JPS6315444A - Manufacture of infrared light-emitting diode - Google Patents

Manufacture of infrared light-emitting diode

Info

Publication number
JPS6315444A
JPS6315444A JP61160069A JP16006986A JPS6315444A JP S6315444 A JPS6315444 A JP S6315444A JP 61160069 A JP61160069 A JP 61160069A JP 16006986 A JP16006986 A JP 16006986A JP S6315444 A JPS6315444 A JP S6315444A
Authority
JP
Japan
Prior art keywords
junction
epitaxial growth
emitting diode
solution
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61160069A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shiose
伸行 塩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61160069A priority Critical patent/JPS6315444A/en
Publication of JPS6315444A publication Critical patent/JPS6315444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an extremely flat P-N junction, and to remove the possibility of a thyristor waveform by adding a trace quantity of Al into a Ga solution for liquid-phase epitaxial growth for forming the P-N junction. CONSTITUTION:Aluminum is added into a gallium solution used in an epitaxial growth method as a P-N junction forming means at a weight ratio of 0.05% or less. An N-type epitaxial layer in 45mum and a P-type epitaxial layer in 70mum are shaped at a temperature-drop rate of 1.5 deg.C/min at a growth start temperature of 920 deg.C by employing a substrate such as an Si doped GaAs single crystal substrate having impurity concentration of 5X10<17>cm<-3> and thickness of 350mum and by using a solution in which a GaAs polycrystal of 1.5g, Si of 25mg and Al of 0.1-0.2mg per Ga of 10g are added. Accordingly, the epitaxial growth layers having the excellent flatness of a junction is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 発光ダイオードは長寿命、低消費電力、高速等の長所を
有するため、近年各方面において使用されるようになり
各種ディスプレイ、及び家庭電化製品等のリモートコン
トロール装置の発光源、及び光結合素子等に幅広く用い
られている。本発明は上記発光ダイオードのうちの赤外
発光ダイオードに関し、特に硅素(以下81と記す)を
不純物として添加する砒化ガリウム(以下GaAs)赤
外発光ダイオードに関する。
[Detailed Description of the Invention] [Industrial Field of Application] Light emitting diodes have advantages such as long life, low power consumption, and high speed, so they have been used in various fields in recent years, and have been used in various displays, home appliances, etc. It is widely used as a light emitting source for remote control devices, optical coupling devices, etc. The present invention relates to an infrared light emitting diode among the above light emitting diodes, and particularly relates to a gallium arsenide (hereinafter referred to as GaAs) infrared light emitting diode doped with silicon (hereinafter referred to as 81) as an impurity.

〔従来の技術〕[Conventional technology]

SiドープGaAs赤外発光ダイオードは、N型GaA
s基板上に、GaAs多結晶、不純物としての81を含
ひGa溶液を接触させ、SiがGaAs中において両性
不純物であるという性質を利用して徐冷法により高温側
よシN型エピタキシャル層、P型エピタキシャル層と順
次連続的に容易に形成することが可能であり、さらに5
iOGaAs中の発光に寄与する不純物レベルがかなり
深く(アクセプターレベル〜o、xeV)、結晶中での
再吸収が比較的少なく、高効率であることにより最も大
せに製造されている。
Si-doped GaAs infrared light emitting diodes are N-type GaAs
A GaAs polycrystal and a Ga solution containing 81 as an impurity are brought into contact with the S substrate, and an N-type epitaxial layer and a P-type epitaxial layer are formed on the high temperature side by slow cooling using the property that Si is an amphoteric impurity in GaAs. It can be easily formed sequentially and continuously with the epitaxial layer, and furthermore, 5
The impurity level contributing to the light emission in iOGaAs is quite deep (acceptor level ~ o, xeV), relatively little reabsorption in the crystal, and high efficiency makes it the most widely produced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述した従来のSIドープ(J a A sエ
ピタキシャル成長法では、高温側のN型エピタキシャル
層から低温側のP型エピタキシャル層への反転(As圧
にも依存するが約870℃付近)が起こる際にGa溶液
中の微少な温度のゆらぎに起因すると考えられている現
象として接合が平担にならず波打つような形状を示す。
However, in the conventional SI doped (J a As epitaxial growth method) described above, an inversion occurs from the N-type epitaxial layer on the high-temperature side to the P-type epitaxial layer on the low-temperature side (approximately 870°C, although it also depends on the As pressure). A phenomenon thought to be caused by slight temperature fluctuations in the Ga solution is that the bond is not flat but appears wavy.

