JPS63150612A - Absolute displacement sensor using magnetostrictive delay line - Google Patents

Absolute displacement sensor using magnetostrictive delay line

Info

Publication number
JPS63150612A
JPS63150612A JP29748886A JP29748886A JPS63150612A JP S63150612 A JPS63150612 A JP S63150612A JP 29748886 A JP29748886 A JP 29748886A JP 29748886 A JP29748886 A JP 29748886A JP S63150612 A JPS63150612 A JP S63150612A
Authority
JP
Japan
Prior art keywords
receiver
distance
transmitter
transmitters
delay line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29748886A
Other languages
Japanese (ja)
Inventor
Koichi Azuma
浩一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP29748886A priority Critical patent/JPS63150612A/en
Publication of JPS63150612A publication Critical patent/JPS63150612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To improve measurement accuracy by providing transmitters to both terminals of a delay line, and multiplying the ratio of the propagation time of a signal between each transmitter and a receiver and the propagation time of a signal between both transmitters by the distance between both terminals and thus finding the distances between the transmitters and receiver. CONSTITUTION:An absolute displacement sensor consists of the transmitters 2 and 3 provided on both terminals of the magnetostrictive delay line 1, the receiver 3, and magnets 5-7 which apply bias magnetic fields to the respective transmitters and receiver. Equations I hold, where (l) and T1 are the distance and propagation time between the transmitter 2 and receiver 3, l0 and T2 are the distance and propaga tion time between the transmitter 4 and receiver 3, and L and V are the distance distance between the transmitters 2 and 4 and the propagation speed. An equation II is therefore obtained, and then this is expressed by the distance (l) to obtain an equation III. Here, if the propagation speed varies by alpha.V (0<alpha<1) owing to tempera ture variation, the propagation times T1 and T2 are shown by equations IV, but the distance l'' is not affected by the temperature variation in equations V, so that the measurement accuracy can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁歪遅延線を用いたアブソリュート変位セン
サに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an absolute displacement sensor using a magnetostrictive delay line.

(従来の技術) 第3図は磁歪遅延線の構造原理を示す図である。磁石6
の外部磁界によりバイアスされている送信子2のコイル
に電流パルスを流すと、磁歪現象により超音波が発生す
る。この超音波は磁歪遅延線1上を伝播する。受信子3
は外部磁石5によりバイアス磁界がかけられており超音
波を受信すると周回磁束が変化し、電圧が変化すること
により超音波を検出できる。そして、この間の伝播時間
から両者(送信子2と受信子3)の距離が計測できる。
(Prior Art) FIG. 3 is a diagram showing the structural principle of a magnetostrictive delay line. magnet 6
When a current pulse is passed through the coil of the transmitter 2 which is biased by an external magnetic field, an ultrasonic wave is generated due to the magnetostriction phenomenon. This ultrasonic wave propagates on the magnetostrictive delay line 1. receiver 3
A bias magnetic field is applied by an external magnet 5, and when an ultrasonic wave is received, the circulating magnetic flux changes and the voltage changes, so that the ultrasonic wave can be detected. Then, the distance between the two (transmitter 2 and receiver 3) can be measured from the propagation time during this time.

送信子2または受信子3を可動とすることにより変位セ
ンサとすることができる。
By making the transmitter 2 or the receiver 3 movable, it can be used as a displacement sensor.

第4図はねじり波モード磁歪遅延線の構造原理を示す図
である。円筒形の磁歪管8に送信子9からパルス電流を
流すと、このパルスが外部磁石10の位置に達した時、
パルス電流による周回磁束により磁束の変化が生じ、磁
歪現象によりねじりモードの超音波が発生する。この間
の時間は外部磁石10と受信子11の距割に比例するの
で変位センサとして利用てきる。
FIG. 4 is a diagram showing the structural principle of a torsional wave mode magnetostrictive delay line. When a pulse current is passed through the cylindrical magnetostrictive tube 8 from the transmitter 9, when this pulse reaches the position of the external magnet 10,
The circulating magnetic flux caused by the pulsed current causes changes in the magnetic flux, and the magnetostriction phenomenon generates torsional mode ultrasound. Since the time during this period is proportional to the distance between the external magnet 10 and the receiver 11, it can be used as a displacement sensor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような磁歪現象を用いたセンサでは、材料の弾性率
の温度変動により遅延時間の変fカが生じるので温度特
性のすぐれた材料を選ぶ必要があるが、誤差が小ざくな
いという問題がある。
In sensors that use such magnetostrictive phenomena, the delay time changes due to temperature fluctuations in the elastic modulus of the material, so it is necessary to select materials with excellent temperature characteristics, but there is a problem that the error is small. .

