JPS63151989A - Shield panel for display element - Google Patents

Shield panel for display element

Info

Publication number
JPS63151989A
JPS63151989A JP29925086A JP29925086A JPS63151989A JP S63151989 A JPS63151989 A JP S63151989A JP 29925086 A JP29925086 A JP 29925086A JP 29925086 A JP29925086 A JP 29925086A JP S63151989 A JPS63151989 A JP S63151989A
Authority
JP
Japan
Prior art keywords
glass substrate
shield panel
shield
layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29925086A
Other languages
Japanese (ja)
Inventor
宏 早味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP29925086A priority Critical patent/JPS63151989A/en
Publication of JPS63151989A publication Critical patent/JPS63151989A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブラウン管など駆動に高電圧を使用する表示
素子において表面上に帯電する静電気を除去する透明シ
ールドパネルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transparent shield panel that removes static electricity that accumulates on the surface of a display element that uses high voltage to drive, such as a cathode ray tube.

〔従来の技術と問題点〕[Conventional technology and problems]

昨今、表示素子の分野では従来から広く使用されている
ブラウン管(CRT〕に加え、液晶表示素子、プラズマ
ディスプレイ、エレクトロルミネッセンスディスプレイ
、エレクトロクロミックティスプレィなどさまざまな表
示素子が開発され実用に供されており、これらの表示素
子はOA(office automation )、
AV (audio & video )、FA (f
actory automation )  などの分
野で使用量も年々増加の傾向にある。
Recently, in the field of display elements, in addition to the conventionally widely used cathode ray tube (CRT), various display elements have been developed and put into practical use, including liquid crystal display elements, plasma displays, electroluminescent displays, and electrochromic displays. , these display elements are OA (office automation),
AV (audio & video), FA (f
Its usage is also increasing year by year in fields such as factory automation.

上記の表示素子のうち、高画質、大面積表示、カラー表
示が必要とされる分野では、現在のところCRTが最も
多用されている。
Among the above-mentioned display elements, CRTs are currently most commonly used in fields where high image quality, large area display, and color display are required.

CRTは高画質、大面積表示、フルカラー表示が可能で
ある優れた表示素子であるが駆動には通常10kV以上
の高電圧を要するため、管面上に静電気が帯電しやすく
、特に湿気の少ない環境で使用した場合には、管面に手
を触れるとバチバチと放電(感電)したり、また、ゴミ
やホコリが管面上に非常に付着しやすいという問題があ
る。
CRTs are excellent display elements capable of high image quality, large-area display, and full-color display, but because they typically require a high voltage of 10 kV or more to drive, static electricity easily builds up on the tube surface, especially in low-humidity environments. When used in , there are problems in that if you touch the tube surface with your hand, you may get a crackling discharge (electric shock), and dirt and dust are very likely to adhere to the tube surface.

この問題の解決のためには、管面上にシールド層を設け
れば良いことは容易に想像でき、実際、ガラス基板やプ
ラスチックフィルム上に金属あるいは金属の酸化物層ま
たはこれらと多層構造にした層を形成するか、あるいは
、プラスチック板内に導電性の粉体を練り込み、静電気
の帯電を防止する方法が稚々検討されている。
In order to solve this problem, it is easy to imagine that it would be sufficient to provide a shield layer on the tube surface, and in fact, it is easy to imagine that a shield layer could be provided on the tube surface, and in fact, a metal or metal oxide layer or a multilayer structure with these can be used on a glass substrate or plastic film. Methods of preventing static electricity charging by forming a layer or kneading conductive powder into a plastic plate are being studied.

上記の方法によれば管面上の静電気対策は可能であるが
、一般に上記の構造のシールドパネルは多くの場合、表
面が鏡面状であるために、表面での光線反射率が非常に
高く、周囲から入射する光を反射したり、使用者の背側
の景色がフィルター上に映り、使用環境によっては画面
が非常に見難くなるという問題があった。
According to the above method, it is possible to prevent static electricity on the tube surface, but in general, shield panels with the above structure often have mirror-like surfaces, so the light reflectance on the surface is very high. There were problems in that the screen reflected light coming from the surroundings and the scenery behind the user was reflected on the filter, making the screen very difficult to see depending on the usage environment.

