じ、これを
脱氎するこずによりビヌス状の郚分加氎分解ポリ
アクリルアミドを補造できるこずを芋い出し本発
明に到達した。 すなわち本発明はアクリルアミドの氎溶液を油
溶性高分子物質を分散安定剀ずしお油䞭氎型を分
散しお重合反応を行い埗られる含氎ポリアクリル
アミドを倉性しお郚分加氎分解ポリアクリルアミ
ドを補造する方法においお含氎ポリアクリルアミ
ドの分散液にアルコヌル類の存圚䞋カ性アルカリ
氎溶液を添加しお加氎分解反応を行うこずを特城
ずするビヌス状郚分加氎分解ポリアクリルアミド
の補造法に存する。 以䞋本発明を曎に詳现に説明するに、本発明方
法においお郚分加氎分解ポリアクリルアミドの補
造に甚いられるのはアクリルアミドの氎溶液を分
散媒䞭で油䞭氎型に氎滎状に分散しお重合反応を
行い埗られる含氎球状ポリアクリルアミドの分散
液である。 含氎球状ポリアクリルアミドの分散液を埗るた
めに䜿甚される分散媒ずしおは、アクリルアミド
の氎溶液を溶解しない炭化氎玠、ハロゲン化炭化
氎玠たたはハロゲン化芳銙族炭化氎玠が甚いられ
るが、特に炭玠数〜10の芳銙族炭化氎玠、脂環
族炭化氎玠、脂肪族炭化氎玠、塩玠化ベンれン等
が奜たしい。 ずくに奜適な分散媒ずしおは、ベンれン、トル
゚ン、キシレン、む゜プロピルベンれン、シクロ
ヘキサン、メチルシクロヘキサン、シクロオクタ
ン、デカリン、−ヘキサン、−ヘプタン、
−オクタン、−デカン、クロロベンれン、ゞク
ロロベンれンなどである。その䞭でもトル゚ン、
キシレン、シクロヘキサン、−ヘプタン、およ
びクロロベンれン等が特に奜たしい。分散媒はア
クリルアミドの氎溶液に察しお普通0.5〜10重量
倍の範囲で甚いられる。アクリルアミドの氎溶液
を連続的に添加したり分割しお添加するこずによ
り0.5〜重量倍の範囲で䜿甚するこずもできる。 分散安定剀は油溶性のセルロヌス゚ステルたた
ぱヌテルのごずき非乳化性油溶性高分子物質を
䜿甚する。䟋えば氎に䞍溶性で油溶性のセルロヌ
スプロピオネヌト、セルロヌスブチレヌト、セル
ロヌスアセテヌトブチレヌトのようなセルロヌス
゚ステルや油溶性の゚チルセルロヌス、ベンゞル
セルロヌス、゚チルヒドロキシ゚チルセルロヌス
のようなセルロヌス゚ヌテルが奜たしい。分散安
定剀は分散媒に察しお0.05〜10重量、奜たしく
は0.1〜重量の範囲で䜿甚される。 分散安定剀ずしお油溶性のセルロヌス゚ステル
たたぱヌテルを䜿甚する堎合、これらの分散安
定剀を良く溶解する溶媒ず溶解しない溶媒を混合
するか、あるいはこれらの分散安定剀に察しお難
溶性の単䞀溶媒を遞択しお、分散安定剀が溶媒䞭
で宀枩15〜25℃においお盞分離するが、重合
枩床䞀般に40℃以䞊においお均䞀になるよう
な溶媒を遞び分散媒ずしお䜿甚するのが良い。こ
のような条件を遞べばアクリルアミドの45〜90重
量の高濃床氎溶液も極めお安定に分散するこず
ができる。 䜿甚するアクリルアミドの氎溶液ずしおはアク
リルアミド単独の氎溶液あるいはアクリルアミド
ずメタクリルアミド、メタアクリロニトリル、
メタアクリル酞、メタアクリル酞゚ステル
および眮換メタアクリルアミド誘導䜓など
ずの混合物の氎溶液が䜿甚される。そのモノマヌ
濃床は10〜90重量のものが䜿甚できるが、重合
埌の加氎分解を円滑にするためには20〜80重量
奜たしくは30〜70重量の範囲である。モノマヌ
濃床45〜90重量の氎溶液を甚いるず極めお生産
性が良いがこの堎合モノマヌの氎溶液に重合䞭の
架橋反応を防止するためにプロピレングリコヌル
やゞ゚タノヌルアミンなどの氎溶性倚䟡アルコヌ
ルたたは重亜硫酞ナトリりムなどの還元性無機硫
黄化合物を添加しおおくこずが望たしい。 ラゞカル重合開始剀ずしおは氎溶性の過酞化物
や、氎溶性のアゟ化合物が奜たしい。たずえば過
硫酞カリりム、過硫酞アンモニりム、過酢酞、過
酞化氎玠などの過酞化物や2′−アゟビス−
−アミゞノプロパンアゟビスむ゜ブチルアミゞ
ンの塩酞塩、硫酞塩、酢酞塩、アゟビス−
N′−ゞメチレンむ゜ブチルアミゞンの塩酞塩硫
酞塩、酢酞塩、4′−アゟビス−−シアノ吉
草酞のナトリりム塩、カリりム塩などの氎溶性ア
ゟ化合物が䜿甚される。アクリルアミドの45〜90
重量の氎溶液を甚いお氎溶性倚䟡アルコヌルや
還元性無機硫黄化合物の共存䞋重合を行う堎合に
はラゞカル重合開始剀ずしお氎溶性アゟ化合物を
甚いるのが奜たしい。 重合開始剀の䜿甚量はアクリルアミドの氎溶液
に察しお50〜5000ppm、奜たしくは200〜
1000ppmの重量の範囲で䜿甚される。 郚分加氎分解ポリアクリルアミドを埗るために
甚いられる含氎球状ポリアクリルアミド分散液を
埗るに際しお分散媒、分散安定剀、アクリルアミ
ド氎溶液、ラゞカル重合開始剀および架橋反応を