特に激しい場合は第3図に示すようにP層領域中KN層
が入り込むような状態も見られ、このような領域が広く
分布するような箇所では、表面、裏面電極を構成後、個
切りペレット状圧した場合にP−N−P−Nのサイリス
タ波形を示す可能性がある欠点を有している。なお、S
IドープGaAs赤外発光ダイオードの一般的な構造を
第2図に示す。
In particularly severe cases, as shown in Figure 3, a state where the KN layer enters the P layer region can be seen, and in places where such regions are widely distributed, after configuring the front and back electrodes, individual pellets are It has a drawback that it may exhibit a P-N-P-N thyristor waveform when subjected to a certain pressure. In addition, S
The general structure of an I-doped GaAs infrared light emitting diode is shown in FIG.

さらに従来技術では、公知のフッ酸系スティンエツチン
グ液にてエツチングした場合上記不具合ととも忙接合付
近K S i濃度のムラが生じたと考えられるa度編が
数多く存在し、接合の正確な位置を観察することが困難
となる欠点も有していた。
Furthermore, in the conventional technology, when etching is performed using a known hydrofluoric acid-based stain etching solution, there are many cases in which it is thought that unevenness in the K Si concentration near the busy junction occurs in addition to the above-mentioned defects, making it difficult to determine the exact location of the junction. It also had the disadvantage of being difficult to observe.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるSiドープ()aAs赤外発光ダイオード
製造方法は、PN接合形成手段としてのエピタキシャル
成長法において使用するガリウム溶液中へアルミニウム
(以下Afiと記す)を添加することを有している。
The method of manufacturing a Si-doped ()aAs infrared light emitting diode according to the present invention includes adding aluminum (hereinafter referred to as Afi) to a gallium solution used in an epitaxial growth method as a means for forming a PN junction.

〔実施例〕〔Example〕

次に本発明を実施例に則して説明する。 Next, the present invention will be explained based on examples.

不純物カフ度5 X 1017鉦−3、厚さ350μm
のStドープOa A S単結晶基板を用いて、Qa 
I H当たりGaAS多結晶1.59、Si 25+r
+g%kflQ、l〜Q、2ngを添加した溶液を用い
て成長開始温度920℃、降9レート1.5℃/分でN
型エピタキシギル層ヲ45μm1P型エビメキシャル/
jを70μmを形成した。
Impurity cuff degree 5 x 1017 gong-3, thickness 350μm
Using a St-doped Oa A S single crystal substrate of
GaAS polycrystalline 1.59 per IH, Si 25+r
Using a solution containing 2 ng of +g%kflQ, l~Q, growth start temperature was 920°C, N
Type epitaxial layer 45 μm 1P type epitaxial/
j was formed to be 70 μm.

その後、当エピタキシャルウェハースを襞間し、フッ酸
系スティンエツチング液によってエツチングして断面を
観察した結果、第1図に示すように接合の平担性に優れ
たエピタキシャル成長層が得られた。
Thereafter, the epitaxial wafer was folded and etched with a hydrofluoric acid stain etching solution, and the cross section was observed. As a result, an epitaxially grown layer with excellent flatness of the bond was obtained as shown in FIG.

次にこのエビウェハースの基板側を研磨し厚さを200
μmとした後、所定の方法により表面及び裏面電極を形
成し、400μ7FLX400μmのスクライブ等によ
り個切りペレット状態にした後、発光出力、電圧−電流
特性を測定した結果、A4添加をしない場合と同等であ
った。
Next, polish the substrate side of this shrimp wafer to a thickness of 200 mm.
After forming micrometers, we formed front and back electrodes using a predetermined method, cut them into individual pellets by scribing 400μ7FLX400μm, and measured the light emission output and voltage-current characteristics. there were.

さらVCAIの量を005〜0.1哨添加した場合も平
担性に優れた接合が得られ、A党を添加することによっ
て良好なエピタキシャル成長層が得られることが判明し
た。
Furthermore, it was found that even when VCAI was added in an amount of 0.05 to 0.1, a bond with excellent planarity was obtained, and that a good epitaxial growth layer was obtained by adding Part A.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、PN接合を形成するため
の液相エピタキシャル成長用Ga溶液中へhlを徴証添
加することによシ、極めて平担なPN接合を得ることが
可能であり、サイリスク波形の危険性をなくす効果があ
る。
As explained above, the present invention makes it possible to obtain an extremely flat PN junction by adding HL to a Ga solution for liquid phase epitaxial growth for forming a PN junction, thereby reducing silicon risk. This has the effect of eliminating the danger of waveforms.