上記問題点を解決する手段としては、例えば、ガラス基
板上に透明導電層を形成するタイプの場合では、ガラス
基板表面粗面状に加工し、この粗面上に透明導電層を形
成するなどの方法が考えられる。
For example, in the case of a type in which a transparent conductive layer is formed on a glass substrate, means to solve the above problem include processing the glass substrate surface into a rough surface and forming a transparent conductive layer on this rough surface. There are possible ways.

ガラス基板表面を粗面状に加工する方法としては、サン
ドブラスト処理、弗化水素酸処理を行うのが一般的であ
る。しかし、例えばガラス基板表面をサンドブラスト法
で処理した場合には表面の凹凸が、積層する導電性でか
つ可視光線を透過する金属もしくは金属酸化物層の厚み
よりも大きいため、当該層が不連続となり、当該層の表
面抵抗が大きくなってしまうという問題があった。すな
わち、通常シールドパネルの場合には当該層の表面抵抗
はシート抵抗値でl×103〜l×104(Ω/口)程
度(可視光線の透過度85%以上)で良いが、サンドブ
ラスト処理したガラス基板状に可視光線の透過度を85
%以上に保ちながらシート抵抗値を1x103(Ω/口
〕以下にすることは困難な場合が多く、屋外使用や経年
変化によるシート抵抗値の増大を考慮すると、この構造
のシールドパネルはあまり良いものとは言えない。
Common methods for roughening the surface of a glass substrate include sandblasting and hydrofluoric acid treatment. However, for example, when the surface of a glass substrate is processed by sandblasting, the surface irregularities are larger than the thickness of the laminated conductive metal or metal oxide layer that transmits visible light, resulting in the layer being discontinuous. However, there was a problem in that the surface resistance of the layer became large. In other words, in the case of a normal shield panel, the surface resistance of the layer concerned may be approximately lx103 to lx104 (Ω/hole) in terms of sheet resistance (visible light transmittance of 85% or more), but sandblasted glass The visible light transmittance of the substrate is 85.
It is often difficult to reduce the sheet resistance value to 1x103 (Ω/hole) or less while keeping the sheet resistance value above 1.5%, and considering the increase in sheet resistance value due to outdoor use and aging, a shield panel with this structure is not very good. It can not be said.

サンドブラストに使用°する処理用サンドに粒径の小さ
いものを使用すれば上記問題点はある程度解決できると
考えられるが、逆に粒径の小さいサイドを使用した場合
にはガラス基板表面の粗面加工自体が困難になるという
問題点もある。
It is thought that the above problems can be solved to some extent by using a processing sand with a small particle size for sandblasting, but on the other hand, if a small particle size side is used, it may be difficult to roughen the surface of the glass substrate. There is also the problem that it becomes difficult in itself.

また、弗化水素酸処理の場合では弗化水素酸の洗い落し
が難しく、微量の弗化水素酸の残存が金属もしくは金属
酸化物層を腐食し、電気的、光学的に悪影響をもたらす
などの問題がある。
In addition, in the case of hydrofluoric acid treatment, it is difficult to wash away the hydrofluoric acid, and trace amounts of residual hydrofluoric acid corrode the metal or metal oxide layer, causing adverse electrical and optical effects. There's a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、静電気対策とシールドパネル面上での光線反
射率低下を行うため、表面を弗素ガスあるいは含弗素系
炭化水素ガス単体または当該ガスを含む混合気体のプラ
ズマで表面処理を施したガラス基板と、表面処理した面
上に金属あるいは金属酸化物を主体とする層を形成した
表示素子用シールドパネルを提供する。
The present invention provides a glass substrate whose surface is treated with plasma of fluorine gas, fluorine-containing hydrocarbon gas alone, or a gas mixture containing the gas in order to prevent static electricity and reduce the light reflectance on the surface of the shield panel. and a shield panel for a display element in which a layer mainly made of metal or metal oxide is formed on the surface-treated surface.