防止するための添加物などの添加順序に制限はな
いが次の方法が奜たしい。分散媒䞭に分散安定剀
を分散乃至溶解し、重合すべき所定枩床に保持し
窒玠ガスを通じお脱酞玠する。モノマヌ氎溶液に
ラゞカル重合開始剀、および必芁に応じお架橋反
応を防止するための添加物を混合したのち分散媒
䞭に撹拌䞋窒玠ガスを通じ぀぀モノマヌ氎溶液を
添加する。重合枩床は40℃から分散媒の沞点たで
任意の枩床で重合できる。高分子量のポリマヌを
埗るためには40℃〜70℃で重合するこずが奜たし
い。このようにしお粒埄0.1〜mmの範囲の粒埄
のそろ぀た含氎球状ポリアクリルアミドの分散液
が埗られる。この分散液にカ性アルカリ氎溶液を
添加するず均䞀に分散するが含氎ポリアクリルア
ミドずカ性アルカリ氎溶液が接觊せず加氎分解反
応は極めお遅い。しかも長時間撹拌するず䞀郚加
氎分解したポリアクリルアミドが塊状物ずな぀お
したう。 本発明方法の郚分加氎分解ポリアクリルアミド
の補造方法においおは含氎球状ポリアクリルアミ
ドの分散液に察しおアルコヌル類を添加しお含氎
ポリアクリルアミド粒子の衚面を改質する。この
ようなアルコヌル類の共存䞋カ性アルカリ氎溶液
を撹拌䞋に混合するこずによりポリアクリルアミ
ドの粒圢を保持し぀぀均䞀にカ性アルカリ氎溶液
がポリアクリルアミド䞭に浞透し加氎分解反応が
円滑に進行する。 䜿甚されるアルコヌル類ずしおは炭玠数から
15奜たしくは炭玠数からのモノあるいは倚䟡
アルコヌル類が甚いられる。たずえばメタノヌ
ル、゚タノヌル、−プロパノヌル、む゜プロパ
ノヌル、−ブタノヌル、む゜ブタノヌル、−
ブタノヌル、−ペンタノヌル、−オクタノヌ
ル、−゚チルヘキサノヌル、゚チレングリコヌ
ル、ゞ゚チレングリコヌル、゚チレングリコヌル
モノメチル゚ヌテル、゚チレングリコヌルモノブ
チル゚ヌテル、プロピレングリコヌル、ゞプロピ
レングリコヌル、−ブタンゞオヌル、
−ブタンゞオヌル、グリセリン、トリメチロヌ
ルプロパン、゜ルビトヌルおよび炭玠数から15
のα−オレフむンから誘導される高玚オキ゜アル
コヌルなどである。 アルコヌル類の䜿甚量は含氎ポリアクリルアミ
ドに察しお〜100重量奜たしくは10〜50重量
の範囲で䜿甚する。アルコヌル類は懞濁重合に
おいお重合䜓の粒子が圢成されおからカ性アルカ
リを添加し加氎分解を行う工皋間に添加するのが
奜たしい。加氎分解に䜿甚するカ性゜ヌダあるい
はカ性カリ等のカ性アルカリは10重量から飜和
氎溶液たでいずれの濃床のものも䜿甚できる。カ
性アルカリの䜿甚量は原料アクリルアミドに察し
お〜100モルの範囲で䜿甚できるが〜60モ
ルの範囲で䜿甚するが効果的である。 このようにしお通垞ポリアクリルアミドの〜
60モルが加氎分解される。 以䞊の方法でアクリルアミドの氎溶液を油溶性
高分子物質を分散安定剀ずしお甚いお懞濁重合を
行぀お埗られる分散媒䞭の含氎ポリアクリルアミ
ドの分散液に前蚘アルコヌル類の存圚䞋カ性アル
カリ氎溶液を添加しお加枩するこずによりカ性ア
ルカリ氎溶液が均䞀に含氎ポリアクリルアミドに
含浞し、アンモニアガスを発生しお速やかに加氎
分解が進行する。たた必芁に応じお加氎分解反応
䞭に分散媒−氎系の共沞蒞留を行うか、40℃以䞊
に加枩したのちアセトンやメチルアルコヌルず接
觊するこずにより脱氎するず均䞀粒埄ビヌス状の
取扱い䜜業性の良い郚分加氎分解ポリアクリルア
ミドが埗られる。 以䞋実斜䟋によりさらに詳しく本発明を説明す
るが、本発明はその芁旚をこえないかぎり以䞋の
実斜䟋に制玄されるものではない。 実斜䟋〜および比范䟋 冷华管、窒玠導入管、北玠暹脂補の撹拌翌およ
び定量ポンプに接続したモノマヌ氎溶液導入管を
備えた200c.c.のツ口セパラブルフラスコに0.4
の゚チルセルロヌスハヌキナヌリヌズ瀟補商暙
EC−−100ず130のシクロヘキサンを導入
し撹拌し぀぀60℃にたで昇枩し、゚チルセルロヌ
スを溶解したのち50℃にお保枩し぀぀窒玠ガスを
通じおフラスコ内の酞玠を陀いた。アクリルアミ
ドの50重量氎溶液42にプロピレングリコヌル
0.4ず10重量のアゟビスN′ゞメチレンむ
゜ブチルアミゞンの硫酞塩の氎溶液0.105を添
加しお溶解したのちこの溶液を撹拌䞋フラスコ䞭
に定量ポンプを甚いお毎分の速床で導入し
た。さらに窒玠ガス気流䞋撹拌し぀぀50℃にお90
分間加枩するず粒埄0.1〜mmの含氎球状のポリ
アクリルアミドずシクロヘキサンからなる分散液
が埗られた。 この分散液に第衚に瀺す化合物1024重量
察含氎ポリマヌを加えお撹拌し぀぀70℃に昇
枩した。47重量のカ性゜ヌダ氎溶液7.5原
料アクリルアミドに察しお30モルを添加し激
しく撹拌し぀぀曎に济枩を85℃にたで昇枩しおシ