本発明の原理については、Ga溶液中へアルミニウムが
入り横方向への成長がスムーズになり厚さ方向への成長
速度のゆらぎがなくなると考えられるが、現在のところ
明確にはなっていない。ただし、本発明は現象的には再
現性よく効果が確認されている。
Regarding the principle of the present invention, it is thought that aluminum enters the Ga solution, smoothing the growth in the lateral direction and eliminating fluctuations in the growth rate in the thickness direction, but it is not clear at present. However, the effects of the present invention have been confirmed with good reproducibility in terms of phenomena.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるS1ド一プGaAs赤外発光ダイ
オード用エビタキシャルウェノ・−スの襞間面をスティ
ンエツチングを施し各層を明確に示した断面図、第2図
はSiドープGaAs赤外発光ダイオードペレットの一
般的な構造を示す断面図、第3図は従来技術によるエピ
タキシャル成長済みウヱハースの襞間面へスティンエツ
チングを施し各層を明確にした断面図である。 代理人 弁理士  内 原   1 日
Fig. 1 is a cross-sectional view of the S1-doped GaAs infrared light emitting diode epitaxial wafer according to the present invention, in which the inter-fold surfaces have been subjected to stain etching to clearly show each layer. FIG. 3 is a cross-sectional view showing the general structure of an external light-emitting diode pellet. FIG. 3 is a cross-sectional view in which the inter-fold surfaces of an epitaxially grown wafer are subjected to stain etching to clarify each layer according to the prior art. Agent Patent Attorney Uchihara 1 day

Claims (1)

【特許請求の範囲】[Claims] 不純物として硅素を使用し液相エピタキシャル成長法に
よりPN接合を形成する際、エピタキシャル成長用ガリ
ウム溶融液中へガリウムに対する重量比0,05%以下
のアルミニウムを添加することを特徴とする赤外発光ダ
イオードの製造方法。
Manufacture of an infrared light emitting diode characterized in that when forming a PN junction by liquid phase epitaxial growth using silicon as an impurity, aluminum is added to a gallium melt for epitaxial growth at a weight ratio of 0.05% or less to gallium. Method.
JP61160069A 1986-07-07 1986-07-07 Manufacture of infrared light-emitting diode Pending JPS6315444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160069A JPS6315444A (en) 1986-07-07 1986-07-07 Manufacture of infrared light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160069A JPS6315444A (en) 1986-07-07 1986-07-07 Manufacture of infrared light-emitting diode

Publications (1)

Publication Number Publication Date
JPS6315444A true JPS6315444A (en) 1988-01-22

Family

ID=15707216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160069A Pending JPS6315444A (en) 1986-07-07 1986-07-07 Manufacture of infrared light-emitting diode

Country Status (1)

Country Link
JP (1) JPS6315444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678369A (en) * 1992-12-28 1997-10-21 Ig-Technical Research Inc. Refractory/heat insulating panels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678369A (en) * 1992-12-28 1997-10-21 Ig-Technical Research Inc. Refractory/heat insulating panels

Similar Documents

Publication Publication Date Title
JP3188522B2 (en) Method of forming light emitting diode
US3998672A (en) Method of producing infrared luminescent diodes
JPS6315444A (en) Manufacture of infrared light-emitting diode
KR0135610B1 (en) Epitaxial wafer
JPH055191B2 (en)
JP3324102B2 (en) Manufacturing method of epitaxial wafer
KR920005131B1 (en) Manufacturing method of green-led
JPH04137771A (en) Semiconductor device
JPS63213378A (en) Manufacture of semiconductor light emitting element
JPS5987881A (en) Manufacture of optical semiconductor device
JP3116495B2 (en) Manufacturing method of light emitting diode
JPH0430583A (en) Manufacture of silicon carbide light emitting diode
JPS61170080A (en) Compound semiconductor device
JPS62217690A (en) Semiconductor light-emitting device and manufacture thereof
JP2001244501A (en) Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof
JPH0964416A (en) Epitaxial wafer and manufacture thereof
JPS58123738A (en) Separating method for sic substrate
JPS58194B2 (en) GAP
JPH098353A (en) Epitaxial wafer, production thereof and light emitting diode
JPS599984A (en) Gallium phosphide green light emitting diode
JPS5935193B2 (en) light emitting element
JPS5972717A (en) Manufacture of semiconductor single crystal
JPH0361639B2 (en)
JPS5856371A (en) Semiconductor light-emitting element
JPS5846876B2 (en) Method for manufacturing gallium phosphide light emitting device