本発明において、プラズマ処理に使用可能なガスとして
は弗素ガス単体あるいはCF4.C,F、などのような
含弗素系炭化水素ガスまたはこれらのガスに酸素ガス、
窒素ガス、アルゴンガスなどを混合したものでも良い。
In the present invention, gases that can be used for plasma processing include fluorine gas alone or CF4. Fluorine-containing hydrocarbon gas such as C, F, etc. or oxygen gas to these gases,
A mixture of nitrogen gas, argon gas, etc. may also be used.

また、表面に形成するシールド層としては、金、銀、パ
ラジウム、アルミニウムなどの金属の薄膜、酸化インジ
ウム、酸化インジウム・スズ(ITO)、酸化亜鉛、酸
化チタンなどの金属酸化物薄膜、あるいはこれらの薄膜
の多層膜を形成したものが挙げられる。
In addition, the shield layer formed on the surface may be a thin film of metal such as gold, silver, palladium, or aluminum, or a thin film of metal oxide such as indium oxide, indium tin oxide (ITO), zinc oxide, titanium oxide, or any of these. Examples include those in which a thin multilayer film is formed.

〔作用〕[Effect]

ガラス基板の表面を弗素ガスあるいは含弗素系炭化水素
ガス単体または当該ガスを含む曵合気体ノフラズマで表
面処理を施せばガラス表面はプラズマ内で生成するフッ
素イオンによって容易にエツチングされガラス表面に、
例えば、サンドブラスト法などで表面処理したガラス基
板に比較し、極めて微細な凹凸の形成が可能になる。し
たがって、連続した金属もしくは金属酸化物層を形成で
きる。
If the surface of a glass substrate is treated with fluorine gas, fluorine-containing hydrocarbon gas alone, or a gas aqueous plasma containing the gas, the glass surface will be easily etched by the fluorine ions generated in the plasma, and the glass surface will be etched.
For example, compared to a glass substrate whose surface has been treated by sandblasting or the like, it is possible to form extremely fine irregularities. Therefore, a continuous metal or metal oxide layer can be formed.

プラズマの生成条件を種々変化せしめることにより表面
の光線反射率を希望に応じて変化させることが可能であ
るので画面を見辛くする問題のないシールドパネルの形
成が可能である。
By varying the plasma generation conditions, it is possible to change the light reflectance of the surface as desired, so it is possible to form a shield panel that does not have the problem of making the screen difficult to see.

殊に、本発明によれば、フッ素イオンによるエツチング
の際に、ガラス基板表面でシリカ(二酸化珪素)とフッ
素イオンが反応し、ガラス基板表面にフッ素原子がドー
プされた二酸化珪素層が形成されるので、ガラス基板内
部に存在するナトリウム、カリウムなどのアルカリ金属
イオンの拡散遮断層として働き、アルカリ金属イオンが
シールド層に拡散し電気的特性を阻害したり長期的に劣
化せしめたりするという問題を避けることができるとい
う特有の効果を奏するのである。
In particular, according to the present invention, during etching with fluorine ions, silica (silicon dioxide) and fluorine ions react on the surface of the glass substrate, and a silicon dioxide layer doped with fluorine atoms is formed on the surface of the glass substrate. Therefore, it acts as a diffusion blocking layer for alkali metal ions such as sodium and potassium that exist inside the glass substrate, avoiding the problem of alkali metal ions diffusing into the shield layer and inhibiting electrical characteristics or causing long-term deterioration. It has the unique effect of being able to

シールド効果を発揮せしめるには、シールド層の表面抵
抗は通常lXl0”Ω/口〜lXl0’Ω/口で良いの
で、例えば、シールド層が金属薄膜の場合には100オ
ングストローム以下、金属酸化物の場合も500オング
ストローム以下で良いので、通常シールド層へのアルカ
リ金属イオンの拡散深さが1000オングストローム以
内と考えると、上記のフッ素原子がドープされた二酸化
珪素層のアルカリ金属イオンの拡散遮断効果は絶大であ
る。
In order to exhibit the shielding effect, the surface resistance of the shield layer is usually between lXl0''Ω/mm and lXl0'Ω/mm. Considering that the diffusion depth of alkali metal ions into the shield layer is usually within 1000 angstroms, the diffusion blocking effect of the alkali metal ions of the silicon dioxide layer doped with fluorine atoms is tremendous. be.