クロヘキサン−氎系の共沞蒞留により連続的に氎
を系倖に陀いた。脱氎に時間を芁した。 埗られたポリマヌを熱時別するず均䞀粒埄の
ビヌズ状郚分加氎分解ポリアクリルアミドが埗ら
れた。加氎分解䞭あるいは脱氎䞭にビヌズ状ポリ
マヌが数個ず぀合着する堎合もあるが容易にくず
すこずができた。 生成物を芏定食塩氎に溶解した0.1重量氎
溶液に぀いおオストワルドの粘床蚈t030秒
を甚いお25℃における還元粘床ηspを枬
定した。 生成物の0.1重量氎溶液を甚いおコロむド滎
定によりアニオン倉性率モルを枬定した。
結果を第衚に瀺した。 コロむド滎定 200c.c.のビヌカヌに脱塩氎90mlず1/10芏定
NoOH氎溶液0.5ml぀いで0.1重量ポリ−β−メ
タクリロむルオキシ゚チルトリメチルアンモニり
ムクロラむド䞊述枬定法による還元粘床ηsp
1.6mlを加える。マグネチツクスタヌラ
ヌで撹拌し぀぀0.1重量の生成物の氎溶液を
ml加え分間撹拌する。トルむゞンブルヌを指瀺
薬ずし400ポリビニル硫酞カリりム氎溶液で滎 定し、濃青色が赀玫色に倉わる点を終点ずする。
生成物の氎溶液を添加せずにブランク詊隓をし、
ブランクず滎定倀の差からアニオン化率を枬定し
た。アクリルアミドずアクリル酞゜ヌダ70モル
察30モル共重合䜓に぀いお行぀た実枬倀は
アニオン化率29.6モルであ぀た。
The present invention relates to a method for producing water-soluble partially hydrolyzed polyacrylamide. More specifically, an aqueous solution of acrylamide is dispersed in a water-in-oil type using an oil-soluble polymer substance as a dispersion stabilizer, and the resulting water-soluble polyacrylamide is modified in a dispersed state to partially hydrolyze a high-molecular-weight water-soluble polyacrylamide. The present invention relates to a method for producing polyacrylamide. Water-soluble partially hydrolyzed polyacrylamides are polymers used as thickeners, thickeners, papermaking agents, flocculants, and crude oil recovery. In particular, when used as a flocculant or crude oil recovery agent, it is supplied in powder form due to transportation problems, and requires extremely high molecular weight and good water solubility. Partially hydrolyzed polyacrylamide is generally produced by polymerizing a 20 to 30% by weight aqueous solution of acrylamide by adding a water-soluble radical polymerization initiator, pulverizing the obtained rubbery hydrous polyacrylamide, and then mixing it with an aqueous alkaline solution. It is produced by hydrolyzing, dehydrating and drying. In this method, it is difficult to grind the hydrous polyacrylamide, and it is extremely difficult to uniformly mix the alkaline aqueous solution, so there are many problems in obtaining a uniformly hydrolyzed high-quality polymer. On the other hand, the