今、超音波の伝播速度をVとすると、送信子2と受信子
3の距ra2と伝播時間Tの関係は、It=v−T となる。ここで、温度変動により伝播速度がα・V(た
だし、0〈αく1)だけ変化したとすると、変化後の速
度V′は v’=(1+α)参■ である。このときの伝播時間をT′とすると、距@fl
が不変であるので、 V′ ・T’ =v−T=1 が成立する。
Now, assuming that the propagation speed of the ultrasonic wave is V, the relationship between the distance ra2 between the transmitter 2 and the receiver 3 and the propagation time T is It=v-T. Here, if the propagation velocity changes by α·V (0<α × 1) due to temperature fluctuation, the velocity V' after the change is v'=(1+α). If the propagation time at this time is T', then the distance @fl
is unchanged, so V'·T' =v-T=1 holds true.

したがって、伝播時間T′は T’ = (1/1+α)) ・T となる。Therefore, the propagation time T' is T’ = (1/1+α))・T becomes.

ところで、この装置では、伝播時間Tのみを測定するこ
とにより一定の伝播速度Vとから距離2が、ff1=v
−Tと測定される構成となっているか、伝播速度■が温
度変動でV′となっても装置内部ではそれを補正しない
ので実際の距離かlにもかかわらず R,’ =v−T’ = (1/ (1+a) )  
・1と、誤まって測定されることになる。
By the way, with this device, by measuring only the propagation time T, the distance 2 from a constant propagation velocity V can be calculated as ff1=v
-T, or even if the propagation velocity becomes V' due to temperature fluctuations, it is not corrected inside the device, so R,' = v-T' despite the actual distance l. = (1/ (1+a))
・It will be incorrectly measured as 1.

本発明の目的は、温度変動による誤差を無くして精度の
向上を図ったアブソリュート変位センサを提供すること
である。
An object of the present invention is to provide an absolute displacement sensor that eliminates errors due to temperature fluctuations and improves accuracy.

C問題点を解決するための手段〕 本発明の磁歪遅延線を用いたアブソリュート変位センサ
は、送信子が遅延線の両端に設けられ、各送信子と受信
子の間の信号の伝播時間を求め、当該送信子と受信子の
間の信号の伝播時間と両伝播時間の加算値の比に両送信
子間の距離を乗して当該送信子と受信子の間の距離を求
めるものである。
Means for Solving Problem C] In the absolute displacement sensor using the magnetostrictive delay line of the present invention, transmitters are provided at both ends of the delay line, and the propagation time of a signal between each transmitter and receiver is determined. , the distance between the transmitter and the receiver is determined by multiplying the ratio of the signal propagation time between the transmitter and the receiver and the sum of both propagation times by the distance between the transmitters.

〔作 用〕[For production]

温度変動により伝播速度が変化すると、各伝播時間も変
化するが、その変化の割合は両伝播時間とも同じである
ので、(当該送信子と受信子の間の信号の伝播時間/両
伝播時間の加算値)の値は変化しない。したがって、温
度変動により伝播速度が変化しても、測定値に誤差は生
じない。
When the propagation speed changes due to temperature fluctuation, each propagation time also changes, but the rate of change is the same for both propagation times, so (propagation time of the signal between the transmitter and receiver/both propagation times) The value of (additional value) does not change. Therefore, even if the propagation velocity changes due to temperature fluctuations, no errors occur in the measured values.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のアブソリュート変位センサの一実施例
の概略構成図、第2図はその距離関係を示す図である。
FIG. 1 is a schematic configuration diagram of an embodiment of an absolute displacement sensor of the present invention, and FIG. 2 is a diagram showing the distance relationship thereof.