本発明のプラズマ発生装置はとくに限定する必要はない
が、−具体例としては真空槽ないに2枚の電極板を対面
するように配置し、真空槽を排気した後、プラズマ発生
用のガスを導入し、両電極に直流もしくは交流の電界を
印加せしめる方法をあげることができる。マイクロ波、
ECRなどの電磁的手段も使用可能である。
The plasma generation device of the present invention does not need to be particularly limited, but - as a specific example, two electrode plates are placed in a vacuum chamber so as to face each other, and after the vacuum chamber is evacuated, gas for plasma generation is applied. An example of this method is to introduce a direct current or an alternating current electric field to both electrodes. microwave,
Electromagnetic means such as ECR can also be used.

〔実施例〕〔Example〕

実施例1゜ 2枚の電極板を8anの間隔で上下に対面するように真
空層内に配置した。
Example 1 Two electrode plates were placed in a vacuum layer so as to face each other vertically with an interval of 8 an.

下側の電極板上に、ガラス基板(厚み1. Owun、
光線反射率6.5%〕を設置し、真空槽を1mTorr
以下に排気した。
On the lower electrode plate, place a glass substrate (thickness 1.
[light reflectance 6.5%] was installed, and the vacuum chamber was set at 1 mTorr.
Exhausted below.

この真空槽内にアルゴン/CF4混合ガス(50150
体積比)を0.2Torr導入した後、ガラス基板を設
置した電極板が負極となるように、両電極に450vの
直流を印加してプラズマを発生せしめ、(電流値 約1
.8 A )ガラス基板を20分間処理した。
Argon/CF4 mixed gas (50150
After introducing 0.2 Torr (volume ratio), a 450 V direct current was applied to both electrodes so that the electrode plate on which the glass substrate was installed served as the negative electrode to generate plasma (current value approximately 1
.. 8 A) Glass substrate was treated for 20 minutes.

処理後のガラス基板の光線厚材率は2.7%であった。The beam thickness material ratio of the glass substrate after treatment was 2.7%.

この表面処理したガラス基板上にDCマグネトロンスパ
ッタリングで膜厚80オングストロームの金膜を形成し
て表示素子用シールドパネルを得た。
A gold film having a thickness of 80 angstroms was formed on this surface-treated glass substrate by DC magnetron sputtering to obtain a shield panel for a display element.

このシールドパネルの光線反射率は45%、表面抵抗は
3.0X103Ω/口 であった。
This shield panel had a light reflectance of 45% and a surface resistance of 3.0×10 3 Ω/hole.

なお、このシールドパネルををCRT管面上に密着して
設置し、パネルのシールド面をアース電位にしたところ
管面上の静電気の帯電は完全に無くなり、また、周囲か
ら入射する光線や使用者の背側の景色の反射が極めて少
なく、画面を非常に見易くするものであった。
Furthermore, when this shield panel is installed closely on the surface of a CRT tube and the shield surface of the panel is brought to ground potential, static electricity on the tube surface is completely eliminated, and light rays incident from the surroundings and the user There was very little reflection of the scenery on the back side of the screen, making the screen very easy to see.

また、ガラス基板と金薄膜層との密着性も非常に侵れ、
粘着テープの剥離試験でも全く剥離する部分が無かった
In addition, the adhesion between the glass substrate and the gold thin film layer is also severely damaged.
Even in the adhesive tape peel test, there was no part that peeled off at all.

このシールドパネルは80°C,95RHの条件で30
日間強制老化後も表面抵抗の変化は殆どなかった。
This shield panel is rated at 30°C under the conditions of 80°C and 95RH.
There was almost no change in surface resistance even after forced aging for one day.