hydrated polyacrylamide obtained by suspension polymerizing an aqueous acrylamide solution in a dispersion medium using an emulsifier or dispersion stabilizer is in the form of particles, which is considered convenient for uniformly adding an aqueous alkaline solution. It will be done. However, polyacrylamide hydrate dispersions obtained by suspension polymerization using emulsifiers that emulsify an acrylamide aqueous solution and a dispersion medium into a water-in-oil type tend to break the emulsion and form lumps when the amount of alkali aqueous solution added is large. There is. In addition, a polyacrylamide dispersion obtained by suspension polymerization using an emulsifier that emulsifies an acrylamide aqueous solution and a dispersion medium into an oil-in-water type is smoothly hydrolyzed by an alkaline aqueous solution, but a highly concentrated acrylamide aqueous solution is emulsified in the polymerization process. In addition, there were problems such as a large amount of polymer adhering to the reactor, and the final polymer contained a large amount of fine powder, producing dust, reducing the dissolution rate, and causing problems in workability. On the other hand, an oil-soluble polymer substance such as oil-soluble cellulose is dissolved in a colloidal form in a dispersion medium,
The suspension polymerization method, in which an aqueous acrylamide solution is dispersed in the form of water droplets by utilizing this dispersion effect, allows a highly concentrated aqueous acrylamide solution to be dispersed and polymerized, and moreover, there is less adhesion of the polymer to the container. Furthermore, it is possible to polymerize efficiently by continuously adding the monomer aqueous solution to the dispersion medium and polymerizing while removing the heat of polymerization. Moreover, the polymer after drying is a fine powder in the form of beads with a particle size of 0.1 to 1 mm. It has the characteristic of being very easy to handle and work because it does not contain any substances.