本実施例は第3図の従来例に送信子4と磁石7が付加さ
れた構成になっている。
This embodiment has a configuration in which a transmitter 4 and a magnet 7 are added to the conventional example shown in FIG.

ここて、送信子2と受信子3の間の距離、伝播時間をそ
れぞれ2、T2、送信子4と受信子3の間の距離、伝播
時間をそれぞれfio、T2.送信子2と4の間の距離
をし、伝播速度をVとすると、 1=v−T1 2゜=■・T2 2+ハ=L か成立する。したかって、 ■・ (TI +72 ) = L v=  (1/ (TI  +72  ))  ・Lと
なり、これで距Hxを表わすと、 R−= (TI / (TI +72 ) )  ・し
となる。ここで、温度変動により伝播速度がα・v(0
〈α〈1)変化したとすると、前と同様に伝播時間T、
、T2がそれぞれ T+’=(1/(1+α))・T。
Here, the distance and propagation time between transmitter 2 and receiver 3 are 2 and T2, respectively, and the distance and propagation time between transmitter 4 and receiver 3 are fio and T2, respectively. Letting the distance between the transmitters 2 and 4 be V, and the propagation speed as V, then the following holds true: 1=v−T1 2°=■·T2 2+c=L. Therefore, (TI + 72) = L v = (1/ (TI + 72)) ・L, and when the distance Hx is expressed by this, it becomes R-= (TI / (TI + 72)) ・S. Here, the propagation velocity is α・v(0
If 〈α〈1) changes, the propagation time T,
, T2 are respectively T+'=(1/(1+α))・T.

T2′=(1/(1+α))・T2 となるが、距離U″は 2″=(T+’/ (Tl′+72”)) ・し” (
TI / (TI +T2 )) ・L=l で、温度変動の影響を受けなくなり、測定精度を向上さ
せることが可能である。
T2'=(1/(1+α))・T2, but the distance U'' is 2"=(T+'/ (Tl'+72"))・S" (
TI/(TI+T2)) L=l, it is not affected by temperature fluctuations and it is possible to improve measurement accuracy.

なお、この実施例では実際の距離り、Rは温度変動しな
いことを前提にしている。
In this embodiment, it is assumed that the actual distance R does not change with temperature.

(発明の効果) 以上説明したように本発明は、遅延線の両端に送信子を
設け、各送信子と受信その間の信号の伝播時間を求め、
当該送信rと受信子の間の信号の伝播時間と両送信子間
の信号の伝播時間の比に両送信子間の距離を乗じて当該
送信子と受信子の距離を求めることにより、温度変動に
よる誤差を無くすことができ、精度が向上する効果があ
る。
(Effects of the Invention) As explained above, the present invention provides transmitters at both ends of a delay line, determines the signal propagation time between each transmitter and receiver,
Temperature fluctuations can be calculated by multiplying the ratio of the signal propagation time between the transmitter and the receiver by the distance between the transmitters and the receiver. This has the effect of improving accuracy by eliminating errors caused by

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアブソリュート変位センサの一実施例
の概略図、第2図はその寸法関係を示す図、第3図は磁
歪遅延線の構造原理を示す図、第4図はねじり波モード
磁歪遅延線の構造原理を示す図である。 l・・・・・・磁歪遅延線、   2.4・・・送信子
、3・・・・・・受信子、     5,6.7・・・
磁石。
Fig. 1 is a schematic diagram of an embodiment of the absolute displacement sensor of the present invention, Fig. 2 is a diagram showing its dimensional relationship, Fig. 3 is a diagram showing the structural principle of the magnetostrictive delay line, and Fig. 4 is a torsional wave mode. FIG. 3 is a diagram showing the structural principle of a magnetostrictive delay line. l...Magnetostrictive delay line, 2.4...Transmitter, 3...Receiver, 5,6.7...
magnet.