実施例2゜ 2枚の電極板を1Oanの間隔で上下に対面するように
真空層内に配置し、印加する電界と磁界が直交するよう
に真空槽の外周にソレノイドコイルを設置した。
Example 2 Two electrode plates were arranged in a vacuum layer so as to face each other vertically with an interval of 1 Oan, and a solenoid coil was installed around the outer periphery of the vacuum chamber so that the applied electric field and magnetic field were perpendicular to each other.

下側の電極板上に、ガラス基板(厚み1.0mm。A glass substrate (thickness 1.0 mm) is placed on the lower electrode plate.

光線反射率6.5%)を設置し、真空槽を1mTorr
以下に排気した。
(light reflectance 6.5%) was installed, and the vacuum chamber was set at 1 mTorr.
Exhausted below.

この真空槽内に酸素/ CF 4混合ガス(90/10
体積比)を0. l OTorr導入した後、両店板間
の中央部に1000エルステツドの磁界が発生するよう
に真空槽外周のソレノイドコイルに直流電流を流した。
Oxygen/CF4 mixed gas (90/10
Volume ratio) is 0. After introducing lOTorr, a direct current was passed through the solenoid coil around the outer periphery of the vacuum chamber so that a magnetic field of 1000 oersted was generated in the center between both shop plates.

さらに、ガラス基板を設置した電極板が負極となるよう
に、両電極に500■の直流を印加してプラズマを発生
せしめ、(電流値 約1.IA)ガラス基板を5分間処
理した。
Further, a direct current of 500 μm was applied to both electrodes so that the electrode plate on which the glass substrate was placed served as a negative electrode to generate plasma (current value approximately 1.IA), and the glass substrate was treated for 5 minutes.

処理後のガラス基板の光線反射率は2.2%であった。The light reflectance of the glass substrate after treatment was 2.2%.

この表面処理したガラス基板上にRFマグネトロンスパ
ッタリングで膜厚300オングストロームの酸化インジ
ウム・スズ膜(スパッターゲットの酸化スズ含有量9w
t%)を形成して表示素子用シールドパネルを得た。
An indium tin oxide film with a thickness of 300 angstroms was deposited on this surface-treated glass substrate by RF magnetron sputtering (the sputter target's tin oxide content was 9w).
t%) to obtain a display element shield panel.

このフィルターの光線反射率は&0%で、表面抵抗は2
XlO’Ω/口であった。
The light reflectance of this filter is &0%, and the surface resistance is 2.
It was XlO'Ω/mouth.

なお、このシールドパネルををCRT管面上に密着して
設置し、パネルのシールド面をアース電位にしたところ
管面上の静電気の帯電は完全に無くなり、また、周囲か
ら入射する光線や使用者の背側の景色の反射が極めて少
なく、画面を非常に見易くするものであった。
Furthermore, when this shield panel is installed closely on the surface of a CRT tube and the shield surface of the panel is brought to ground potential, static electricity on the tube surface is completely eliminated, and light rays incident from the surroundings and the user There was very little reflection of the scenery on the back side of the screen, making the screen very easy to see.

このシールドパネルは80°C,95RHの条件で30
日間強制老化後も表面抵抗の変化は50%以内であった
This shield panel is rated at 30°C under the conditions of 80°C and 95RH.
Even after forced aging for one day, the change in surface resistance was within 50%.

〔比較例〕[Comparative example]

比較例1゜ ガラス基板上(厚み1.0印、光線反射率6.5%)K
 RFマグネトロンスパッタリングで膜厚300オング
ストロームの酸化インジウム・スズ膜(スパッタクーゲ
ットの酸化スズ含有量9wt%)を形成して表示素子用
シールドパネルを得た。
Comparative example 1゜On glass substrate (thickness 1.0 mark, light reflectance 6.5%)K
A shield panel for a display element was obtained by forming an indium tin oxide film with a thickness of 300 angstroms (tin oxide content of the sputtered coupette: 9 wt %) by RF magnetron sputtering.