However, even if an alkaline aqueous solution is added to the dispersion of hydrous spherical polyacrylamide obtained by this polymerization method for the purpose of producing partially hydrolyzed polyacrylamide, the dispersion effect of the oil-soluble polymer substance causes the dispersion of the hydrous polyacrylamide particles and the alkaline aqueous solution. Since the droplets did not come into contact with each other, hydrolysis did not proceed smoothly, making it impossible to obtain bead-shaped partially hydrolyzed polyacrylamide. The present inventors used an oil-soluble polymer substance as a dispersion stabilizer and added an alkaline aqueous solution to a dispersion of spherical hydrated polyacrylamide obtained by suspension polymerization of an acrylamide aqueous solution in a dispersion medium. As a result of intensive studies on the method of producing decomposed polyacrylamide, the hydrolysis reaction progresses quickly and uniformly by adding an alkaline aqueous solution in the presence of alcohols, and if necessary, by dehydrating this, bead-shaped partial hydrolysis can be achieved. The present invention was achieved by discovering that decomposed polyacrylamide can be produced. That is, the present invention provides a method for producing partially hydrolyzed polyacrylamide by dispersing water-in-oil type in an aqueous solution of acrylamide using an oil-soluble polymeric substance as a dispersion stabilizer, performing a polymerization reaction, and modifying the resulting hydrous polyacrylamide. The present invention relates to a method for producing bead-shaped partially hydrolyzed polyacrylamide, which comprises adding a caustic alkali aqueous solution to a polyacrylamide dispersion in the presence of an alcohol to carry out a hydrolysis reaction. The present invention will be explained in more detail below. In the method of the present invention, partially hydrolyzed polyacrylamide is produced by dispersing an aqueous acrylamide solution in a water-in-oil type in a dispersion medium in the form of water droplets and carrying out a polymerization reaction. This is the resulting dispersion of hydrated spherical polyacrylamide. As the dispersion medium used to obtain a dispersion of hydrous spherical polyacrylamide, hydrocarbons, halogenated hydrocarbons, or halogenated aromatic hydrocarbons that do not dissolve the aqueous solution of acrylamide are used, and in particular hydrocarbons having 6 to 10 carbon atoms are used. Aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, chlorinated benzene and the like are preferred. Particularly suitable dispersion media include benzene, toluene, xylene, isopropylbenzene, cyclohexane, methylcyclohexane, cyclooctane, decalin, n-hexane, n-heptane, n-heptane,
-octane, n-decane, chlorobenzene, dichlorobenzene, etc. Among them, toluene,
Particularly preferred are xylene, cyclohexane, n-heptane, and chlorobenzene. The dispersion medium is generally used in an amount of 0.5 to 10 times the weight of the acrylamide aqueous solution. It is also possible to use the acrylamide aqueous solution in a range of 0.5 to 4 times the weight by adding it continuously or in portions. As the dispersion stabilizer, a non-emulsifying oil-soluble polymer substance such as oil-soluble cellulose ester or ether is used. For example, water-insoluble but oil-soluble cellulose esters such as cellulose propionate, cellulose butyrate, and cellulose acetate butyrate, and oil-soluble cellulose ethers such as ethylcellulose, benzylcellulose, and ethylhydroxyethylcellulose are preferred. The dispersion stabilizer is used in an amount of 0.05 to 10% by weight, preferably 0.1 to 1% by weight, based on the dispersion medium. When using oil-soluble cellulose esters or ethers as dispersion stabilizers, mix solvents that dissolve these dispersion stabilizers well with solvents that do not, or use a single solvent that is poorly soluble in these dispersion stabilizers. It is best to select a solvent for use as a dispersion medium in which the dispersion stabilizer undergoes phase separation at room temperature (15-25℃), but becomes uniform at the polymerization temperature (generally 40℃ or higher). . If such conditions are selected, even a highly concentrated aqueous solution of 45 to 90% by weight of acrylamide can be dispersed extremely stably. The aqueous solution of acrylamide used is an aqueous solution of acrylamide alone, acrylamide and methacrylamide, (meth)acrylonitrile,
An aqueous solution of a mixture of (meth)acrylic acid, (meth)acrylic ester, N-substituted (meth)acrylamide derivative, etc. is used. The monomer concentration can be used at a concentration of 10 to 90% by weight, but in order to facilitate hydrolysis after polymerization, it is necessary to use a monomer concentration of 20 to 80% by weight.
Preferably it is in the range of 30 to 70% by weight. Productivity is extremely good when using an aqueous solution with a monomer concentration of 45 to 90% by weight, but in this case, a water-soluble polyhydric alcohol such as propylene glycol or diethanolamine, or sodium bisulfite, etc. is added to the monomer aqueous solution to prevent crosslinking reactions during polymerization. It is desirable to add a reducing inorganic sulfur compound. As the radical polymerization initiator, water-soluble peroxides and water-soluble azo compounds are preferred. For example, peroxides such as potassium persulfate, ammonium persulfate, peracetic acid, hydrogen peroxide, and 2,2'-azobis-2
-amidinopropane (azobisisobutyramidine) hydrochloride, sulfate, acetate, azobis-N,
Water-soluble azo compounds such as the hydrochloride sulfate and acetate of N'-dimethyleneisobutyramidine, and the sodium and potassium salts of 4,4'-azobis-4-cyanovaleric acid are used. Acrylamide 45-90
When polymerization is carried out in the coexistence of a water-soluble polyhydric alcohol or a reducing inorganic sulfur compound using a wt % aqueous solution, it is preferable to use a water-soluble azo compound as the radical polymerization initiator. The amount of polymerization initiator used is 50 to 5000 ppm, preferably 200 to 5000 ppm, based on the aqueous solution of acrylamide.