Claims (1)

【特許請求の範囲】[Claims] 遅延線上の送信子および受信子の間の信号の伝播時間に
より両者の絶対位置を知る、磁歪遅延線を用いたアブソ
リュート変位センサにおいて、前記送信子が遅延線の両
端に設けられ、各送信子と受信子の間の信号の伝播時間
を求め、当該送信子と受信子の間の信号の伝播時間と両
伝播時間の加算値の比に両送信子間の距離を乗じて当該
送信子と受信子の間の距離を求める、磁歪遅延線を用い
たアブソリュート変位センサ。
In an absolute displacement sensor using a magnetostrictive delay line, in which the absolute position of a transmitter and a receiver on a delay line is determined based on the signal propagation time between the two, the transmitter is provided at both ends of the delay line, and the transmitter and receiver are connected to each other. Find the signal propagation time between the transmitter and receiver, and multiply the ratio of the signal propagation time between the transmitter and receiver by the sum of both propagation times by the distance between the transmitter and receiver. An absolute displacement sensor that uses magnetostrictive delay lines to find the distance between
JP29748886A 1986-12-16 1986-12-16 Absolute displacement sensor using magnetostrictive delay line Pending JPS63150612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29748886A JPS63150612A (en) 1986-12-16 1986-12-16 Absolute displacement sensor using magnetostrictive delay line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29748886A JPS63150612A (en) 1986-12-16 1986-12-16 Absolute displacement sensor using magnetostrictive delay line

Publications (1)

Publication Number Publication Date
JPS63150612A true JPS63150612A (en) 1988-06-23

Family

ID=17847151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29748886A Pending JPS63150612A (en) 1986-12-16 1986-12-16 Absolute displacement sensor using magnetostrictive delay line

Country Status (1)

Country Link
JP (1) JPS63150612A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882110A (en) * 1982-10-25 1983-05-17 Yokogawa Hokushin Electric Corp Stature measuring device
JPS6053011B2 (en) * 1982-09-01 1985-11-22 工業技術院長 Repellent against textile pests
JPS6123917A (en) * 1984-07-12 1986-02-01 Hitachi Ltd Position detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053011B2 (en) * 1982-09-01 1985-11-22 工業技術院長 Repellent against textile pests
JPS5882110A (en) * 1982-10-25 1983-05-17 Yokogawa Hokushin Electric Corp Stature measuring device
JPS6123917A (en) * 1984-07-12 1986-02-01 Hitachi Ltd Position detector

Similar Documents

Publication Publication Date Title
JPS6239885B2 (en)
US3633415A (en) Flowmeter
US3587297A (en) Apparatus for precise stress measurement
JPH10213428A (en) Length measuring device using magnetostriction line
US4611496A (en) Ultrasonic flow meter
JPS63150612A (en) Absolute displacement sensor using magnetostrictive delay line
US3349614A (en) Speed measuring devices
JP5372831B2 (en) Ultrasonic densitometer
JPH11304559A (en) Flow rate measuring apparatus
JPS6254112A (en) Thickness measuring method for scale in pipe
JPH05180678A (en) Ultrasonic flow meter and method for measuring flow rate by it
JPS61226615A (en) Displacement detecting device
JPH02183117A (en) Displacement detector
JP3622613B2 (en) Ultrasonic flow meter
JPH02248824A (en) Apparatus for measuring residual stress
RU1778586C (en) Method for graduating pressure gradient receivers
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
SU1137347A1 (en) Method of measuring force
SU1177697A1 (en) Method of pressure gauging
JP3401374B2 (en) Sound velocity correction method for underwater position measurement system
CN117856748A (en) Impedance self-adaptive circuit and method for ultrasonic transducer
JP4889882B2 (en) Ultrasonic flow velocity measurement method
JPS6398519A (en) Liquid metal flow rate measuring device of high speed breeder reactor
JP2024111984A (en) Ultrasonic time measurement device and ultrasonic time measurement method
JP2007155574A (en) Ultrasonic flowmeter