このフィルターの光線反射率は8.0%で、表面抵抗は
1.2x l O” 11/口 であった。
The light reflectance of this filter was 8.0%, and the surface resistance was 1.2×l O” 11/port.

なお、このシールドパネルををCRT管面上に密着して
設置し、パネルのシールド面をアース電位にしたところ
管面上の静電気の帯電は完全に無くなったが、周囲から
入射する光線や使用者の背側の景色の反射が多く、使用
環境によっては画面をかえって見難くする場合があった
When this shield panel was installed closely on the surface of a CRT tube and the shield surface of the panel was brought to ground potential, the static electricity on the tube surface was completely eliminated, but light rays incident from the surroundings and the user There was a lot of reflection from the back side of the screen, which could actually make the screen difficult to see depending on the usage environment.

このシールドパネルは80°C,95RHの条件で30
日間強制老化した場合、表面抵抗は200〜300%増
加した。
This shield panel is rated at 30°C under the conditions of 80°C and 95RH.
When forced aging for 1 day, the surface resistance increased by 200-300%.

比較例2゜ ガラス基板(厚み1.0印、光線反射率6.5%)の表
面を平均粒径5μmのアルミナ粉末でサンドブラストし
、光線反射率が3.0%になるように加工した。
Comparative Example 2 The surface of a glass substrate (thickness 1.0 mark, light reflectance 6.5%) was sandblasted with alumina powder having an average particle size of 5 μm to give a light reflectance of 3.0%.

この表面処理したガラス基板上にDCマグネトロンスパ
ッタリングで膜厚80オングストロームの金膜を形成し
て表示素子用シールドパネルを得た。
A gold film having a thickness of 80 angstroms was formed on this surface-treated glass substrate by DC magnetron sputtering to obtain a shield panel for a display element.

このシールドパネルの光線反射率は9.6%で、表面抵
抗は8.2X103Ω/口 であった。
The light reflectance of this shield panel was 9.6%, and the surface resistance was 8.2×10 3 Ω/hole.

なフ・、このシールドパネルををCRT管面上に密着し
て設置し、パネルのシールド面をアース電位にしたとこ
ろ管面上の静電気の帯電は完全に無くなったが、周囲か
ら入射する光線や使用者の背側の景色の反射が多く、使
用環境によっては画面をかえって見難くする場合があっ
た。
When this shield panel was installed closely on the surface of a CRT tube and the shield surface of the panel was brought to ground potential, the static electricity on the surface of the tube was completely eliminated, but light rays incident from the surroundings and There was a lot of reflection of the scenery on the back side of the user, which could make the screen difficult to see depending on the usage environment.

このシールドパネルは80°C,95RHの条件で30
日間強制老化した場合、表面抵抗は800〜1000%
増加した。
This shield panel is rated at 30°C under the conditions of 80°C and 95RH.
When forced aging for 1 day, the surface resistance is 800-1000%
increased.

また、老化前のシールドパネルを粘着テープで剥離試験
を行ったところ、約15%の金薄膜層が剥離した。
Furthermore, when a peel test was performed on the shield panel before aging using adhesive tape, about 15% of the gold thin film layer was peeled off.

〔発明の効果〕〔Effect of the invention〕

本発明に上れば、非常に表面反射率が低い表示素子用シ
ールドパネルが得られるので、シールドパネルの使用に
よって画面が見辛くなるという問題もなく、また、優れ
た耐老化性を有するものであるので表示素子応用分野で
の利用価値は非常に太きい。
According to the present invention, a shield panel for display elements with extremely low surface reflectance can be obtained, so there is no problem that the screen becomes difficult to see due to the use of the shield panel, and it also has excellent aging resistance. Therefore, it has great utility in the field of display device applications.