Used in the weight range of 1000ppm. When obtaining a water-containing spherical polyacrylamide dispersion used to obtain partially hydrolyzed polyacrylamide, there are restrictions on the order of addition of dispersion medium, dispersion stabilizer, aqueous acrylamide solution, radical polymerization initiator, and additives for preventing crosslinking reactions. However, the following method is preferred. A dispersion stabilizer is dispersed or dissolved in a dispersion medium, maintained at a predetermined temperature for polymerization, and deoxidized by passing nitrogen gas. After a radical polymerization initiator and, if necessary, an additive for preventing a crosslinking reaction are mixed with the monomer aqueous solution, the monomer aqueous solution is added to the dispersion medium while stirring and passing nitrogen gas. Polymerization can be carried out at any temperature from 40°C to the boiling point of the dispersion medium. In order to obtain a high molecular weight polymer, it is preferable to polymerize at 40°C to 70°C. In this way, a dispersion of hydrous spherical polyacrylamide having a uniform particle size in the range of 0.1 to 1 mm is obtained. When a caustic alkali aqueous solution is added to this dispersion, it is uniformly dispersed, but the hydrolyzed polyacrylamide and the caustic alkali aqueous solution do not come into contact and the hydrolysis reaction is extremely slow. Moreover, if the mixture is stirred for a long period of time, the partially hydrolyzed polyacrylamide will turn into lumps. In the method for producing partially hydrolyzed polyacrylamide according to the present invention, alcohols are added to a dispersion of hydrous spherical polyacrylamide to modify the surface of the hydrous polyacrylamide particles. By mixing the caustic alkali aqueous solution with stirring in the coexistence of alcohols, the caustic alkali aqueous solution uniformly permeates into the polyacrylamide while maintaining the particle shape of the polyacrylamide, and the hydrolysis reaction proceeds smoothly. . The alcohols used have carbon numbers starting from 1.
15 Preferably, mono- or polyhydric alcohols having 1 to 8 carbon atoms are used. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-
Butanol, n-pentanol, n-octanol, 2-ethylhexanol, ethylene glycol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,
3-butanediol, glycerin, trimethylolpropane, sorbitol and 7 to 15 carbon atoms
These include higher oxo alcohols derived from α-olefins. The amount of alcohol used is 5 to 100% by weight, preferably 10 to 50% by weight, based on the water-containing polyacrylamide. It is preferable that the alcohol be added during suspension polymerization, after the formation of polymer particles, during the step of adding caustic alkali and performing hydrolysis. The caustic alkali such as caustic soda or caustic potash used for hydrolysis may have any concentration from 10% by weight to a saturated aqueous solution. The caustic alkali can be used in an amount of 1 to 100 mol % based on the raw material acrylamide, but it is effective to use it in an amount of 5 to 60 mol %. In this way, polyacrylamide usually
60 mol% is hydrolyzed. A caustic alkali aqueous solution is added to a dispersion of water-containing polyacrylamide in a dispersion medium obtained by suspension polymerizing an acrylamide aqueous solution using an oil-soluble polymer substance as a dispersion stabilizer in the above method. By adding and heating the aqueous caustic alkali solution, the water-containing polyacrylamide is uniformly impregnated, ammonia gas is generated, and hydrolysis proceeds rapidly. In addition, if necessary, azeotropic distillation of the dispersion medium-water system during the hydrolysis reaction or dehydration by contacting with acetone or methyl alcohol after heating to 40°C or higher can result in uniform particle size beads for easier handling. Partially hydrolyzed polyacrylamide with good properties is obtained. The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless it goes beyond the gist of the invention. Examples 1 to 6 and Comparative Example 1 0.4 g was placed in a 200 c.c. four-neck separable flask equipped with a cooling tube, a nitrogen introduction tube, a fluororesin stirring blade, and a monomer aqueous solution introduction tube connected to a metering pump.
Ethyl cellulose (trademark manufactured by Hercules)
EC-T-100) and 130 g of cyclohexane were introduced, and the temperature was raised to 60°C while stirring to dissolve the ethyl cellulose, and the oxygen in the flask was removed by passing nitrogen gas while keeping the temperature at 50°C. Add propylene glycol to 42 g of a 50% acrylamide aqueous solution.
0.4 g and 0.105 g of a 10% by weight aqueous solution of sulfate of azobis N, N' dimethylene isobutyramidine were added and dissolved, and this solution was introduced into the flask under stirring at a rate of 3 g per minute using a metering pump. did. Further, while stirring under a nitrogen gas stream, the temperature was 90°C at 50°C.
When heated for a minute, a dispersion of water-containing spherical polyacrylamide and cyclohexane with a particle size of 0.1 to 1 mm was obtained. To this dispersion was added 10 g of the compound shown in Table 1 (24% by weight to water-containing polymer), and the temperature was raised to 70° C. with stirring. 7.5 g of a 47% by weight aqueous caustic soda solution (30% by mole based on the raw material acrylamide) was added, the bath temperature was further raised to 85°C while stirring vigorously, and the cyclohexane-water system was continuously distilled by azeotropic distillation. Water was removed from the system. It took 2 hours to dehydrate. When the obtained polymer was subjected to thermal separation, bead-shaped partially hydrolyzed polyacrylamide with uniform particle size was obtained. In some cases, several bead-like polymers coalesced during hydrolysis or dehydration, but they could be easily broken down. Ostwald viscometer (t 0 = 30 seconds) for a 0.1% by weight aqueous solution of the product in 1N saline.
The reduced viscosity (ηsp/c) at 25°C was measured using the following. The anion modification rate (mol%) was measured by colloid titration using a 0.1% by weight aqueous solution of the product.
The results are shown in Table 1. (Colloid titration) 90 ml of demineralized water and 1/10 standard in a 200 c.c. beaker
0.5ml of NoOH aqueous solution was then added to 0.1% by weight poly-β-methacryloyloxyethyltrimethylammonium chloride (reduced viscosity ηsp/
c=1.6) Add 5 ml. While stirring with a magnetic stirrer, a 0.1% by weight aqueous solution of the product was added to
Add ml and stir for 5 minutes. Titrate with a 1/400N polyvinyl potassium sulfate aqueous solution using toluidine blue as an indicator, and the end point is the point at which the deep blue color changes to reddish-purple.
Perform a blank test without adding an aqueous solution of the product,
The anionization rate was measured from the difference between the blank and titration values. The actual value for the copolymer of acrylamide and sodium acrylate (70 mol % vs. 30 mol %) was an anionization rate of 29.6 mol %.

【衚】 実斜䟋 〜 冷华管、窒玠導入管、北玠暹脂補の撹拌翌およ
び定量ポンプに接続したモノマヌ氎溶液導入管を
備えた200c.c.のツ口セパラブルフラスコに第
衚に瀺す分散安定剀0.65ず第衚に瀺す分散媒
130を導入し撹拌し぀぀70℃にたで昇枩しお分
散安定剀を溶解しこの枩床に保持し぀぀窒玠ガス
を通じおフラスコ内の酞玠を陀いた。アクリルア
ミドの50重量氎溶液42にプロピレングリコヌ
ル0.42ず10重量の2′−アゟビスアミゞノ
プロパン塩酞塩氎溶液0.105を添加しお溶解
したのちこの溶液を撹拌䞋フラスコ内に定量ポン
プを甚いお毎分の速床で導入した。さらに窒
玠ガス気流䞋撹拌し぀぀70℃にお60分間保枩し
た。 メタノヌルを10加えお分間撹拌したのち47
重量のカ性゜ヌダ氎溶液7.5原料アクリル
アミドに察しお30モルを添加しお高速撹拌䞋
70℃にお時間保持した。冷华埌生成物を500ml
のメタノヌル䞭に添加しお撹拌埌デカンテヌシペ
ンにより溶媒を陀き曎に200mlメタノヌル䞭で脱
氎埌ポリマヌを別也燥した。生成物の還元粘床
ずアニオン化率を第衚に瀺した。
[Table] Examples 7 to 9 A second 200 c.c. four-necked separable flask equipped with a cooling tube, a nitrogen introduction tube, a fluororesin stirring blade, and a monomer aqueous solution introduction tube connected to a metering pump was used.
0.65g of dispersion stabilizer shown in the table and dispersion medium shown in Table 2
130 g of the flask was introduced and the temperature was raised to 70° C. while stirring to dissolve the dispersion stabilizer. While maintaining this temperature, nitrogen gas was passed through the flask to remove oxygen. After adding and dissolving 0.42 g of propylene glycol and 0.105 g of a 10 wt% 2,2'-azobisamidinopropane dihydrochloride aqueous solution to 42 g of a 50 wt% aqueous solution of acrylamide, the solution was poured into a flask with stirring using a metering pump. was used at a rate of 3 g/min. Further, the mixture was kept at 70° C. for 60 minutes while stirring under a nitrogen gas stream. After adding 10g of methanol and stirring for 5 minutes,
7.5 g of caustic soda aqueous solution (30 mol % based on raw material acrylamide) was added and stirred at high speed.