Claims (1)

【特許請求の範囲】[Claims] (1)表面を弗素ガスあるいは含弗素系炭化水素ガス単
体または当該ガスを含む混合気体のプラズマで処理した
ガラス基板と、プラズマ処理した面上に導電性でかつ可
視光線を透過する金属もしくは金属酸化物からなるシー
ルド層を設けてなる表示素子用シールドパネル
(1) A glass substrate whose surface has been treated with plasma of fluorine gas, fluorine-containing hydrocarbon gas alone, or a mixture of gases containing the gas, and a metal or metal oxide that is conductive and transparent to visible light on the plasma-treated surface. A shield panel for display elements with a shield layer made of
JP29925086A 1986-12-15 1986-12-15 Shield panel for display element Pending JPS63151989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29925086A JPS63151989A (en) 1986-12-15 1986-12-15 Shield panel for display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29925086A JPS63151989A (en) 1986-12-15 1986-12-15 Shield panel for display element

Publications (1)

Publication Number Publication Date
JPS63151989A true JPS63151989A (en) 1988-06-24

Family

ID=17870097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29925086A Pending JPS63151989A (en) 1986-12-15 1986-12-15 Shield panel for display element

Country Status (1)

Country Link
JP (1) JPS63151989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348837A (en) * 1989-07-18 1991-03-01 Fuji Photo Film Co Ltd Screen for electronic apparatus
JP2001343518A (en) * 2000-06-02 2001-12-14 Canon Inc Optical device and method for manufacturing the same
US6452331B1 (en) 1996-09-26 2002-09-17 Asahi Glass Company, Ltd. Protective plate for a plasma display and a method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348837A (en) * 1989-07-18 1991-03-01 Fuji Photo Film Co Ltd Screen for electronic apparatus
US6452331B1 (en) 1996-09-26 2002-09-17 Asahi Glass Company, Ltd. Protective plate for a plasma display and a method for producing the same
US7087308B2 (en) 1996-09-26 2006-08-08 Asahi Glass Company Ltd. Protective plate for a plasma display and a method for producing the same
US7264881B2 (en) 1996-09-26 2007-09-04 Asahi Glass Company Ltd. Protective plate for a plasma display and a method for producing the same
US8048531B2 (en) 1996-09-26 2011-11-01 Asahi Glass Company Ltd. Protective plate for a plasma display and a method for producing the same
JP2001343518A (en) * 2000-06-02 2001-12-14 Canon Inc Optical device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6905776B1 (en) Conductive transparent layers and method for their production
US6329044B1 (en) Transparent conductive film and method of making the film
JP2000356706A (en) Light absorbing reflection preventing body and its manufacture
US20090297877A1 (en) Extreme low resistivity light attenuation anti-reflection coating structure in order to increase transmittance of blue light and method for manufacturing the same
JP3031224B2 (en) Transparent conductive film
JPH0719551B2 (en) Optical filter with electromagnetic wave shielding property
JP4078520B2 (en) Manufacturing method of filter with antireflection function for display device
JP3190240B2 (en) Light-absorbing antireflective body and method for producing the same
JPS63151989A (en) Shield panel for display element
JP2002371355A (en) Method for manufacturing transparent thin film
JPH0756131A (en) Production of transparent conductive film
JPS63151988A (en) Filter for display element
US20090297878A1 (en) Extreme low resistivity light attenuation anti-reflection coating structure in order to increase transmittance of blue light and method for maufacturing the same
JPS62147799A (en) Light transmitting plate with electromagnetic wave shieldingproperties
CN217690518U (en) Two-sided blackened copper conducting film
JPS63150898A (en) Manufacture of shielding panel for display device
CN218647648U (en) Double-sided ITO copper conductive film
JP3369728B2 (en) Laminated transparent conductive substrate
JP3288515B2 (en) Method for manufacturing transparent conductive substrate
JP2651940B2 (en) Substrate with transparent conductive film
KR101771069B1 (en) Anti-reflection film with a anti-contaminating functionality and method for manufacturing the same
CN114927261A (en) Double-sided blackened copper conductive film and preparation method thereof
KR20040079608A (en) Front Filter of Plasma Display Panel and Method for Manufacturing for the Same
JP2002192644A (en) Substrate with copper film
JPS58197607A (en) Method of forming transparent conductive film