It was held at 70°C for 2 hours. 500ml of product after cooling
After stirring, the solvent was removed by decantation, followed by dehydration in 200 ml of methanol, and the polymer was dried separately. The reduced viscosity and anionization rate of the product are shown in Table 2.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  アクリルアミドの氎溶液を油溶性高分子物質
を分散安定剀ずしお油䞭氎型に分散しお重合反応
を行い埗られる含氎ポリアクリルアミドを倉性し
お郚分加氎分解ポリアクリルアミドを補造する方
法においお、含氎ポリアクリルアミドの分散液に
アルコヌル類の存圚䞋カ性アルカリ氎溶液を添加
しお加氎分解を行うこずを特城ずするビヌズ状郚
分加氎分解ポリアクリルアミドの補造法。
1. In a method for producing partially hydrolyzed polyacrylamide by dispersing an aqueous solution of acrylamide in a water-in-oil type using an oil-soluble polymer substance as a dispersion stabilizer and carrying out a polymerization reaction, the resulting hydrous polyacrylamide is modified to produce partially hydrolyzed polyacrylamide. 1. A method for producing bead-shaped partially hydrolyzed polyacrylamide, which comprises adding a caustic alkali aqueous solution to a dispersion of the polyacrylamide in the presence of an alcohol to perform hydrolysis.
JP705780A 1980-01-24 1980-01-24 Production of beady partially hydrolyzed polyacrylamide Granted JPS56104904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP705780A JPS56104904A (en) 1980-01-24 1980-01-24 Production of beady partially hydrolyzed polyacrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP705780A JPS56104904A (en) 1980-01-24 1980-01-24 Production of beady partially hydrolyzed polyacrylamide

Publications (2)

Publication Number Publication Date
JPS56104904A JPS56104904A (en) 1981-08-21
JPS6315925B2 true JPS6315925B2 (en) 1988-04-06

Family

ID=11655430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP705780A Granted JPS56104904A (en) 1980-01-24 1980-01-24 Production of beady partially hydrolyzed polyacrylamide

Country Status (1)

Country Link
JP (1) JPS56104904A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60010195T2 (en) * 1999-02-26 2005-01-13 Nagoya Oilchemical Co., Ltd., Tokai DISPERSION OF FUSED ADHESIVE PARTICLES, HEAT-CONNECTABLE RAIL MATERIAL, INTERIOR MATERIAL, HEAT-SHAPED TEXTILE RAIL MATERIAL AND CARPET

Also Published As

Publication number Publication date
JPS56104904A (en) 1981-08-21

Similar Documents

Publication Publication Date Title
CA1209735A (en) Water-in-oil emulsions of water-soluble cationic polymers and a process for preparing such emulsions
JPS6024122B2 (en) Method for producing bead-like polymer
JPH029626B2 (en)
JPS6390514A (en) Vinylamine homopolymer
JPH0617375B2 (en) Water-in-oil emulsion polymerization method and water-in-oil emulsion produced therefrom
EP0153506A1 (en) A method for preparing a concentrated stable water-in-oil emulsion containing at least 40 weight percent of a water-soluble polymer
US4619967A (en) Multi-modal emulsions of water-soluble polymers
JPH026685A (en) Papermaking method constituted by adding high molecular weight poly (vinylamine) to wet end cellulose fiber slurry
JPS6315925B2 (en)
US5962570A (en) Process for the preparation of aqueous solution or dispersion containing cationic polymer
JP3435728B2 (en) Method for producing cationic water-soluble polymer
JPS6337121B2 (en)
JP2000159969A (en) Emulsion and its use
JPH0597931A (en) Production of n-vinylcarboxylic acid amide polymer
JPH107808A (en) Production of aqueous dispersion of water-soluble cationic polymer
JP5609576B2 (en) N-vinylcarboxylic acid amide polymer and method for producing cationic water-soluble polymer
JPH0554482B2 (en)
JP2018024760A (en) Polymer solution
JP3637709B2 (en) Method for producing cationic polymer-containing aqueous liquid
US4151140A (en) Process for hydrolyzing water-soluble carboxamide polymers
JP5625846B2 (en) Method for producing water-soluble polymer
JPS5826362B2 (en) Manufacturing method of polyacrylamide
JP3945067B2 (en) Aqueous dispersion and method for producing the same
JPH0112766B2 (en)
JP5594186B2 (en) Process for producing N-vinylcarboxylic acid amide polymer